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Preface 

The work of which the present manuscript gives first results 

has its roots in certain musings concerning the relationship 

between mathematics and programming in which the author has 

from time to time indulged. On the one hand, programming is 

concerned with the specification of algorithmic processes in a 

form ultimately machinable. On the other, mathematics describes 

some of these same processes, or in some cases merely their 

results, almost always in a much more succinct form, yet in a 

form whose precision all will admit. Comparing the two, one 

gets a very strong even if initially confused impression that 

programming is somehow more difficult than it should be. Why 

is this? That is, why must there be so large a gap between a 

logically precise specification of an object to be construct~d 

and a p~ogramming language account of a method for its construc

tion? The core of the answer may be iiven in a single word: 

efficiency. However, as we shall see, we will want to take this 

word in a rather different sense than that which ordinarily 

preoccupies programmers. 

More specifically, the implicit dictions used in the language 

of mathematics, which dictions give this language much of its 

power, often imply searches over infinite or at any rate very 

large sets. Programming algorithms realizing these same construc

tions must of necessity be equivalent procedures devised so as to 

cut down on the ranges that will be searched to find the objects 

one is looking for. In this sense, one may say that programming 

is optimization and that mathematics is what programming becomes 

when we forget optimization and program in the manner appropriate 

for an infinitely fast machine with infinite amounts of memory. 

At the most fundamental level, it is the mass of optimizations 

with which it is burdened that makes programming so cumbersome 

a process, and it is the sluggishness of this process that is 

the principal obstacle to the development of the computer art. 

These reflections suggest that some of the weight.of program

ming be thrown off by passing from the programming dictions 

ordinarily used to a more highly "mathematicized" language. 
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• • 
Our hope to be able _to make something of this general idea is 

raised by the observation that efficiency has two rather different 

sides. One is ma thema ti cal and abstra·ct in character. What 

inter.mediate logical constructs must be built as a process 

proceeds, and how large are the sets of logical objects over 

which searches must be extended during such a process? The other 

side of efficiency is machine-related.and basically two-fold. 

First, we must ask the question of inner loop efficiency: into 

what tabular representations can necessary abstract structures 

be mapped with advantage, and once this representation is 

established, how efficiently can the necessary coded processes 

be made to effect these tables? Then we must ask a fundamental 

question related ultimately to the speed chasm which separates 

electronic from electromechanical memories: How large are the 

data sets with which an algorithm will force us to deal? How can 

these data sets best be staged between different grades of memory 

so as to hurry the completion of an algorithmic process? We may 

remark that machine-related efficiency issues are apt to have as 

much or more to do with these memory management problems as with 

problems of inne_r loop coding, even. though most programmers, 

especially those with an assembly-language background and bias, 

tend to think more of the latter. Our hypothetical mathematicized 

programming language would almost completely mask all machine

related efficiency issues. There is, however, no reason why it 

should hide those more a~stract issues of process design which 

can easily have a more important bearing on efficiency. Indeed 

and this is one of the benefits for which we may hope -- it should, 

by masking the former, enhance our ability to concentrate on the 

latter. 

The foregoing considerations lead one to suspect that a program

ming language modeled after an appropriate version of the _formal 

language of mathematics might allow a programming style with some 

of the succinctness of mathematics and·that this might ultimately 

enable us to express and to experiment with more complex algorithms 

than are now within reach. The notion of language that appears 

here then demands additional clarific~tion. Speaking very general. 
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.... 
a computer language is a set of notations referencing objects 

and processes, and satisfying all the following constraints: 

1. A formal distinction between well-formed and ill-formed 

programs exists, and a "syntax checker" capable of administering 

this distinction can be built. 

2. That class of objects and processes to which well-formed 

programs refer can be defined rigorously. 

3. A "compiler" capable of.transforming a well-formed 

program into the objects and processes that it represents can be 

built. These objects can in fact be repre~ented within a computer, 

and the processes can in fact be carried out. 

Since it refers as a matter of course to infinite sets, the 

language of mathematics has only the first two of these properties, 

not the third. Nevertheless, it is clear that in searching for a 

mathematicized programming language we will wish to start from some 

appropriate version of the language of.mathematics. With which of 

the several variants of formal mathematics that rntght be contenders 

shall we begin? We choose to begin with set theory, formally 

represented, let us say, in its von Neumann-Bernays form. This 

is a language relatively free of artifice, close to the heuristic 

spirit of informal mathematics, and a formal system with which, in 

one or another version, there is a great body of satisfactory 

experience. In particular, we know that using the very small and 

simple set of primitivies that this language embodies that the 

whole structure of mathematics, from abstract algebra to complex 

function theory, can be built up rapidly, intuitively, and in a 

manner largely free of irritating artificialities. Taking this as 

our starting point, our problem becomes the following: Adapt 

set-theory to be machinable. 

A development project sponsored by the National Science Founda

ti-on began at New York University in the Fall of 1970 and has 

continued up to the present date. Our project has concentrated· 

on expressivity rather than efficiency as a language goal. We 

have felt that our somewhat unusual concentration has removed 

some of the obscuring underbrush that often surrounds the discussion 
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of fundamental issues in programming and has allowed us to 

comprehend certain issues more clearly than before. The target 

language of this project was designated as SETL (for 'set 

language'). 

Our work over the last few years has- been embodied in a 

miscellaneous collection of semi-internal publications, the main 

items of which are as follows: 

(a) A manusc:r-ipt entitled "Abstract Algorithms, and a Set

Theoretic Language for Their Expression." This discusses certain 

general issues of programming language design; gives "users 

manual" information on a first version of the SETL language, and 

then presents a fairly wide variety of algorithms in SETL. 

(b) A series, currently at No. 82, of miscellaneous studies 

and working papers growing out of the overall project. This series 

has appeared under the name 'SETL Newsletter'. 

(c) A shorter early form of the manuscript (a), containing 

however a certain amount of material which \<T.aS not repeated in 

(a) and which does not appear in the present manuscript. 

Currently (summer 1975) a language ('SETLA') embodying a 

substantial subset of the intended SETL language has been 
I 

impiemented for the CDC 6600, and is in experimental use 

at NYU. Development of a fuller compiler· yielding considerably 

more efficient code continues under way. 
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The material presented in the present volume is the second of 

three expected parts of an overall summary of work during the past 

several years on SETL, a new programming language drawing its 

dictions and basic concepts from the mathematical theory of sets. 

The general approach followed in this work, which has been carried 

out in the Conputer Science Department of New York University, was 

presented in the first volume of a series of three, entitled 

Installment I: Generalities. The present installment focuses 

directly on the details of the SETL language as it is now defined. 

It describes the facilities of ~ETL,· includes short libraries of 

miscellaneous and of code optimization algorithms illustrating the 

use of SETL, and gives a detailed description of the manner in 

which the set-theoretic primitives provided by SETL are currently 

implemented. A third volume, to be entitled Installment III: 

Extension and Optimization, is planned. 

To have cited original sources for the: numerous algorithms 

for which SETL codes are given in the present volume would have 

involved us in a considerable bibliographic effort, and we have 

not done so. The reader will recognize, however, that algorithms 

due to D. Knuth, John Cocke, Ira Pohl, Jay Earley, R. Floyd, 

and many other workers in various fields of computer science appear 

in the following pages. Those interested in tracing the 

algorithms which we give back to their original sources may 

consult the comprehensive treatise of Knuth, which gives extensive 

bibliographies and a careful historical account of many algorithms. 

An effort has been made to achieve accuracy in the SETL 

algorithms given in the present work. Each of these algorithms 

has been read by several people; where implemented SETLB versions 

--of-the algorithms exist, the algorithms given have been compared 

with them. Nevertheless, it is to be feared that some bugs remain 

in our algorithms. Readers discovering such bugs are asked to 

send corrections to the author. 
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Currently (Spring 1973} a revised and consfdE>ral::>ly more 

efficient version of the presently available SE'I'L subset language 

('SETLB'} is approaching completion. When running, this new 

version will permit a substantial increase in the level of 

experimental SETL use. 

A comprehensive catalog of SETL-related material, including 

an up-to-date listing _of the miscellaneous studies and working 

papers appearing occasionally as the 'SETL Newsletter', has 

been prepared. This catalog can be obtained by ·writing to 

SETL Publications Coordinator 

Computer Science Department 

New York University 

251 Mercer Street 

New York, New York 10012 

The work presente:1 here is, like all computer work collective; 

all of it owes much to my collaborators on the SETL project. 

Mr. Henry Warren played a central role in the detailed design. 

and coding of the 'run time library' of routines realizing the 

primitive SETL operations. David Shields has made numerous 

important contributions both to the specification and to the 

realization of SETL, as did Kurt Maly, Elie Milgrom, and Gray 

Jennings~ We have profited in many ways from close contact with 

the elegantly realized BALM language of Malcolm Harrison, and from 

frequent technical discussions with Harrison. Useful criticisms 

of earlier versions of SETL, and in some cases extensive sugges

tions for its imporvement, were made by Jay Earley, Rudolph Krutar, 

Patricia Goldberg, and G. Fisher. Ken Kennedy developed many of 

the SETL ·otpimization algorithms presented in Item 16. The 

progress mqde to date in realizing SETL reflects the efforts of 

Aaron Stein, Bob Abes, Ed Schoenberg, Stephanie Brown, Edith Deak, 

and Samson Gruber. Kent Curtis of NSF has been an import.ant source 

of general encouragement for our p~oject, and has made substantial 

direct technical contributions to it. Milton Rose 'of the AEC had 

much to do with the inception and continuation of our work. I 

would also like to thank Robert Bonic for useful discussions 

concerning SETL, and Sam Mar.ate ck, Sheldon Finke·lstein, Jerry Hobb~ -

Robert Paige·, Kamal Abdali, Beatrice Loerinc, Max Goldstein, 

Henry Mullish, Aaron Tenenbaum, George Weinberger, Michael Brenner, 

and Peter Markstein for their participation in our work. 
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Item 1. ON THE SOURCES OF DIFFICULTY IN PROGRAMMING. 

~rogramming is difficult, expensive, and highly time-consuming. 

That this should be so is surprising in view of the fact that a 

programming effort normally begins with what in most scientific 

disciplines is not a problem but its solution, namely, an overall 

algorithmic plan worked out to a convincing level of heuristic 

completeness. We see the explanation for this surprise as lying 

in certain general principles of complex constructions, 

principles which suggest certain views concerning basic strategic 

issues in the design of programming languages. 

The development of a complex program, like the construction of 

any highly structured object, consists of a progression of steps 

that supply piece after piece of a total. For the total to be 

correct it is, of course, necessary that all these separate 

elements cohere correctly. Each element must therefore satisfy 

certain constraints. The set of ill those constraints that affect 

the choice of a program element E may be called the ZoaaZ context 

of E. Note that in typical programming situations local context 

will be defined by a miscellany of restrictions, particularly 

the following. 

1. Syntactic restrictions determined by the programming 

language being used and by any definitional extensions to the 

language that may be operative in a given context. 

2. Semantic requirements reflecting particular properties of 

subprocesses {already defined or to be defined} that are to be 

invoked in a given C<?ntext. 

3. Semantic requirements related to the structure of the data 

objects to be manipulated in a given code section. 

4. Accumulated odds and ends, as, for example, restrictions 

implied by the previous uses of particular data items, subroutine 

names, or so forth. 

As noted, a program is built by choosing a sequence of elements, 

each correct in its local context. The probability that a given 

element E will be correctly chosen will fall off rapidly with 

Lncreasing complexity 9f its local context, and, beyond a certain 
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threshold T of complexity, this probability will effectively be 

zero. The inverse of this prob.ability measures the.difficulty 

of choosing a given program element corrrectly, or, what comes 

to much the same thing, the number of iterations in debugging 

that will be required before the fully corrected form of an 

element is attained. In this connection it is useful to bear in 

mind the (merely suggested} shape of the difficuity versus context

complexity curve shown in Figure 1 below. 

D(c} 

I 

I 
I 

C 

Figure L Local context complexity c vs. the difficulty 

D(c} of completing an item in compound structure. 

The line of thought which leads us to the curve shown in Figure 1 

may be extended to give an overall theory of the programming process. 

Suppose that a total program_P consists of elements E 1 , ... ,E and 

that the local complexity of context of the element Eis c. Then we 

suggest that the overall effort required to complete the entire 

program P will be measured.by 

(1) tot(P} • D(C} • •.. • D(C} 
1 

where Dis a function growing rapidly with C and becoming quite 

large at some finite complexity threshold T. A formula of this 

sort can account for·various observed features of the programming 

process, including the very large fluctuations ·that the quantity 
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tot(P) exhibits even when P remains fixed. (One group of program-

mers may complete a project many times more rapidly than another, 

even when both groups are involved with quite similar projects.) 

We take this to reflect the rapid growth of D(C) with c, a growth 

that would imply that relatively small increases in logical 

systematization, applied consistently, could have a substantial 

effect on the effort tot(P). The very large observed variations 

in individual programmer activity can similarly be derived from 

smaller individual variations in complexity tolerance. 1 

1 The formula for total programming effort suggested above leads 
also to potentially useful insights concerning the development of 
a programming project during its lifetime. When an element E of 
a program is initially "sketched out," the logical complexity of 
its local context is momentarily elevated because various still-to
be-resolved uncertainties concerning undeveloped elements of P 
form part of the initial logical context of E. We call this transi
tional element in the context complexity of E external irresolution 
complexity. When the whole of a first.draft of Pis completed, 
this temporary contribution to local complexity disappears, ideally 
allowing the elements E to be confirmed (or revised as necessary) 
a good deal more surely and rapidly than when they were first 
elaborated. A contrary force arises, however, from the fact that 
various details specified during the development of elements 
E1 , ... ,E (and especially those relating to data structures) 
become part of the context of E. We call this contribution to the 
context complexity of E accumulated external complexity. The accumu
lation of external complexity may cause projects to behave pathologi
cally, the context complexity of key elements actually increasing 
over the life of the project, which may make project completion 
impossible or at least very much more tedious than initially 
estimated. 

These last remarks suggest certain principles that might be 
applied to determine the order in which the various parts of a 
complex project can most usefully be tackled. 

1. The most complex elements of the project should be surveyed 
first, and the relationships of these elements to the remaining 
project elements. (their "external environment") determined to some 
degree of approximation. Overall decisions concerning those aspects 
of the simpler project elements that form significant parts of the 
logical context of the more complex elements s.hould then be taken. 
These decisions are to be made tentatively but should be sufficient
ly firm and detailed to relieve the more difficult elements of most 
of their external irresolution complexity. 

2. Full program development should then begin with the most 
complex project elements, which should be brought relatively far 
along before detailed work on the simpler project elements is begun. 
Accumulated external complexity will then complicate only the 
;impler project elements which will have a less harmful effect 
than increases in the context complexity of already complicated 
elements. [continued on next page] 
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The view of the programming process embodied in formula (1) 

leads to the conclusion that a main aim of any programming 

language design must be to provide tools which make it possible 

to describe the whole of a desired totality in a maximally 

modular fashion. That is, we need to invent mechanisms capable 

of preventing the propagation of complexity between sections of 

an extensive program. 

Here however a basic difficulty arises. By making a program 

highly modular, which implies the wholesale use of s.tandardized 

data structures and standardized rather than specially tail6red 

process-patterns, we commit ourselves to a style of programming 

which may imply certain very substantial inefficiencies. A 

modular style of programming hides away many important internal 

process details which could be exploited by a (purely hypothetical) 

all knowing and perfectly accurate hand programmer, uses .ineff i

cient general routines in situations which a hand programmer 

could recognize the use of much more efficient special sequences 

to be appropfiate, and so forth. It is this fundamental difficulty 

with which the language designer struggles, attempting to invent 

dictional patterns which are highly expressive and yet can be 
I 

compiled into reasonably efficient running code. We may represent 

the general outline of the relationship between linguistic modular

ity and efficiency by the "tradeoff curve" shown in Figure 2 below. 

As shown in Figure 2, the more we are willing to complicate 

a program by the addition of efficiency-enhancing special devices, 

the more we can expect its run-time efficiency to improve (provided, 

of course., we neglect the effects of errors in judgement) • Converse

ly, the more we insist on extreme simplicity in the statement of 

an algorithm, the less we are able to guarantee efficien'cy. 

1 [continued from previous page] 
The above considerations underscore the importance of braking 

a complex project into smaller relatively independent pieces 
and of staging the project in a structured manner that allows 
the treatment of potentially complicating factors to be post
poned when possible. Linguistic mechanisms that accord with this 
intent will be used in the SETL language. 
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optimization 

~- ·- - -
with optimization 

Complexity (of program) ➔ 

Figure 2. Tradeoff between Program Complexity and Efficiency, 

Showing the Effect of Optimization. 

If, hwoever, we find ourselves able to construct an automatic 

optimizer which, after analyzing the text of an algorithm, can 

transform it, producing a more efficient text incorporating many 

of the efficiency-enhancing special devices which a hand programmer·· 

would normally use, much potential loss of efficiency can be 

avoided. Improved optimization techniques therefore form an 

essential part of an overall attack on the problems of programming, 

In every case, however, the language designer will explicitly or 

implicitly choose a point on the tradeoff curve of Figure 2 as the 
target of his design. That is, he will decide on the extent to which 
efficiency of target program is to be sacr·ificed in favor of simplicity 
of program text In this functional sens~ SETL aims to be a language of 

the highest degree of expressivity consistent with even that modest 

degree of run-time efficiency needed to support any amount of 

actual computer usage. Formalized mathematics itself is of course 

the language that results when even this modest demand for 

efficiency is dropped. 

We have therefore as our target a language intended to be of 

maximum expressivity in the sense just described; this will be a 

language in which programs are built of a small number of powerful 

lements fitting together in a manner governed by uniform simple 

conventions, rather than of a great many microscopic elements 

relating to each other in complex and irreulgar ways. Drawing 
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from earlier discussion the principle that lack of modularity is 

the main danger which the use of such a language is to avoid, we 

must next ask: what are the principal forces which when programs 

are constructed tend to increase the degree-of interrelationship 

between their elements? 

We locate the most substantial of these forces within the 

logical linkages which connect the separate processes invoked 

within a program to the data structures to which these processes 

refer. Since processes in procedural languages are transient 

but their effect on data objects carries forward, process defini

tions will normally not exert so pervasive a force as data 

structure definitions in propagating complexity. Of course, if 

inappropriate subprocesses are specified as standard, this can 

propagate complexity to remote contexts. Nevertheless; really 

virulent increases in the local complexity of a program will 

normally be traceable to data structure related sources. Thus, 

to hold the complexity of local context within a program below 

a fixed limi't, we must., more than anything else, standardize the 

data structures that a program and a programming language use. 

The use of standardized data structures will imply a certain 

standardization of the processes that manipulate these structures. 

In particular, we will find it necessary to avoid the use of 

processes that can create structures of non-standard form. This 

restriction co~cerning the processes to be used has then signifi

cant implications of its own. If we ever make use of 

operations that transform these structures into nonstandard forms, 

the nonstandard details of these forms become part of the logical 

context of every instruction that might manipulate a nonstandard 

structure. Complexity can build up very rapidly in such situa

tions, and for this reason we.will prefer to avoid them. Thus, 

once having chosen certain data structures for standard use, we 

will normally proceed at once to standardize.a family of basic 

operators addressing these structures and to describe compound 

processes_only {or almost only) in terms of the set of basic 

operators thus designated. The approach sketched here, which makes 

use of standardized data structures and of combinable basic 
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operators affecting them, is that which lies at the basis of every 

,rogramming language design. The standardization upon which we 

1nsi~t can, of course, have a negative effect on the efficiency 

that our method will attain in any particular case; and it is 

this consideration that may again and again tempt us to the use 

of more highly varying nonstandard forms. Within the approach 

envisaged here, howver, efficiency enhancing nonstandard varia

tions ~re allowable only in a phase of programming subsequent 

to the initial layout, in terms of standardized elements, of a 

programming approach. By relegating efficiency related design 

supplements and redesigns to a second stage of programming, we 

confine, to a limited set of specified contexts, a significant 

class of programming activities likely to propagate complexity. 

In particular, we become better able to avoid inadvertent deci

sions in particular contexts which propagate complexity to other 

portions of a program, decisions of this kind can, when higher 

level preplanning is absent or insufficiently detailed, have most 

unfortunate complexity propagation effects. Moreover, by thinking 

first in terms of a standardized class of data structures, and 

only subsequently of those concrete variations that are truly 

desirable for increased efficiency, we will often find that the 

range of variations that must be made is smaller than could have 

been realized at first, so that these variations can themselves 

be standardized. In such cases, we will be able to develop auto

matic optimization methods that incorporate efficiency-enhancing 

variations in programs written in languages of high level and 

that produce programs that compare favorably to those developed 

in lower level languages by programmers forced to function in 

contexts straining their maximum complexity tolerance. 

A data structure Sin which many processes interface may itself 

tend to grow complex, and we will therefore wish to prevent its 

full complexity from affecting, to an unnecessary d~gree, the 

various processes that must address it. We therefore wish it to 

be possible for each process P. to deal only with those aspects of 

S that are of concern to P, ignoring all others. That is, each 

rocess P should be able to views in whatever logical "projection" 
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is appropriate. To allow this we will wish P and S to be linked 

via aaaess funations that allow P to reference those aspects of S 

that it must. Note in particular that we find it desirable to 

represent the necessary access operations explicitly, rather than 

to represent them implicitly in coding ·patterns to be used 

throughout P. In particular, those basic attributes of S to be 

accessed and modified ought to be expl~citly named within P and 

not represented in implicit fashion by compound access sequences; 

mnemonic names, rather than numerical subpart addresses, should 

be used for attributes, etc. 

The emphasis that we have placed on the role of data structures 

in determining certain of the fundamental properties of programming 

languages that address them suggests certain further points. A 

programming language ought to incorporate powerful methods for 

the definition of compound data forms and for the specification 

of new operations applying to and combining them. Explicit mech

anisms that allow operators to be related to the data structures 

on which they are to act should be provided. The ordinary 

semantics of assignment statements needs to be generalized con

siderably, allowing structures just as general as those which 
I • 

appear on the right-hand side of assignments to appear also on 

the left. We will also wish to develop a special declaratory 

extension of our algorithm oriented principal language; this 

extension will enable the "data strategy'' (encoding,· packing, 

•access paclls) to be applied in realizing a given algorithm to 

be specified declaratively in a succinct and centralized way. 

. . 

In addition to the data related issues treated above, various 

other ways in which language design can aid in limiting context 

complexity may be noted. Note, first, that by making decisions 

in separated stages whenver possible, solving initial parts of 

a problem without foreclosing possible approaches to the parts 

which remain, we can reduce the complexity level with which we 

must deal at any given time. This may be called the prinaiple 

of deaision postponement. In decision postponement lies one of 

the basic advantages of the use of specification languages and 
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the "two stage" programming style to be discussed below. Various 

more direct hints concerning language design may also be drawn 

from this principle. First, a language should be able to treat 

in a syntactically identical way semantically analogous entity 

classes which may be substitutable for each other, so that the 

decision concerning which type of entity is actually to be used 

can be postponed. This implies also that we will wish to be 

able to postpone the choice of the detailed encodings and data 

layouts to be used in realizing an algorithm until the soundness 

of the algorithm has been verified. 

The inner details of a program section should be isolated to 

a maximum degree from detailed conventions determined by other 

program sections. This may be called the principal of structural 

isolation. Note in particular that semantically unitary items 

established outside a program element E should be represented 

within Eby unitary names and not by complex sequences defined 
' by external program sections. 

Those items to whose details a given item Eis most closely 

related should find places physically near E without distracting 

less closely related material being included. This may be called 

the principle of grouping by logical relation. In accordance with 

this principle we find it undesirable for a language to establish 

rigid conventions concerning the.order in which syntactic elements 

must appear. In many situations, it will be useful for program 

text to embody a 'footnoted' style, with the main outlines of 

process and flow being shown in a "lead paragraph", and with 

details which flesh out these outlines following. An adequate 

langu~ge will provide for a variety of linguistic styles providing 

textual clarity in a variety of logical situations, and will 

incorporate powerful extension mechanisms allowing a user to 

develop significant personalized language features. The language 

extension tools to be provided must be adequate to deal with 

those common situations in which masses of detail must be repeated 

with obligatory sm~ll variations because of language problem mis-

match. But these tools should also allow profounder global 
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transformations of a source text, expansion of the basic 

. semantic object classes which a language recognizes, and growth 

in the family of declarations which a language provides. 

Specialized control and linkage structures may also aid in 

increasing the power of a language to deal with certain important 

classes of situations. "Whenever" dictions of the type used in 

many simulation languages are also ·quite useful in describing 

certain classes of algorithms. Various special types of plan

forming algorithms can be expressed most naturally in a language 

allowing "non-deterministic branch" dictions. Some of the 

problems of module linkage, subroutine naming, etc. which arise 

in connection with large programs are ameliorated if special 

linking dictions, providing for a more highly centralized control 

of subroutine naming and linking than is ordinarily used, are 

available. 

We may note in conclusion that no language design is entirely 

complete until the debugging tools to be made available to a 

language user have been thought out. This is a matter often 

neglected in current practice. Presently, the sequence of events 

in debugging is typically as follows: 

1. Anomalous,program behavior indicates that an error exists. 

Direct consideration of the error by a knowledgeable programmer 

will normally point the finger of suspicion at some more or less. 

restricted section of a total system or program. 

2. The code section which has fallen under suspicion is taken 

up for examination. When originally composed, this section was 

considere4, on the basis of an informal set of mutually supported 

programmer assumptions concerning its action and the moment to 

moment state of the data structures which it uses, to be correct. 

Certain of these assumptions will have been verified in particular 

cases by test runs. However, both original programmer assumptions 

and test history will normally have been lost when a bug appears. 

It will therefore become necessary to reconstruct these vital 

logical assumptions from the program as it stands, using for this 

purpose whatever disjointed or systematic indications of intended 

logic the program text happens to contain. Note that this 

reconstruction may have to be performed many times, often from 

comments, that are quite fragmentary. 
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3. Once rec.onstructed, the original programmer assumptions 

~oncerning the way the program should work will be reverified, 

using a mixed assortment of generally manual techniques. Those 

few assumptions which seem to play a key role, or which have 

come under suspicion, will be spot-checked. In debugging, one 

will find it necessary to explore an often very large program 

event space using tools that are generally quite weak. The 

program event space to be explored will be particularly large 

in those cases in which a compiled code lacking all•information 

concerning the intended meaning and origin of bit patterns runs 

past an original fault for thousands or millions of instructions 

before encountering an error which it can recognize as such. 

One may also be required to scan large amounts of source text, 

without useful programmed tools being available for this purpose. 

Debugging tools which can alleviate the deficiencies which 

have been depicted can be designed and-should be a part of every 

language system. A means should be provided by which programmer 

assumptions concerning the functioning of a program can be 

stated explicitly and can remain an integeral, permanently 

maintained part of a program text, capable of being switched on 

and off in stages as debugging is pursued now and again at 

different levels. All the "assumption statements" generated 

during the debugging history of a program should be retained in 

appropriate forms in its text, so that they may be systemati

cally reverified if the text is modified and debug-mode is 

reentered. A powerful "program event" oriented language should 

be provided for the dynamic detection and rapid isolation of 

run-time events of debugging significance. An interactive scan 

langu~ge making it easy to gather together whatever fragments 

of source text become important at a given moment of debugging 

should also be provided; this should allow relevant passages of 

text gathered from all the parts of a large program to be display

ed together. Finally, a language should include an appropriate and 

extendable family of "meaning declarations" wh:i.ch, by supplying 

more information to a compiler than can be gathered immediately 

:rom a bare program text, make various compiler administered static 

dnd dynamic consistency checks possible. 
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Item 2. A SECOND GENERAL REFLECTION ON PROGRAMMING. 

What is programming? I will elaborate a series of a,nswers 

to this pregnant question. 

1. To start with, programming is the activity that builds 

the interface between man, on the one hand, and computers, on 

the other. Certain of its characteristics will then be deter

mined by man and others by the computer. The goal of programming 

is the construction of advanced function, which requires the 

perfection of complex programs. Therefore 

2. Programming is the process of constructing complex objects. 

In the preceding pages, certain basic laws affecting such processes 

of construction were outlined. To repeat, compound objects are 

built by successive correct choices of a sequence of elements 

E1 , •.. ,E each element E must be chosen in a logical context 

that summarizes all those aspects of other elements that are 

relevant to the choice of E. We call the collection of all these 

influences the local context of E, and call any reasonable numer

ical measure of this collection the context complexity of E. It 

may then be observed that the chance of choosing E correctly falls 

off very rapidly as its context complexity increases, and effec

tively becomes zero at a not very large threshold T. This observa

tion allows us to define the class of constructible objects: an. 

object is constructible if it can be built by choosing elements 

successively, each in a context of complexity less than T. A 

function is programmable if it can be realized by a program that 

is constructible. 

To construct a large object successively, one must therefore 

combine many subelements. The rules according to which elements 

may be combined are, of course, part of the logical context of 

every element. These rules must therefore be simple. But a 

simple set of rules allowing the indefinitely iterated combination 

of simple_ elements into a large totality defines some sort of 

"algebr~." Therefore 

3. Programming constructs compound objects from simpler elements 

by combining elements according to the rules of some "algebra". 
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To program, therefore, one must be aware of some such algebra, 

which must be capable of generating objects representing useful 

processes. Before they can be used, such algebras must be found. 

We conclude therefore that in a deeper sense 

4. Programming is the discovery of algebraic principles allow

ing the iterated combination of elements into compound objects 

representing useful processes. 

Next, observe that although the maximum threshold T of toler

able complexity postulated above will vary from person to person, 

for no one person is it very large. In this regard a group of 

people is no better than a single person. Therefore an object 

not constructible in the above sense can really never be 

constructed directly, either by individuals or by large teams. 

And it is very unlikely that such an object will be formed 

spontaneously by the action.of,a random process, even if this 

process acts repeatedly over long periods of° time. Objects 

irreducibly unconstructible must therefore remain nonexistent. 

The barrier to their existence should be as firm as those set· 

for mathematics by theorems of the type of Godel. 

There is, however, a way in which we can hope to find a way 

around the obsta-cle revealed by these .pessimistic reflections. 

To see this, observe that the maximum context complexity of the 

elements of a compound object-is by no means independent of the 

representation of the object. What in one representation may 

appear as a densely _interconnected mass will in another repre

sentation appear as an object, perhaps still large, but consist

ing constructibly of items no group of which are. impenetrably 

related. 

To _discover this second representation of a programming 

problem is to break the problem's back, since this discovery 

allows one to build what formerly were obscurely integral 

objects using systematic incremental techniques, that is, to 

proceed by the progressive accumulation of tables of information 

possessing no overwhelming degree of internal interconnectedness. 

In a still higher sense, therefore, 
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5. Programming is the discovery of viewpoints or logical 

transformations that uncover hidden algebras in terms of which 

compound objects representing useful processes may be built. 

That is, programming is simplification, and, like mathematics, 

is a hunt for lucky simplifications. 

It is worth emphasizing that the discovery of these simplifi

cations is the essential goal of expe~imental, as distinct from 

applied, programming. If in a strictly research situation we 

build a highly compound object, we do so only in the hope that 

immersion in the realities of a particular constru~tion process 

may put us in mind of principles allowing this process to be 

simplified. 

The transformation of a constructible compound object into 

that more highly interwoven form in which it directly represents 

some interesting function plainly amounts to a kind of compilation. 

(The practical possibility of carrying out such transformations is, 

of course, the contribution of the machine to the process of· 

programming, which, in the preceding remarks, we have viewed almost 

exclusively from the human side of the man-machine interface.) We 

may therefore s~y that 

6. Programming is the discovery of algebras allowing the 

construction of objects worth compiling and is the programming 

of compilers for these objects. 

Elements that programmers are to combine need to be simple 

externally. Bµt, as long as their internal complexity can be 

hidden, they need not be simple internally. Indeed, when objects 

having simple external description but embodying powerful function 

can be allo~ed within an organized algebra, the programmer's reach 

is multiplied. Hence 

7. Programming is the discovery of highly functional logical 

-entity types possessing simple external descriptions and thus 

capable of being integrated into an· algebra useful for the 

construction of still higher functions. 

The above remarks predicate an indirect method for creating -

functioning machine-level process representations. Our reflections 

concerning context complexity suggest that in the construction of 
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highly compound objects such an indirect approach is inevitable. 

:owever, since this·approach is, to begin with, fixed upon simpli

fication and standardization as goals, in following it we run the 

risk of ignoring alternative constructions that might realize a 

given function in a particularly efficient way. Efficiency

oriented departures from a standardized app~oach are traditionally 

the prerogative of skilled human programmers. The mind, ranging 

analytically, can incorporate very useful variations into a basic 

approach, as long, that is, as the additional complications that 

such departures cause do not carry one over the threshold T of 

allowable context complexity. The programming range that we 

contemplate will, however, involve transformations of form so 

repeated and elaborate as to exclude the possibility .of external 

meddling with the compiled versions of objects. Given that we will 

have to allow efficiency-enhancing variations to enter into the 

compilation process, it follows that in the programming range we 

contemplate it will be found necessary to systematize these 

variations and to build a program capable of weaving them into 

the compiled version of an initial text. Such a program must, 

of course,. be able to analyze programs in sophisticated global ways. 

The programmer may assist this optimizer by adding, to a text to be 

compiled, disjointed declarations that summarize and transmit 

significant conclusions concerning the text, but his role may not 

safely be allowed to exceed this limit. We may in this regard say 

that 

8. Programming is optimization, that is, is the programming of 

optimizers able to analyze and improve other programs and is the 

discovery of principles that allow the simplification of such 

optimizers. 

The use of the indirect technique suggested above, involving the 

optimizing compilation of sequences of constructible objects, will 

eventually allow functions that lie utterly beyond the scope of 

more primitive direct methods to be programmed. Nevertheless, just 

as Godel's theorem assures us that certain rather simple questions 

lie quite out of the range that the method of mathematical proof 

:an reach, so we may also take it that certain functions that might 
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be of great use are not programmable in that no constructible 

/ object can represent them, even after compilation., It is there-

fore of interest to consider whether the construction of artificial 

intelligences is at all possible. Might it not be that, among all 

those objects constructible within the·maximum complexity threshold 

T of the human mind, none exists that can represent all the capacity 

of the mind? 

In coming to grips with this question, one must first of all 

realize that it concerns innate and not learned capacities. That 

which is learned is drawn from an ac?umulation of separately 

encountered facts, presented in no particular order or relationship. 

No inextricably interwoven object is immediately represented in 

the pile of fragments presented as input to the learning process. 

If facts within the mind are interwoven in uncompilably complex ways, 

they can be so only because the mind is innately capable of 

establishing exceedingly complex connections. If the ability to 

learn can be programmed, the teaching process will be trivial. 

That which we seek to duplicate is therefore as fully present 

in the neolithic savage as in the savant. 

But might no~ this innate facility, in spite of the somewhat 

restrictive definition that the above remarks give it, still be 

unprograrnmable? It might. But I doubt that it is. Hard evidence 

in this area is still missing. To argue from what has not been 

done, or from the .collapse of inflated initial projections, is 

an absurdity, given that the computer is still less than twenty

five years old. It seems to me that the fragmentary evidence 

that does exist ought to incline one rather strongly against such 

arguments. Substantial progress toward the programming of mental 

function has been made in a few cases. For example, the parser

compiler type of program captures a striking part of the ability 

to learn languages. Note that, in accordance with the general 

principles stated above, it is the discovery of an underlying 

algebra, specifically the algebra of pattern combination in the 

manner embodied in BNF grammars, that enables us to construct 

such programs. 

One may conjecture that mental faculties that, like the abilit~ 

to learn languages, are generalized and involve explicit learning 
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will prove to be more readily constructible than faculties, such 

as visual pattern analysis, that are more rigidly fixed. Learning 

at the level of language learning is surely of late evolutionary 

arrival, and one may therefore surmise that this faculty has not 

had the time to grow as complex as have others. In view of the 

general pattern that evolution exhibits with regard to physical 

organs, we may take another hint from this observation. Speech 

and higher reasoning, recently evolved, may possibly employ 

specially adapted versions of faculties that antedate them. If 

this is true, then successful duplication of the mind's language

handling faculty may provide clues valuable for the analysis of 

still other mental functions. 

The optimistic remarks of the preceding paragraph, if they can 

be trustea, lead one to try to put the question of artificial 

intelligence quantitatively. The programmability of a complex 

function is, as we have seen above, defined by the battery of 

simplifying transformations that determine one's programming 

technique. How many as yet undiscovered simplfication principles 

remain to be found before artificial intelligences will, in this 

sense, become programmable? If and when these principles become 

available, how large a body of compilable text will be required 

to define the intelligence? I emphasize again that the text in 

question is that which organizes the intelligence's capacity to 

learn, not that possibly larger body of text that defines the total 

mass of facts available to it. That is, an intelligence is defined 

by those highly integral programs that determine the principles 

according to which it organizes more disjointed information uables 

subseq?ently fed to it. It would be rash to try to answer the 

questions just raised. Nevertheless, putting them serves, when 

one notes the extent to which a simple yet well-organized programming 

system such as LISP makes it possible to define quite striking 

language processing faculties by quite a small body of text, to 

buttress optimism. Putting these questions also serves to emphasize 

the central importance, for the eventual construction of artificial 

intelligences, of progress in programming technique. They also tell 

1s what to look for: transformations that allow originally integral 
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functions to be represented incrementally and in this sense to 

become learnable. Thus, for example, we may recognize that the 

organization of at least part of the language-analysis function 

around an explicit Backus algebra of syntactic patterns is a very 

significant step, the sort of thing·~hat we must e~ergetically 

seek to extend. Other functions can be cited for wpich organizing 

"algebras" are desirab.le a~d might be possible. An associational 

"feature noticing" function of a generalized sort would be useful 

in a wide variety of situations, for example in 9ptimization by 

the method of "special cases," where such a mechanism might permit 

the easy adoition of new optimizations. At a more techpical level, 
I 

a language of memory management, allowing certain central problems 

of concrete algorithms to be treated systematically, could 

enhance our ability to produce efficient versions of concrete 

algorithms rapidly. 

In connection with this last remark we may raise yet another 

quantitative question concerning artificial intelligence. The 

capacity of an intelligence is measured both by the level of 

function that- its responses embody and by the speed with which these 

responses can be generated. Assuming that it becomes possible to 
I 

construct an intelligence, how fast will this intelligence be able 

to think? This question touches on all those questi(?nS of e:f;ficiency 

that, by concentrating on abstract programming issues in our preced

ing remarks, we have neglected. Its answer will, of course, be 

determined both by the basic capacities of the hardware available 

at a future date and by the e·xtent to which optim.ization is able to 

ove+GOme the natural tendency to inefficien~y of a highly compiled 

programming style. Until now, almost all the most dramatic. 

increases in program speed have come from basic hardware speedups. 

In a few cases, as with the development of the fast Fourier transform, 

fast sorts, hashing, and list-organized search techniques and the 

improvement of certain little used combinatorial algorithms, program

ming has made similar contributions to efficiency. The domination 

of efficiency by hardware should continue for at least a while 

longer, as clock cycles diminish toward 10 nano~econd~ and especial!~ 
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as improved manufacturing processes weaken the I/0 barrier by 

1aking greatly expanded electronic memories available. In this 

regard programming may f~r a while have the largely subsidiary 

role of choosing algorithms that bypass potential combinatorial 

disasters. A more systematic but perhaps less immediately 

significant contribution of programming to efficiency will 

probably come through the continued development of optimization 

methods, especially those that, like cross-subroutine optimizations, 

aim at preventing the efficiency losses that a naive and highly 

compiled programming technique would imply. 

Efficiency loss through the use of such techniques is in fact 

far from being a crucial problem. It has generally been true that, 

once able to organize a given programming area clearly, one has 

also been able to invent systematic optimizations that permit 

indirect programming techniques to attain an efficiency comparing 

not badly with results obtained by the·use of much more expensive 

and eventually quite impractical manual techniques. In regard to 

the programming of intelligence, it may also be remarked that, once 

we are able to create a faculty, we may expect to be able to improve 

its efficiency substantially by providing it not in the most general 

form possible but in a specialized, "reflex-like" rather than fully 

"adaptable" form. 

As the simplifying techniques needed to organize complex 

functions are progressively revealed through the progress of 

programming, the significance for efficiency of those elemtnary 

subprocesses exercised most constantly by the.compiled form of 

programs written·· using these techniques will become plain. By 

realizing such "inner" subprocesses in hardware, one improves their 

efficiency through the elimination of unnecessary generality and by 

that use of large-scale parallelism that gives such great advantages 

to hardware realizations. An example of the type of situation we 

have in mind is currently seen in the tendency to simplify program

ming by speaking in terms of extremely large "virtual" memories. 

Such an approach makes constant use of qertain simple "mernory

mapping" operations and has led to the construction of these functions 

n hardware. Similar future influences of programming concept on 

uardware design are to be expected. 
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Artificial intelligences, if realized, will take programming 

as one of their first tasks, and it is interesting to try to guess 

the effect that this might have on programming. One of the gre~t 

advantages of such intelligences will be their enormously large 

complexity toleranc~, as comp~red to the capacity of the nat~ral 

mind. In connection with the remarks made above we surmise that 

this will greatly extend the class of programmable functions, 

though in what way is not clear. Certainly, however, they should 

be capable of optimizing programs to a degree impossible to the 

natural mind and in this way can co~tribute substanti~lly to the 

improvement of their own efficiency. 
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Item 3. ADDITIONAL GENERAL REFLECTIONS ON PROGRAMMING. 

I. What constitutes progress in programming? 

Donald Knuth has called programming an 'art', and has argued 

the appropriateness of this designation at some length. 1 In 

this short essay I should like to argue (though of course terms 

are not necessarily matters of great consequence) that programming 

is not an art but a nascent science. The distinction that I see 

is this: art, though ever changing and fresh, does not and cannot 

progress, since it lacks any real criterion of progress; but 

science does progress. 

To establish programming as a science is therefore to propose 

a convincing criterion of progress for it. To this end a comparison 

with mathematics is enlightening. Mathematics is the search for 

interesting proofs, and for general frameworks which allow inter

esting proofs to be found. A proof is.defined by its target 

theorem T, but nonrecursively; even after Tis conjectured (which 

may itself be a significant event) its proof can be arb.itrarily 

difficult to find. Thus the moments of progress in mathematics 

(typically they are discrete and sharply defined) are (simplifying 

somewhat) the moments at which proofs are found. Note also that 

once Tis proved, and assuming that Tis truly interesting, it 

will illuminate some broader area, and in particular will ease 

one's approach to other interesting theorems. 

There certainly is a side to programming, namely the invention 

of algorithms meeting efficiency constraints whose satisfiability 

is nonobvious, which has just this flavor, and which is there

fore as much a science as mathematics. (Knuth is of course one 

of the main developers of this 'single-algorithm' oriented part 

of programming science). The Fast Fourier Transform is no less 

an invention than the Pythagorean Theorem. But should the other 

side of programming, namely its integrative side, i.e., the 

growing collection of techniques used to organize large systems 

1 See Knuth, Computer Programming as an Art, CACM 17, 11 (Novem
ber 1974), p. 667. 
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of algorithms into coherently functioning wholes, be considered 

as an infant science also, or must it remain an art? 

I argue that this part of programming is a science also, 

albeit a science only in its infancy. To see that it is, one 

must observe that the crucial obstacle·to the integration of 

systems of programs providing very advanced function,·which will 

generally be large systems of programs, is met when their 

complexity rises above the very finite threshold beyond which 

the mind can no longer grasp them totally. (This point is 

developed at greater len-gth in Item 1 above.
2

) Those who have 

had the experience of working with systems of this level of 

complexity will realize that one's ability to cope with them 

is quite limited, and always threatens to founder entirely. With 

the active help of a computer, by assembling multiperson groups 

(less prone to fatigue than individuals), and by concentrating 

on one system portion at a time one can· manage such systems. 

But even while being successfully developed and maintained they 

remain elusive and largely inexplicable; in a manner never fully 

comprehended or controlled, they evolve. In contrast, a system 

which remains below the threshold critical for full comprehensi

bility can be designed with assurance and implemented with a 

firm grasp. 

Thus programming progresses when schemes which make it 

possible to realize significant function without overstepping 

this critical threshold are invented. Each such scheme will 

address some more or less broad application area, and will provide 

objects, _operations, and also a semantic framework within which 

these objects and operations can be combined together into large 

structures, the whole allowing significantly many functions 

which formerly would have required superthreshold realizations 

to be written out completely without the critical threshold of 

complexity being crossed. Proof of the success of such a scheme 

comes when, by approaching a major application in a way conforming 

2 The same point is also central to Dijkstra's essay Concerning 
Our Inability to Do Much, p. 1 in Structured Programming, 
o. J. Dahl et aZ., Academic Press, 1972. 
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to the rules of the scheme, one finds that it has become·compre-

ensible, though it was not so before. A framework of the kind 

envisaged is of course a language, and another proof of its 

success will lie in the fact that this language allows one to 

speak clearly and directly about important matters which previously 

could only be depicted in roundabout and clumsy ways. (In 

mathematics, major definitions have the same effect.) Note also 

that the restrictions which such a framework embodies can, if 

they prevent complexity from rising rapidly, be just as ·important 

as the flexibility it provide~. 3 

Once such a framework has been invented, and when some 

process or function has been ~pecified in it, it will generally 

not be hard, though of course it may be tedious, to take this 

specification and transcribe it, perhaps to gain efficiency, 

into some available and appropriate programming language. Because 

numerous errors are bound to infest any lengthy or complicated 

process of transcription, it is generally useful to implement 

languages which realize the framework or something close to it in 

as polished, succinct, and helpful a form as possible. Among 

other things, this can call for the development of elaborate program 

program analysis methods, which for example may be used to support 

rich systems of explicit or implicit declaration, to provide 

sophisticated diagnostics, or to perform optimization which the 

user of a language of very high semantic level is expected to omit. 

But such development is tool-building rather than fundamental 

progress. In this sense, I consider that SNOBOL and SIMSCRIPT, 

for all their lack of polish, embody very significant inventions: 

SNOBOL the string/pattern algebra and a natural framework for 

organizing operations in that algebra; SIMSCRIPT the event and 

scheduling notions so helpful for simulation. Similarly I would 

say that the interest of ALGOL 68 lies not in its syntactic polish, 

but in the way it handles object types and.coercions, and in the 

fact that the kind of systematic approach to declarations which 

it embodies promises to reduce levels of run-time error very 

decidedly. 

This point lies at the heart of Dijkstra's celebrated note 
Go-To Considered Harmful, CACM 11, 3 (March 1968), and of 
various of Hoare's interesting comments o~ programming technique, 
e.g., Monitors: An Operating System Structuring Concept, CACM 17 
(October 1974) p. 261. _
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II. What programmers should know. 

It is now useful to recast the views concerning the programming 

process which grow out of the point of view developed in the 

preceding pages, formulating these views as recommendations 

concerning the intellectual equipment and cast of mind which a 

creative, high level programmer should attempt to acquire. We 

have in mind pro9rammers (or designers) who originate 

programs, rather than programmers (alas! the vastly more numerous 

group) whose work is the extension and repair of programs poorly 

done and documented in the first place, and the adaptation of 

these programs to shifting system interfaces. And we will stress 

the 'higher' rather than the commonplace aspects of the program

mers' intellectual armament. 

A programmer should understand: 

1. Algorithms, i.e. various important algorithmic inventions 

using which significant processes can be performed with special 

efficiency. Examples are heapsort, fast Fourier transform, 

parsing techniques, fast polynomial factorization methods, etc. 

He should understand that a formal concept of program performance 

exists, and have some familiarity with the combinatorial techniques 

used to analyze algorithm performance. In this connection, it is 

also important to understand that there exist processes which no 

program can carry out rapidly, and others which no program can 

carry out at all. 

2. Semantic frameworks, which allow individual algorithms to 

be organized into large program structures. He should understand 

the use and significance of such fundamental semantic inventions 

as subroutine linkages, space allocation, garbage collection, 

recursion, coroutines, and various structures useful for organi

zing processes acting in parallel. He should be familiar with 

object/operator algebras which are of general significance or which 

play an important role in significant application areas: sets 

and mappings, strings and patterns, Curry combinator and lambda 
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calculus, etc. He should understand the way in which semantically 

:ignificant languages make these frameworks and algebras available, 

and the way in which the syntactic features of a language 

facilitate the use of its underlying semantic capabilities. 

3. The programmer should have a conscious view of the 

programming process, unde:rstand the way in which programs, in 

their earliest origins, coalesce out of less organized intellectual 

structures, and understand the objective/psychological influences 

which can either facilitate the development of a final, efficient 

and reliable program version or abort this development. Accumulating 

complexity should be understood as a central peril to successful 

program construction, and techniques for managing and minimizing 

this accumulation should be appreciated. Particularly important 

among these.techniques are the orderly multilevel development of 

more and more efficient program versions through a sequence of 

progressively less high language levels, and also prespecifica

tion, for each major application, of a well-tailored set of 

application-specific primitives, expressed as macros, structure 

declarations, or auxiliary subroutine definitions. Simple clean 

logical structure should be.perceived as a central goal of 

programming; and each simplification seen as a victory, each 

complication as a defeat. The programmer should learn to struc

ture his programs in spare, logically clean ways which keep open 

the possibility of subsequent functional expansion. 

4. The step which leads from a high-level program representa

tion to a lower level and more efficient version of the same 

program should be seen and approached as a process of manual 

optimization to be carried out in a mechanical spirit. For use 

in this process, the programmer should have knowledge of a wide 

variety of optimization approaches and optimizing transformations, 

adapted to the various language levels at which optimization will 

be directed, and ranging from high level global program restructur

ings to machine level inner-loop bit-tricks. 

5. The manner in which the global properties of an algorithm 

determine the data structures appropriate for the representation 

f the objects which it manipulates should be understood. The 

~rogrammer should have a wide variety of data structures at 
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his disposal., and understand the efficiency with which these 

structures can represent more abstract data objects and opera

tions. 

6. The fact that very small inner loops are often critical 

for program efficiency, and that conversely most of a program 

lies outside its efficiency critical paths, should be understood, 

which implies that it is important to measure actual program 

behavior before committing to the opti.mization of any particular 

section of code. (Note that the optimization of large non-

critical program sections represents an unwarranted expenditure 

of program resource.) He should be familiar with the tools 

for measuring program behav1or which various languages, 

operating systems, preprocessors, and program editors 

provide. 

7. The programmer should understand the techniques which can 

be used to adapt programs to run well in specific operating 

environments; this implies knowledge of data staging, overlay, 

paging, and virtual memory techniques. The principal factors 

which affect program performance in these environments should be 

understood, as should the way in which programs can be structured 

to isolate environment dependencies and preserve interenvironment 

portability. 

8. The correctness of a program rests on a web of logical 

relations,· implicit in and guiding the program's ·development; 

this set of relationships, if made. manifest and formally complete, 

would constitute a formal proof of the program's correctness. 

An essential part of program development is to guard the 

integrity of this web as successively more specific program 

versions ate developed, to structure programs so that the logical 

assumptions on which it rests do not become unmanageably complex, 

and to check the logical integrity of the program systematically 

and repeatedly as it is developed. The fact that some programming. 

language constructs aid in the preservation of logical integrity, 

while other more dangerous tools tend to tear a program's under

lying web, should be appreciated. 
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• 
The process of debugging is that of searching, in the possibly 

,ery large execution-event space of an ill-behaved program, for 

primary anomalies, i.e., places at which good input leads 

immediately to bad output; these are the events which point to 

program errors. The debugging tools which make it possible for 

this large space to be searched should be ma~tered; bugs should 

be recognized as inevitable and programs prepared in ways which 

facilitate their detection and removal; but debugging should be 

seen as a process for the repair of a relatively small number of 

tears in an extended and delicate logical fabric, rather than a 

process which can bring order into a heap of disconnected strands. 

During program debugging, the programmer should always understand 

the degree to which the tests which he has administered 'cover' 

all.the possible lurking-places of bugs, and should design tests 

systematically for maximum coverage. The types of program 

constructs likely to give rise to bugs, and the types of bugs 

typically to be expected, should be understood, and the kinds of 

static and dynamic consistency-checking likely to uncover bugs 

rapidly understood also. 

·Finally, the several techniques of formal program-corre'ctness 

prof should be known, and the implications of these techniques 

for the construction of relatively bug-free programs and for bug 

detection comprehended. 

9. In conclusion, we list the various important hand ski Z Zs and h ab i ts 

of an elementary but important sort which the programmer should 

have. He should know the interactive, editing, and program 

maintenance aids available to him; program carefully, check 

conscientiously, and document scrupulously, always remaining 

aware of himself as a team member whose expensive product must 

reliably serve others. He must realize that programming is a 

highly unstable process, in which a disorganized effort can 

consume ten times, or even a hundred times, more resource than 

a well devised effort with the same goal, and th~t especially in 

programming, work is a signed quantity, and mere activity, no 

matter how energetic, is no proof of significant contribution 

o a goal. 
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Item 4. ON THE UTILITY OF AN INEFFICIENT SPECIFICATION LANGUAGE. 

We have suggested in the preceding paragraphs that a programming 

language considerably more mathematical and expressive than those now 

in use can be designed, and have implied that the development of such 

a language must be a central element in any attack on the present 

problems of programming difficulty. The increasing disdain for new 

language that some of the most sophisticated computer scientists have 

expressed of late leads me to put the following question very directly: 

Is it reasonable to expect that the definition and implementation 

of such a language will, merely because its mathematicized character 

and systematic adaptation to the purpose of algorithm specification, 

create any advantages at all? I contend that the answer is yes, 

and I contend, morever, that the benefits that such a language will 

provide are numerous and substantial. I buttress this claim by indi

cating one of the most general of the beneficial effects exp~cted, 

an effect upon computer science education. The availability of a 

mathematicized programming language should in relatively short order 

lead to a restructuring of the way that computer science is taught. 

Pre~ently one begins with a basic course, titled variously but 

generally called something like Introduction to Data Structures and 

Algorithms. When an appropriate abstract specification language 

becomes available, this fundamental subject matter should fall into 

two parts,which might be separately called abstract algorithmics and 

concrete algorithmics. Abstract algorithmics will be concerned with 

the depiction and analysis of complex algorithmic processes, inde

pendently of the way in which the logical objects to thich they refer 

are to be mapped into a computer. Much of the present work is 

intended as a first illustration of what abstract algorithmics is 

ultimately to be. Concrete algorithmics, on the other hand, has 

the following as its problem: Given a family of abstract objects 

and processes that are to affect them, how can these objects best 

be mapped into tabular form and the associated processes actually 

carried out? Note that by isolating and first solving some of the 

problems of abstract algorithmics, we may expect to be able to 

discuss concrete algorithmic problems in a more satisfactory manne: 
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than has hitherto been typical. Before one knows what one wants 

:o do in a complex situation, one is really not in a very good 

position to study the ways'in whicn one might do it. Conversely, 

once an abstract algorithm is put forth, one is· generally able 

to envisage a much wider range of concrete approaches to its 

optimization than would otherwise be possible. From the point 

of view of the present work, prior systematic at.tempts at the 

depiction of algorithms have generally failed to separate the 

abstract from the concrete parts of the algorithmic questions that 

they study but have mixed the abstract with the concrete, rather 

to the disadvantage of both. It may also be mentioned that it 

is abstract rather than concrete algorithmics that stand closest 

to a third principal branch of computer science, that which plays 

so large a role in Donald Knuth's magnificent series of books, 

namely the formal performance analysis of algorithms. 

A second benefit is this: The succinctness and descriptive 

power of a mathematicized programming lanugage will enable us to 

depict complex processes in their totality, in decisive detail, 

and in a form free of abstractly irrelevant specifics. Since our 

view of complex abstract algorithms will be total and detail~d 

rather than fragmentary and vague, we will have a better chance 

to consider the form and effect of variations in our algorithms 

and the possible generalizations of them. Bringing the_abstract 

kernel of a process out from behind the veil of abstract irrelevan

cies that normally obscure it, we will make this kernel more 

communicable and.hence more capable of systematic rational discus

sion than would otherwise be the case. The elimination of irrelevant 

specifics from formally stated algorithms has still another 

substantial benefit. Specificity is a major source of incompati

bility between algorithms, and abstractness will therefore enhance 

compatibility. Consider, for example, the problem of piecing 

together a compiler out of its customary princi·pal components: 

a parser, optimizer, code generator, etc. We find, typically for 

a whole class of similar situations, that across each of the 

interfaces between principal modules some collection, generally 

ather small, of structured data items must be passed. From the 
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abstract point of view, these will be unproblematical enough: 

They may be trees, graphs, a few mappings defined thereupon, 

and so forth. 

If one module will naturally produce trees or graphs, and 

another can conveniently accept such as· an input, no serious 

problem of compatibility is to be expected at the abstract 

level, and separately written modules ~an readily be fitted into 

a totality. The situation immediately becomes different when 

abstract data structures are mapped into concrete tabular form. 

To do so is to define a host of pointer and indexing mechanisms, 

supplementary variables, overflow conventions and flags, special 

abbreviations relating to particular data subcases, field sizes, 

punctuations, and so forth. These definitions, precisely because 

from the abstract point of view they are largely arbitrary, will 

never be cast in precisely the same way for two separate program 

modules except by careful preplanning, and, of course, any 

deviation from perfect agreement may require data restructurings 

so compl~x and touchy as to be prohibitive. In this we have the 

case that generally makes it impossible to design useful program 

libra~y components that will either accept complex data struc

tures as input or provide such structures as output, unless, as 

is the case with the SETL specification language, a language of 

sufficient generality provides a fixed framework of conventions. 

For this reason, intermodule data interfaces often become the 

foci of major difficulties during the design of large programming 

systems, wherein months are often consumed in negotiations 

concerning the detailed layout of data structures to be passed 

between principal modules. It is usually found in such situations 

that all the technical groups involved have elaborated their 

design-ideas -not abstractly but in terms of certain implicit 

assumptions concerning data layout, assumptions that, understand

ably enough, they become loath to give up. Moreover, no powerful 

algorithmic communication technique 

understanding of the processes that 

is available, so that the trade-off 

permitting one group to gainan 

the others are going to apply 

issues involved in the choice 

of data layouts tend to remain obscure on both sides. Naturally, 

it is then hard to come to intelligent technical compromises. 
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The systematic preelaboration of algorithmic strategy using a 

,owerful specification language should cast a welcome light on 

this dark and perilous corner. 

Given that the elimination of irrelevant specifics will 

restrict the tendency toward.incompatibility of program modules 

in a significant way, we may expect to be able to produce fairly 

complex standard formal algorithms adaptable for use in a variety 

of situations. Thus it should become possible to put larger items 

into the cabinet of prefa~ricated programs than have hitherto 

filled it. In the present work effort will be devoted to doing 

just this. 

Yet a third anticipated benefit that we expect the use of a 

mathematicized specification language to provide is this. Our 

method allows the abstract specification of an algorithmic process 

to go forward to completion before any of the concrete table-and

code design issues connected with it have to be faced. When our 

language is implemented, it will even be possible to execute the 

abstract programs, and to verify their correctness experimentally. 

During this process a much smaller mass of program text will be 

involved than is now the case; it will be much more feasiable than 
' 

it now is to experiment with significant variations in approach 

during the development of an algorithm. Next, having a. debugged 

algorithm in hand, one will be able to survey it to .get a detailed 

picture of all the data structures that it involves, of all their 

parts, and of all the processes that must effect these parts. It 

should then be easier than it is now to come to sophisticated final 

decisions concerning the table structures, data management strategies, 

and code techniques to be used in a highly efficient version of the 

same algorithm. In current practice, both classes of is$ues, 

abstract design and concrete layout, must be faced at once, and 

generally in a situation of, confusion in which a programmer, already 

forced to cope with all the complexity that he can juggle, may be 

unwilling even to contemplate promising optimizations if they 

threaten to add to the mass of material that he must sustain. More

over, in typical current situations it is quite hard to maintain 

esign balance, with the consequence that certainparts of the system 
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may be overdesigned, while others, equally or more :crucial, 

may be sorely neglected and their insufficiency discovered only 

when it has become impossible, or at least extremely expensive, 

to do anything about it. The algorithmic language that we 

propose should, in short, allow the full complex of program design 

issues to be approache in orderly stages and allow minor matters 

to be classified as such, whereby design attention can be concen

trated to ferret out highly effective solutions to key problems. 

Note also in this connection that it is only by providing a 

formal language allowing one to describe the abstract structure 

of algorithms without implying any commitment to some particular 

concrete realization that a systematic formal attack on the 

problem of concrete algorithmics becomes possible. If the initial 

text of an algorithm is infected with some particular view concern

ing certain aspects of the data structures to be used, it will not 

be possible to 'declare away' these implicit assumptions, and one's 

ability to move subsequently to an efficient realization of an 

algorithm may be lost. Present practice however makes it very 

hard to retain flexibility in regard to data strategy. In the 

absence of languages allowing the structure of an algorithm to 

be described abstractly, data_ structure design is often the first 

step taken by a programmer. Presently, a sketch of fields and tables 

is often the first thing written down as a programmer attempts to 

turn the exterior specifications for a program into some early 

idea concerning the program's internal workings. This step, 

fraught with profound consequences for all that will subsequently 

happen, is in current practice taken immediately, even before any 

consistent algorithm is available, simply because at present some 

amount of data structure design must be carried through if a 

vocabulary for the detailed description of an algorithm is to be 

established. An abstract programming language will as a fundamental 

benefit not only make it possible to postpone discussion of 

concrete algorithmic issues until the abstract part of an algorithm 

design has been brought under control, but will also make it 

possible to address the problem of concrete algorithmic design 

declaratively. 
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Most of the benefits to which we have until now alluded come 

rom the use of a suitably powerful specification language, 

independently -of whether this language is implemented. When the 

mathematicized programming language we project is available for 

running, however, additional advantages will accrue. A language 

of this kind cannot but be a most appropriate tool for those 

situations, especially charactersitic of university programming, 

in which experimental algorithms are developed to be run a few 

times and then improved or discarded after certain aspects of their 

behavior are observed. A tool of this kind will also be useful 

when an elaborate program needs to be built to run just once, or 

when a complex program whose sole task is to prepare tables for 

some other program must be produced, or when meta-compilers or 

other large programs of infrequent use must be prepared, etc. 

The mathematician desiring to experiment with combinatorial situa

tions but unwilling to make a very heavy investment in programming 

will find a language of the type orjected most welcome. The 

computer scientist will find that. it allows him to realize more 

elaborate algorithms than would otherwise be in reach. Such 

attractions have made APL increasingly popular; I consider that , . 

the partly set-theoretic nature of that ingeniously devised array 

language lies at the root of this phenomenon. 

In the development of large-programming systems within an 

iricustrial setting, a technique allowing the rapid and inexpensive 

development of- functioning, even if inefficient, versions of 

complex programs must also be of decided advantage for several 

reasons. Presently, large-program development suffers badly from 

the fact that little or nothing begins to function visibly until 

a huge whole has been brought far along. At this point, vast sums 

may have been spent and time irrecoverably invested. It is then 

generally the case that what is done is done and that a project 

must either bull through along a fixed course, whatever its internal 

or external deficiencies, or die. Simply by shortening the peri

lously long feedback loops that characterize present development 

techniques, an executable specification language would prove of 

~eat advantage. 
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It may also be remarked that during the d¢velopment of a 

large system substantial expenses are ocqasioned by the fact that 

in such projects it is often necessary to write masses of scaffold

code against which developing systems components can be tested. 

Intending that our mathematicized specification language should 

obviate this, we have been at pains to specify an interface 

linking the specification language to a conventional field

manipulation language of the kind that would normally be used 

for systems programming. In tandem with such a "lower level" 

language, our specification language can act as a test case 

genera tor. 

The full development of this idea leads to what might be called 

a two-stage development technique. The first of the two programming 

stages consists of the development and debugging of a complete 

systems algorithm, written in the abstract language, and the 

annotation of this algorithm with all those remarks concerning 

intended concrete techniques and data management strategy 

necessary _to define the detailed program that is to be developed 

during the second stage. This first programming stage will also 

involve measurement and user testing, wherein the abstract 

algorithm serves as a kind of detailed simulator of the efficient 

program that it foreshadows and wherein it may be modified as 

necessary. An optimizer using the data strategy declarations 

which we envisage might in many cases produce a running code quite 

acceptable in efficiency, without any reprogramming being necessary. 

If in a true 'production situation' a more highly efficient version 

of the same code were required, a reprogramming phase would be 

required. During the second stage of programming, all· the parts 

of an abstract code are progressively replaced with logically 

equivalent but much more efficient passages of concrete code, 

which are hammered out against the abstract algorithm. 

All plans involving execution of abstract specification 

language must eventually hope to demonstrate that, even though 

the efficiency losses that generalized and standard data repre

sentations must occasion will be large, they need hot be 

catastrophic. Loss factors of 10, or even of 100, can be borne; 

loss factors of 1000 (which we do not at all. anticipate) would be 

disastrous. Technology has, after all,increased memory capacities 
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by a factor of 100, and speeds by even larger factors, over the 

.ast dozen years, and promises to continue making similarly 

spectacular gains. Would it not for many purposes be clearly 

worthwhile to go back a generation in machines if by doing so 

we could increase by a large factor our ability to program? 

As a final benefit, we expect the availability of a mathe

maticized algorithm specification language to broaden the frontier 

of contact between programming and mathematics. It should at any 

rate serve to emphasize to the mathematician that programming need 

not be a mass of petty detail only, that in fact it is concerned, 

in a way only slightly unfamiliar, with some of the issues that 

he is accustomed to confronting, that interesting inductive proofs 

can in fact be regarded as recursive algorithms, and so forth. 

While the mathematician will presumably find a mathematically 

oriented language like that we propose more familiar, and hence 

more accessible, than customary programming languages might be, the 

programmer coming to it with a conventional background will find it 

necessary to change certain of his central habits, and this may at 

first be rather disconcerting. Conventionally, the mental process 

of program elaboration that eventually results in a finished program 

design or program begins not only with half-formulated procedure 

kernels but as much as anything else with some idea of the data 

structures that are to support the procedures to be employed. Often, 

enough the first part of a total design that appears on paper is 

an initial elaboration of these data structures, their fields, and 

the separate significances of these fields. This data depiction 

is conventionally used as an anvil against which all the detailed 

processes that eventually will form part of a complete package are 

shaped. From the present point of view, all this -- ingrained habit 

of the most skillful programmers though it is -- is defective, 

since it indiscrimintately confounds the abstract essentials of 

a process to be described with a host of matters of quite different 

character. The procedure we suggest is different. Bypassing very 

much of this customary matter, or at the very least making it a 

postscript to rather than the start of our specifi'cation process, 

e deal not with tables, fields, and pointers, but directly with 
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those logical associations, correspondences; and sets that 

conventional tabular data structures ultimately and indirectly 

represent. The sudden loss of burden that so radical a simplifi

cation implies may at first be somewhat disorienting, and the 

new medium may at first seem too rarefi•ed to breathe. Neverthe

less, the necessary new habits of thought are in fact readily 

acquired and, once mastered, can lead to a substantial improvement 

in one's ability to design eminently practical algorithms. But 

the necess~ry design steps will be taken in quite a different order. 

Before coming to the end of this preface a few last generalities 

may appropriately be put to paper. What are programming languages? 

We would like to suggest the following outlines of an answer to 

this question, evidently fateful for any effort at language design. 

Programming lanuages are notational systems devised to facilitate 

the description of abstract objects whose basic elements are 

sets, mappings, and processes. Associted with these objects 

will be a well defined rule for evaluating them; perhaps, since 

the objects may contain processes as subparts, it would be better 

to say, for interpreting them. From this point of view, procedural 

programming languages of the ordinary serial kind may be regarded 

as a mechanism for the description of a set of basic transformation 

blocks, with each of whi·ch is associated a family of possible 

successors. Each block must also be furnished with a "terminating 

conditional transfer," which can be used during interpretation of 

the program to select one potential successor block as the actual 

"point of transf.er." Object describing languages will depart 

strongly _from this familiar kind of location counter control, 

however. In simulation languages, for example, the basic principle 

of control is quite different: The subprocesses of a simulation 

naturally form an unordered set, each of which is furnished with 

an invocation condition. The simulation interpreter executes, in 

any order, all processes whose invocation condition is satisfied 

as long ~s any remain to be executed; when none remain, an underlying 

time parameter is advanced by the interpreter, and the next ~ycle 

of simulation begins. 
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If we bear in mind this broad range of possibili.ties, we can 

;harpen our response to the question posed above as follows: The 

''front" or "syntactic" part of a language system must provide 

methods by means of which very general abstract objects (graph-like 

rather than tree-like, i.e., admitting remote rather than purely 

local connections) can be described conveniently. _This "front end" 

should be variable enough so that the descriptive notation to be 

used can be tailored to the requirements of any particular field, 

permitting the objects of most common concern in this field to be 

described in a succinct and heuristically comfortable manner. 

Powerful mechanisms for describing the diagnostic or verification 

tests to be applied to text during its syntactic analysis should 

also form part of this language-system front end. The "back" or 

interpreter part of a language system should incorporate abstract 

structures that are general enough so that all the structured 

objects that may be of concern in a particular situation can 
I 

conveniently be mapped upon these structures. Now, the use of 

general set theory should certainly satisfy this latter requirement, 

as long as the actual use of theorem-proving methods is not at 

issue. Set theory could only fail to be adequate if some other 

entities than sets were directly accessible to mathematical 

intuition and could therefore be used as a fundamental starting 

point independent of set theory, which is not the case. Thus, if 

a suitably flexible syntactic front end can be attached to the set 

theoretic language with which we shall be working, we will have a 

system covering a good part of all that is likely to be found along 

that road which completely bypasses considerations of efficiency. 

T~is will in fact be attempted. Of course, this will still leave 

room for semi-general languages which compromise artfully with 

full generality in order to reach higher efficiencies than would 

otherwise be attainable. 
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Item 5. INTRODUCTORY DISCUSSION OF SETL. 

In the present work we will propose a new programming lang~age, 

designated as SETL, whose essential features are taken from the 

mathematical theory of sets. SETL will have a precisely defined 

formal syntax as well as a semantic interpretation to be described 

in detail; thus it will permit one to write programs for compila

tion and execution. It may be remarked in favor of SETi that the 

mathematical experience of the past half-century, and especially 

that gathered by mathematical logicians pursuing found~tional 

studies, reveals the theory of sets to incorporate a very powerful 

language in terms of which the whole structure of mathematics. can 

rapidly be built up from elementary foundations. By applying SETL 

to the specification of a number of fairly complex algorithms taken 

from various parts of compiler theory, we shall see that it inherits 

these same advantages from the general set theory upon which it is 

modeled. It may also be noted that, perhaps partly because of its 

classical familiarity, the mathematical set-notion provides a 

comfortable framework for thought, that is, one requiring the 

imposition of relatively few artificial constructions upon the 

basic skeleton of an analysis. We shall see that SETL inherits 

this advantage also, so that it will allow us to describe algorithms 

precisely but with relatively few of those superimposed conventions 

which make programs artificial, lengthy, and hard to read. 

Having general finite sets as its fundamental objects, SETL 

will be a language of very high level. Generally speaking, we 

regard t~e level of a language as being high to the extent that 

it succeeds in getting away from the requirement of strict locality 

of operation which adheres to an elementary automaton. That is, 

a high level language is one which incorporates complex structured 

data objects and global operations upon them. Such a language can 

free its user from the onerous task, artificial from the abstract 

structural point of view, of specifying the detailed internal 

tables which are to represent the structured objects of his 

concern and of reducing to purely local functions the global trans

formations which affect these objects. The programmer is thereby 

freed to write of abstract problem-related entities and their 
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interactions in a familiar and analytically natural manner. 

As we have noted, a price must be paid for these very great 

advantages. A high level language, which reduces to a minimum 

the amount which a programmer must write to specify an algorithm 

in executable form, is apt to become committed to the invariable 

use of certain standard tabular forms for the representati.on of 

the entities with which it is concerned, and to the use of 

certain standard procedures for their manipulation. It will 

generally use these tables and procedures even in cases in which 

the nature of a particular process to be programmed allows the 

use of much more efficient data representations and manipulations. 

Thus, the use of languages of very high level will lead in many 

cases to the generation of very inefficient programs. To the 

extent to which we are unable to capture the optimizing inventive

ness of a skilled programmer by an optimization algorithm, this 

difficulty will persist quite generally. Set theory, which in 

principle regards a function like cos and the set of all pairs 

x, cos(x) which it generates as being equivalent, certainly 

tends to the use of dictions implying highly inefficient 

algorithms, and whereas we will find ways to avoid the worst 

of these in SETL, and will discuss various ways in which SETL 

programs can be optimized, it will still be true that SETL will 

pay a substantial price in efficiency for its logical power. 

Nevertheless, it is our feeling that this substantial objection 

is not catastrophic, i.e., that languages of the type of SETL can 

be quite uesful in a variety of significant situations. SETL will, 

in the first place, be useful as a specification language, i.e.; 

as a language in which algorithmic process~s can be formally and 

precisely defined by a text whose syntaatia correctness and 

completeness may be verified computationally. The value in the 

definition of highly complex objects of the use of formal text 

has been emphasized by researchers at the IBM Vienna Laboratory 

(cf. Lucas, Lauer, and Stigleitner [1]), who have ·developed a 

logical metalanguage called ULD incorporating various powerful 

set theoretic features and have applied it to give a formal 

~finition of .the PL/1 programming language; we will make various 

-39-



comp,arisq:nsi between SETL and the Vienna ULD definition language 

below. It.· may be remarked that the use of formal text for the 

definition of algorithms is also a step toward the verification 

of algorithm correctness and equivalence by formal proof methods. 

Unfortunately, -such a step does not bring us very far toward 

thi~ rather distant goalr as algorifhms of th~ sophistication 

There are other uses than formal d.efini tion to which a powerful 

but rather inefficient programming language like SETL may be put. 

In ·certain situations, fairly complex algorithms must be programmed 

in-- order to run just once; this is the case, for example, whenever 

a new languages is being "bootstrapped" into existence. In other 

cases, as for example in .experimenting with complex algorithms, 

in measuring the performance of such algorithms, or in the simula-_ 

tion of complex systems, it may be appropriate to program elaborate 
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nrocedures to be executed just a few times. In such cases, 

lgorithm inefficiency may be of minor importance. 

Stil.l another significant advantage of the availability of a 

language of very great expressive power can come from the fact that 

it makes a formal data strategy declaration language possible. In 

such an approach, algorithms to be progressively improved in effi

ciency would first be written out in SETL, no data strategy 

declarations initially being supplied. Once the verified algorithm 

were available, one would begin to improve its efficiency. Examin

ing the algorithm, and noting the sets which played an important 

role in it as well as the operations to which these sets were 

subject, one would elaborate a specialized data description which 

could lead to an efficient program for the same algorithm. Note in 

this connection that sets of certain kinds appearing frequently in 

programming situations permit various specially efficient repre

sentations. Thus, for example, a subset B of an explicitly 

represented set A can be represented by a collection of one-bit 

flags logically attached to the elements of A, and either housed 

with these elements or segregated into a bit table; a set of 

ordered pairs may be represented by a two-dimensional array, 

possibly of bits; an interval of inegers may be represented 

implicitly by a numerical range; etc. Mani such representations 

are known, and constitute much of the normal stuff of programming. 

To extend such a catalog of techniques, we may note that sets 

can b~ represented by arrays, either sorted or unsorted; by lists 

structured using pointers; by entries in hash tables; or by data 

structures combining all of these representational methods, as for 

example structures in which a first few set elements are repre

sented in one way while the remaining elements of the same set 

are represented in another. Sets of ordered pairs may be 

represented by attaching all those second components B which occur 

with a given first component A as a list; alternatively, all the 

elements of this list may follow A in a packed array, permitting 

the representation of a set of ordered pairs in a highly compressed 

form. Special bit-table. techniques are available for the repre-

intation of functions defined on thin subsets of a known set, etc. 
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Special systems of grouping, advantageous when some part of the 

total representation of a set is to be stored on an external 

storage device, are also known. Later in the present manuscript, 

a data strategy description language, DDL, whose semantics gives 

systematic embodiment to the observa tio·ns made above, will be 

proposed. The use of this declaratory language will be illustrated 

by giving annotated forms of various algorithms. 

Since one has generally lacked convenient means for the formal 

description of abstract algorithms, the varied techniq~es described 

in the above paragraph, which may collectively be said to consti

tute the concrete part of the theory of algorithms, have more often 

than not been discovered in intimate connection with that rather 

different material which we prefer to think of as abstract 

aZgorithmics. SETL will allow us to deviate from this tradition, 

and to separate, into two distinct stages, the problem of design

ing and precisely describing the abstract structure of an algorithm 

on the one hand, and the different problem of mapping this 

algorithm efficiently onto a given machine by choice of data

structures and procedures coded in a language of lower level 

on the other. Such separation will hopefully allow us to be more 

accurate in our treatment of both problems than we could normally 

be if, as is now generally the case, we were constrained to treat 

them together. It may in particular be noted that a given abstract 

algorithm can have many plausible concrete images, some of which 

might be missed if both the abstract and concrete. form of an 

algorithm have to be designed together. We may also hope that the 

availabil~ty of a tool like SETL will enable the accumulation in 

useful form of "prefabricated" abstract programs. Because abstract 

progr~ms are free of much of the specific detail which associates 

itself with algorithms in more concrete form, prefabricated abstract 

algorithms of this kind might serve as permanently useful blue

prints for the development of efficient concrete programs. At 

any rate, we can regard the development and debugging of an 

abstract algorithm, and its annotation using a formal data 

strategy declaration language-, as completing the first stage of 

a two-stage programming process. In an industrial setting, this 
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might mark the termination of an initial design phase and the 

1ssage of responsibility from a design group to a· group of final 

__ nplementors who were to develop a high efficiency production 

version of the same code. 

The utility of SETL during the elaboration of this efficient 

final program can be enhanced by linking SETL explicitly to a more 

conventional programming language of lower level, which in this 

introductory discussion we shall designate as the lower language 

or LL. LL can be any small "systems programming" oriented language, 

that is, any language oriented toward the definition of structured 

tables and their efficient manipulation. In the total language 

configuration envisaged here SETL and LL are both incorporated 

in a manner allowing them to be intermixed. In particular, once 

an efficient tabular representation for some structured set S 

occurring in a SETL program has been decided upon, it will be 

easy, using an appropriate mixture of SETL and LL phases, to 

describe procedures both fur converting Stoa tabular representa

tion T and for converting a table having the structure T back to 

a set structured as S. Such conversion being possible, one may 

then progressively replace sections of SETL code by expanded 

versions of the same processes written in LL, converting between 

tabular and set-theoretic representations for all necessary 

entities at the points of transition between SETL and LL code. 

Holding to such a procedure will aid in the orderly elaboration 

of a final program, and will also provide some assurance that the 

program as ·finally developed corresponds to the SETL specifica

tion as initially set down. As final :LL code is developed, initial 

SETL statements will progressively be relegated to the status of 

comments. During this process, those portions of an original SETL 

code still being executed will serve as "scaffolding" for the 

developing LL code, providing input data sets and convenient 

output and checkpoint facilities for testing. Note, however, 

that as long as a program remains "hybrid", that is, contains 

both SETL and LL, it will be inefficient, as the costs of passage 

of the SETL-LL interface that we shall describe are high. 
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Item 6. SOME CENTRAL TECHNICAL ISSUES I~ PROGRAMMING LANGUAGE DESIGN. 

SETL, as it will be presented in most of what follows, will 

appear as a full-fledged "user language~. That is, we will assign 

it a specific and fairly elaborate syntax, intended for direct use 

rather than as a base requiring a good deal of extension before use~ 

Here we may usefully distinguish betwe~n "host" and ''user" languages. 

A host language is a language providing a full set of Semantic 

facilities, but with a syntax deliberately kept Simple. Such 

languages are intended n'ot for direct use, but rather aS a basis 

and target for language extension. By keeping their syntax simple 

and modular, one confines the mass of irregularities which an 

attempted extension must digest. In designing a user language, 

on the other hand, one incorporates a fairly elaborate collection 

of syntactic facilities, hoping that these will be directly useful 

in a wide range of applications. SETL as currently specified is 

a user language; it is however worth trying to envisage the sort 

of host langu.age which could underlie it, as this will ciarify 

various basic semantic issues arising in programming lang.uage 

design. 

At the most basic level, a procedural programming language 

merely provides a framework which allows the storage and retrieval 

of some family of data objects and the sequenced application to 

these objects of some sufficiently general set of primitive 

operations. Concerning this, the following remarks can be made. 

1. The semantic framework of a language should allow an arbitrary 

combinatibn of primitives to be disguised as a primitive and to be 

invoke·d ih the same way as a primitive. This is the essential 

point of the system of "calling conventions" which is always part 

of the semantic core of a programming language. One will wish not 

only to provide subroutines capable of manipulating and modifying 

their arguments, but also to provide from the start for the 

recursive use of subroutines, as recursion is a technique of 

established power related .directly to a language's basic inter"" 

routine linkage conventions. 
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2. Computer hardware characteristically looks at computations 

tlrough a 'peephole'. In each cycle of its action hardware can 

manipulate only those several hundred bits which are contained 

in some limited set of active registers. Moreover, internal 

limitations on available data-flow paths .will slightly (though 

not strongly) constrain the transformations possible on a single 

cycle. To the extent that its primitives directly ~eflect hard

ware constraints, a programming language .is of low level; to the 

extent that it provides compound data objects upon which highly 

'global' primitives act, a language is of high level. 

3. If compound data objects are to be freely usable in a program

ming language, and if processes creating such objects are to be 

usable in the same way as hardware primitives would be, then at 

the implementation level the language must incorporate some auto

matically acting space allocation scheme. In this sense, we regard 

the type of "garbage collector" first developed in connection with 

the LISP language as an invention fundamental for programming. 

4. The semantic extensibility ·of a language will depend to a 

large extent on the ease with which different abstract compound 

objects of varied structure can be represented in terms of the 

specific semantic objects which a language provides. SETL aims 

to gain advantage from the fact that the objects of most fields 

of mathematical discourse can be represented rather easily using 

sets and mappings. 

5. The primitive operations most advantageously incorporated into 

a language are those which combine smoothly into broadly applicable 

families of transformations, especially if they are simple, 

heuristically comfortable actions which are nevertheless 

challenging to program. Some at least of the set-theoretic 

operations provided by SETL have these advantages; note in parti

cular that efficient implementation of set theoretic operations 

will probably imply the use of hashing techniques, and that the 

heuristically innocent notion of set equality is implemented by 

a fairly complex recursive process. 

6. A programming language built upon a family of primitives can 

i optimized if enough· information concerning the inputs and effect 
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·of each primitive is made available to a sufficiently powerful 

optimizer. Optimization will normally require extensive processing 

of program text, and one's attitude toward optimization will 

therefore have important impact on a language design. In general, 

a decision to optimize extensively wi11· imply a relatively static 

approach to certain design issues; if optimization, especially 

global optimization, is abandoned, a considerably more dynamic, 

incremental language can be provided. This observation bears upon 

the. question of whether some appropriate intermediate-text form 

of its own code is to be a data type available within a language. 

If this is done, then highly flexible forms of dynamic compilation 

become available. In the opposite case, compilation (with the 

optimization it implies) is a more serious step, and in the place 

of truly dynamic compilation a language system will probably 

provide a facility for input text editing plus total recompilation. 

Dynamic compilation is certainly more than a luxury; on the other 

hand reas~nably flexible and quite useful systems can exist without 

it. Of course, it is possible to provide both modes of operation, 

one for the earliest stages of program development, the other 

to allow more substantial runs of more 'fully developed programs. 

7. An optimizer will normally require substantial information 

concerning all the primitives which it can encounter. This informa

tion will be used in complex ways during the analyses which consti

tute the optimization process. For this reason, it will not be easy 

to allow extension of the semantic primitives of a language which 

is to be elaborately optimized. On the other hand, extensibility 

of primit~ves of a high level language is quite desirable, as this 

will ~llow levels of efficiency to be reached which can probably 

not be attained in any other way. Note, for example, that SETL 

provides no SNOBOL-like string-to-pattern matching primitive, a 

primitive which would be highly desirable if SETL or an extension 

of it were to be used for extensive string-processing. Similarly, 

it might be highly desirable to provide, let us say, a set of 

matrix manipulation primitives in an extension of SETL which was 

to be used to support large scientific calculat"ions. To keep open 
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the possibili~y of adding such primitives is certainly not a goal 

hich it is easy to accommodate if, as in SETL , careful optimiza

tion is to be undertaken. Nevertheless, it may be hoped that 

careful organization of an optimizer will lend a rational structure 

to the information concerning primitives which an optimizer must 

use. To the extent that the hope is borne out, it may be possible 

to allow new primitives to be installed within an optimized high 

level language. This will of course require that certain interface 

conventions be observed carefully, and that information of signi

ficance to the optimizer be supplied in prescribed form whenever 

a new primitive is established. 

8. The use of high level dictions should, at least to a certain 

extent, make a language more optimizable. It is probably easier 

to supply an optimizer with information concerning important 

special cases of high level operations than to enable it to detect 

"gestalts' once these have been expanded into detailed code 

sequences. Appropriate combination of high level procedural code 

with declaratory hints to an optimizer may very possibly make 

possible the production of rather efficient object code from 

concise and straightforward source text. For this to succeed, 

however, we will have to learn to express essential aspects of 

a programmer's overall optimization strategy in a suitably devised 

formal declaratory style. 

9. A facility for the description and control of processes proceed

ing in parallel is vital for languages intended for certain important 

areas of application. Such a facility can be provided either in a 

broad form suitable for use in connection with true multiprocessor

multitasking environments, or in a ·narrower form sufficient to 

allow response to semi-autonomous external activities ge~erating 

'input data files' , 'clock signals' , and 'interrupts'. At\ least 

the latter facility is necessary for a language which is to be used 

to describe operating systems. While SETL aoes not now inplude any 

features of the type just described, it is certainly int,eresting 

to attempt to extend SETL to provide such features. Errors and error 

recovery, as well as memory hierarchy management, raise additional 

tgnificant operating~systern releated programming issues with which 

a language intended for the comprehensive description of such 
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systems must come to grips. 

10. The provision of a structure which can supply good run-time 

diagnostics is an issue which ought to be faced during the basic 

semantic design of a language. Diagnostics of this sort will be 

issued when the routines interpreting the primitives of a 

language detect malformed arguments or other illegal circumstances. 

In such cases, 'trace-back' data allowing the situation surrounding 

an error to be described in user-interpretaryle terms must be 

available. One will wish to be able to report on 

(a) the chain of subroutine calls made up to the error event; 

(b) the source-code statement, and the particular operation in it 

being executed at the time of the error event; 

(c) the values of all variables immediately ~rior to the error 

event, arid the identity of those variables discovered to be 

illegal in format. 

The importance of providing all this information in an 'external' 

form tying it to the source text with which a user is directly 

concerned, rather than in a difficult-to-interpret internal form, 

deserves to be stressed. Note that many of the necessary 'external

to-internal' connections (such as the association of external names 

with variables) can be set up at compile_ time by an adequately 

conceived translator. Nevertheless, the diagnostic 'hooks and eyes' 

needed at the basic execution level deserve careful design. 

The issues discussed above are strongly semantic in flavor, in 

that they arise during the design of the base-level interpreter 

routines and target-code conventions which directly allow the 

operations of a language to be carried out. Beyond these issues 

arise others, still fundamental, but of a more nearly synta~tic 

character. 

We may regard these latter issues as belonging to the design 

of those processes which take one from some internal parse-tree 

form of a host language to the target code which is directly 

interpreted. Here, the following main points may be noted. 

1. In designing a full host language system, one will have to 

decide whether the system is to include a farily complete 'front 

end', or whether on'ly host language mechanisms will be provided. 
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If the former path is taken, one will strive to invent 'syntax 

Ktension' tools allowing the external form of a language to be 

varied within wide limits. If only host language mechanisms are 

provided within the core system, one will intend to allow any 

one of a wide variety of parsers to be used to define external 

language syntax. The first course can provide quite a range of 

users with languages reasonably well tailored to their require

ments, which ~an be made available without any very great effort 

on their part. Several arguments can be given in favor of the 

latter course. Parsing is the best understood, the most manage

able, of all the elements of a language system. Diagnostic 

generation is an important part of parsing, and a specially 

designed parser can generally give much more adequate diagnostics 

than are available via a less flexible syntax extension scheme. 

In particular, the use of a syntax extension scheme may make it 

difficult to avoid t·e generation of diagnostics at the host 

language level, which however may involve the user in dictions 

and circumstances that he would prefer to know nothing of. A pre

defined syntax extension scheme may not readily allow the use of 

source text forms requiring elaborate, unexpected pretransforma

tions, as for example forms in which initially segregated fragments 

of code must be merged to produce required host language forms. 

Especially if this merging involves elaborate consistency checks, 

or is guided by specialized declarations peculiar to a given user 

language, attempts to use a pre-defined extension scheme lead to 

difficulties. 

2. Even a host language will generally provide more than the 

minimally necessary operations, argument, and transfer patterns 

required to sustain interpretation (a language providing only 

this much would in effect be an assembly language for an abstract 

machine). Indeed, since some basic elements of syntactic 'icing' 

are so easily provided, and so apt to be useful in connection with 

almost any ultimate external syntax, one will generally wish to 

provide at least this much syntax as part of a host language. The 

list of features which one will probably prefer to. include is 

~irly short. Expressions with embedded function calls are a 
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syntactic form used in almost every programming language. They 

derive their special utility from the fact that the output of one 

operation is quite likely to be an input to the very next opera

tion performed; when this is true, use of expression syntax allows 

one to elide the 'temporary variable' names which would otherwise 

have to be used, yielding condensed dictional forms. The 'on-the

fly' assignment (within an expression)_pioneered by APL can be 

regarded as generalizing this advantage; it exploits the fact 

that one will often use the value of a subexpression twice in 

rapid succession, often within the confines of a single compound 

expression. Certain dictions related to the control of pro~ram 

flow have equally general appearance, and deserve equally to be 

provided even by a host language. The if ... then ... form 

popularized by ALGOL exploits the fact that binary tree-like 

branching is the Gommonest form of 'forward' cqnditional transfer. 

By providing this diction at the host language level, one eliminates 

the need to gE?_nerate many of the explicit transfer labels which 

would otherwise be necessary. The commonest form of control 

structure involving backward branching is the 'while' loop, 

which is another form which it is desirable to include even in 

a host language. One will wish a collection of statements to be 

usable in any position in which a single statement can be used; 

for this reason, it is desirable for a host language to include 

some statement grouping scheme. Finaliy, one will wish to be able 

to use any code passage returning some single data_object as part 

of an expression; a facility allowing this is also appropriate 

for a host language. 

3. Name protection, embodied in a suitably powerful and general 

names~oping scheme, will appropriately be included in the host 

language level of an overall language system. We regard a name

scoping system as a set of conventions which assign a unique 

'resolved name' or 'semantic item' x to each 'source name' y 

appearing in a mass of text. The particular x to be assigned to 

each occurrence of y depends on the location of x within_ what will 

ordinarily be a nested, tree-like family of scopes. 

The purpose of a namescoping system is of course to balance 

the conflicting pressures toward globality and protection of names. 
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unrestrictedly global use of names is unacceptable, since it 

reates a situation of 'name crowding' in which names once used 

become, in effect, reserved words for other program sections. 

Hard-to-diagnose 'name overlap' bugs will abound in such situations. 

'Globalization' of any subcategory of names can recreate this 

problem; for example, in large families of subroutines it may 

become difficult to avoid conflicts between subroutine names. 

In sufficiently large program packages, it will be desirable to 

give even major scope names a degree of protection. 

On the other hand, a system in which names tend very strongly 

to be local unless explicitly declared global can tend to force 

one to incorporate large amounts of repetitive declaratory boiler

plate into almost every protected bottom-level namescope or 

subroutine. Particularly in a language like SETL, which aims at 

the compressed and natural statement of algorithms, this burden 

would be irritating. 

What one therefore requires is a system capable of dividing 

a potentially very large collection of programs into a rationally 

organized system of 'sublibraries', between which coherent cross

referencing is possible in a manner not requLring clumsy or 

elaborate locutions. 

The design of such a system is by no means trivial, especially 

since the problems which namescoping addresses emerge full-blown 

only in the development of very large systems of programs. Note 

also that a namescoping scheme to be used in connection with an 

extensible host language ought to be general enough to support a 

variety of user-level namescoping conventions. The stereotyped 

subsidiary text necessary to get such a variety of surface effects 

will of course be supplied by the specialized 'front ends' defining 

the different user languages supported by a given host lang_uage. 

However, before any of these issues can be faced with confidence, 

more experience is required. 

Having said what we can concerning the basic semantic and semi

semantic issues arising in language design, we now turn to a 

discussion of some important syntactic issues. Any language syntax 

ill 'fill' a given space of syntactic possibilities to a given 
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level of co~pleteness. Of course, one will never wish to assign 

a meaning to every possible string of tokens; to do so would 

completely destroy all possibility of detecting error durj.ng 

translation. On the other hand, it can be advantageous to allow 

a language to fill the syntactic space ·available to it rather 

completely; say, for purposes of discussion, to the 50% level. 

This will tend to make many very compact dictions available; 

a possibility especially attractive if an interactive keyboard 

languuge is being designed. To attain this level of syntactic 

packing, one will assign meanings to operator-operand combi"nations 

not ordinarily used, and reduce the number and length of keywords 

appearing in a language. In particular, monadic significance 

will be assigned to ordinarily dyadic operators, a semantic 

interpretation will be assigned to sequences of variable names 

following in succession with no intervening operators, and elision 

of keywords willbe allowed whenever possible. A precedence 

structure favoring the use of infix operators over parentheses 

may also be found desirable. All this leads to a very compact 

language, in which helpful syntactic diagnostics can nevertheless 

be generated. Syntactic packing to the degree indicated may on 

the other hand lead to source text forms which, lacking helpful 

redundancy, become somewhat difficult to read. For this reason, 

one may prefer in designing a language intended for extensive us~ 

in cooperative programming efforts to make use of a higher degree 

of redundancy. In such case, the syntactic structure chosen 

ougnt to promote good programming habits, allowing and even 

·inducing _its user to group passages of text in a manner which 

makes clear the logic of the process which this text describes. 

Moreov€r, as a return for the redundant modes of expression 

imposed upon him, the user can gain the use of a subtler and 

more complete set of compile-time consistency checks. 

It is desirable to include a fairly powerful macro-preprocessor 

in the front end of a language system. This will allow the parti

cular syntax provided by language to be "perturbed" in ways a 

user is bound to find convenient~ In particular, local abbrevia

tions can be introduced, minor special dictions set up, etc. 
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Macros with parameters, nested and conditional macro-calls, 

1acro iteration, and a certain amount of compile time calculation 

power are all desirable. More elaborate built-in string trans

formation schemes, which involve the parsing of an.input string 

into a tree form which is then transformed into an output string, 

can be used to give a higher degree of syntactic variability to 

a language. Of course, the more far-reaching a transformational 

scheme of this sort, the more delicate is its correct use apt 

to become. 

In the ordinary course of a syntactic design, the most 

desirable syntactic constructions will be used at'once; if they 

are not reusable, less than optimal dictional forms will have. to 

be employed subsequently. Note; for example, that de~ending on 

context one might want a*b to denote the product of numbers, the 

dot-product of vectors, the product of matrices of of group 

elements, the intersection or cartesian product of sets, as well 

as any one of a great number of vaguely 'product like' 

constructions occurring in other application. areas. We see the 

solution of the dilemma implicit here as lying in the use of a 

mechanism important in natural language usage. Namely, the inter

pretation of syntax must depend on context; specifically, the 

manner in which an operator applies to an object (or collection 

of objects) should depend on the object's nature. Thus we find 

it desirable for a linguistic system to incorporate a formal 

mechanism allowing the definition of indefinitely many different 

'object kinds', which can be used to control the manner in which 

statements of a fixed external appearance are interpreted. Such 

an approach has in fact been tried in a number of languages, 

sometimes on a dynamic (run-time) basis, sometimes on a static 

(compile-time) basis, occasionally in a manner having both 

dynamic and static features. In a later sect!on, a static 

system of object kinds will be proposed for SETL. A stati.crather 

than a more flexible dynamic approach may well be adequate, and 

does not imply any loss of efficiency. The system proposed will 

probably also be useful in debugging. 
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Item 7. SETL IMPLEMENTATION AND OPTIMIZATION. A FIRST LOOK AT SETL 

COMPILATION: TARGET CODE STYLE. 

(Revision of SETL Newsletter 53: H. S. Warren Jr.) 

The following pages discuss various questions of target code 

style basic to the compilation of SETL. In such a discussion we 

must of course intend some lower level_ language (which might 

possibly be the machine language of a particular computer) as 

the target language of compilation. In the present version of 

the SETL compiler, the target language adopted is an NYU-developed 

"systems programming" language intended for the writing of produc

tion compilers, operating systems, etc., and called LITTLE. 

LITTLE is roughly a subset of FORTRAN, at about the level of 

BASIC, augmented by field extractors. A main property of LITTLE 

is that programs coded in it are highly portable. Portability 

is achieved by allowing only two data types: fixed length bit 

strings, and floating point numbers of fixed (but machine dependent) 

length and form. Fixed length bit strings are treated as unsigned 

numbers by the LITTLE arithmetic operators. 

LITTLE is designed to be highly optimizable in a global sense. 

It includes no pointer or label variables and no recursion mechanism. 

It allows only single subscripts on array ·references. A macro 

processor of simple string replacement type is provided; macros 

may contain parameters. Field extractors are provided. For 

example, X = .F.3,2,A extracts the 2-bit subfield which begins with 

the third bit of the quantity A~ The field extractor.may also be 

used in a "sinister" context. For example, 

, . F. 3, 2 ,A = 0 

turns off the bits in a two-bit subfield. The macro-processor 

provided as part of LITTLE allows us to refer to subfields by name. 

Thus we may write the above field-operations as 

X = TWOBITS A 

respectively. 

and 
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Dynamic Storage 
.. 

The SETL implementation employs a compacting garbage collector. 

Available storage is divided into two areas, as depicted on the 

following page. A run time stack is maintained at one end, an 

allocatable "heap" at the other end. The stack is used in the 

usual way to support procedure calls and returns. The compiler 

maps every variable in a program into a stack location of the form 

(base+ offset), with offset a constant. The stack holds root words 

describing each variable's value (these root words are described 

below) . 

The heap is used to fulfill requests for storage. Sets, long 

character strings, etc., are all stored within the heap. Requests 

for heap storage are satisfied in a simple linear fashion. If 

the normal response to a request for either heap or stack space 

would cause the stack and heap to overlap, the garbage collector 

is called. 

The garbage collector traces through the stack and all loca

tions in the heap, marking all heap locations containing accessible 

information, and then compresses the heap by moving all unreclaim

able blocks to the low index end. Pointers are adjusted between 

the marking and compressing phases. 

The garbage collector is relatively straightforward, in that 

a separate table is used to store all "mark" bits, and a fixed 

size area is used for an auxiliary stack that aids in tracing 

through data structures. 

All data processed by the garbage collector must have the 

These format are slanted toward SETL 

application, but are useful for other purposes as well. The garbage 

collector makes no use of detailed structural information concerning 

SETL data types. This makes the garbage collector less sensitive 

to SETL changes and increases its potential for applications having 

nothing to do with SETL. 

All words containing pointers of interest to the garbage collec

tor must follow the basic format shown in the chart below; pointers 

occur within such words in designated number and in fixed position • 

. ny pointer may be zero, indicating that it doesn't currently point 

to anything. 
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Allocated 
stack-like, 
freed by a 
compacting 
garbage collector. 

Allocated/freed 
on subroutine 
call /return. 

DYN:AMIC STORAGE 

1 
2 
3 

v-4.> 
~ 

4'?7v 
~ 
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GARBAGE COLLECTOR_ 

WORD FORMATS 

STACK WORD 

[ Fl : Pointer. 3 ·:· Pointer 2 

LNumber of pointers in word 

ONE-WORD BLOCK 

Pointer 1 

( 0 to 3) 

·: Pointer 3 Pointer 2 : ·Pointer 1 

TWO-WORD BLOCK 

I . 
2 P-1 Pointer 3 Pointer 2 Pointer 1 

I 

n, Pointer 3 Pointer 2 Pointer 1 
I 

STANDARD BLOCK 

0 Ref. Block Size Header Size Pointer Size· 

l 
1 

Header Area 

Pointer Area 
Data in this area must follow-the format 

of a stack word 

Trailer Area 
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These- types of heap blocks are provided in one-word blocks, 

two-word blocks, and long blocks of arbitrary size. The type of 

a block is indicated by its first two bits. The one- and two-word 

blocks can only contain words of the standard garbage-collector 

format described above. These small blocks are used for the 

dense encoding of 'pairs' and other elementary list-nodes. 

A 'long block' begins with a heade~ word:, which contains 

information of use to the garbage collector. The remainder of 

the block is divided into a header area, a pointer area, and a 

trailer area, each of arbitrary size (including zero). All 

pointers in the block must be formatted in the standard manner 

described above and included in the pointer area; all words in 

this area have the standard garbage collector format. The header 

and trailer areas are not examined by the garbage collector, and 

may therefore be used for the storage of floating point numbers, 

packed character strings, etc. 

SETL Data Encoding 

The encoding of SETL data objects is depicted on the' 

chart. Each object is represented by a "root word" that contains 

two basic fields: type and value. The value is contained in the 

root word if it will fit; otherwise the value is stored in the 

heap, and the root word contains a pointer to the value array. 

Many items therefore exist in "short" and "long" varieties. 

Note SETL allows integers to be arbitrarily large; thus there 

exist both short and long integers. 

"Special pairs" (shown on page 53) do not constitute a SETL 

data type. They are used in connection with the inclusion of 

tuples in sets, in a manner. described below. 

Tuples are provided with a "growth area" node equal to about 

25 percent of the tuple's length when space for a tuple is allocated. 

This is provided so as to allow tuples to grow and shrink at the 

right-hand ends, an event of frequent occurrence in SETL algorithms. 

The null set and null tuple, which play special roles in many 

SETL run-time library routines, are given unique type codes. 

-58-

pmcjones
Highlight
"53" should be "60"



Basic Formats 

Short Integer 

Long Integer 

Real 

Short Boolean String 

Long Boolean String 

Short Character String 

Long Character String 

Blank Atom (newat) 

,abel, Subr., Function 

SETL DATA ENCODING 

ROOT WORDS 

4 5 17 17 17 

fl I- :PTR 3 : PTRz: PTRi[ 

tLNumber of pointers (0-3) 

{
O = standard block, 
1 = one word block, 
2 = two word block. 

value 0 

0 

0 

0 

HEAP BLOCKS 

2 7 17 17 17 

II R [ Block I Hdr I Ptr 

Sizes 

11 RI n+l I n I 0 

value 

T 
sign, MSW fir st 

_ (n words) 
j 

•11 RI 2 · I I I O I 
value (floating point) 

0 

·. # bits 

value, right adjusted 

T (n words) T 

1~f1~. + 1--I --++a-+--~~~ I o 

(n words) T 

1~1 a I value o I 

IH ~ f I· ol 
L10, 12, or 14 
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Undefined (fl) 

Special Pair 

Null Tuple 

Tuple 

Null Set 

Set (Hashed) 

SETL Data Encoding (Continued). 

o I 
t value( 1). 

value(2) (a set) 

rU-1..: ~I---J:1 ~~,__,._____t _.--_ -_ ---o__:---1 ----11 R I 1 I O ,, 0 

t al 

t ol 

t 

L = Log 2 S 

Undefined if 
not present 

S = size of has.h 
table 
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"' ... 

1 

value(n) 

growth space 
(m words) 

S+2 1 

0 

0 

s 

f 

load . hash #mem 

member t 
member t 

member 

Undefined Atom 



The implementation of sets is based on a hashing scheme. Each 

=tis represented by a hash-table structure that contains the 

set's members. To put an object into a set, a hash code for· the 

object is first calculated. The hash code is used to index the 

hash table. Set members occupying the same slot of the set's hash 

table are chained together (each object.has a pointer field for 

this purpose). As long as the lists are short, this scheme allows 

a reasonably fast implementation of the membership test, even for 

large sets •. Besides membership testing, the operations with 

(adding a member to a set), and less (deleting a member from a set) 

are fundamental set operations. Various other operations may be 

expressed in terms of these. Set equality testing, for example, 

reduces to a series of membership tests. 

The hash table used to represent a set "breathes" as the number 

of members in the set increases and decreases. Each time a new 

member (i.e. a member distinct from those already in a set) is 

added to a set, the current number of members is incremented. 

The resutting number of members is then compared to the size of 

the hash table. If the ratio 

(number of members) / (hash table size) 

exceeds a certain constant, then the hash table's size is doubled. 

Similar steps are performed when a member is deleted from a set. 

The density limits controlling hash-table halving an.d doubling 

are set so as to prevent small fluctuations in a set's membership 

from causing re-sizing of the hash table. Doubling of a hash 

table is an expensive operation. Space must be reallocated, and 

the members of the "old" set re-hashed to obtain one more bit of 

information defining the slot the member should occupy in the new 

hash table. Halving is also expensive, though somewhat less so. 

Salient details of the hashing scheme employed in the present 

SETL implementation are as follows. Long intege_rs, bit strings, 

and character strings are reduced to word-length quantities by 

forming an exclusive or of all their words. The word-length 

quantities which result are then hashed in much the same way as 

-re inherently short SETL quantities: by combining with an 
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object-type dependent quantity, and then by dividing·by an 

appropriate constant, to obtain a remainder which is the hash. 

The hash code of a tuple is taken to be the hash code of 

its first component, for reasons that will become clear in the 

next section. The hash code of a set is the exclusive or of 

the hash codes of all its members. 

With the exception of sets, hash codes are comput~d on demand, 

and no attempt is made to save them. The hash code of a set is 

calculated as the set is built (even if the set is never made a 

member of another set). This is done so that algorithms dealing 

with sets of sets can be executed without dismal consequences 

(our implementation strives to avoid cramping the SETL programmer's 

style). Each time an element is added to or deleted from a set, 

the element's hash code (which has of course been calculated) is 

combined with the set's hash code by an exclusive or operation. 

Maintaining precalculated hash codes for sets has the side 

benefit of allowing these codes to be used .in a preliminary 

comparison during set~equality tests. Sets which are not equal 

will generally have different hash codes, so that set inequality 

is recognized rapidly. 

Tuples in Sets 

Though expressible in terms of the membership test, with, and 

less operations, functional evaluation play.5 -EP important a role 

in SETL algorithms that we treat it as a primitive. 

SETL makes three types of set-related functional evaluation 

operators available: 

f (x) 

:iHx} 

f[s] 

The most fundamental of these is f{x}, which invokes~ search 

over f for all n-tuples that begin with x (n > 2), and which 

yields as result the set of all tails of.these n-tuples. More 

precisely, in SETL: 

f{x} = if #y eq 2 then y(2) else ti y, y E: f I 
~ y .!:9. tupl and #y ~ 2 and hd y eq x} 
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The operation f(x) has a similar definition but includes a 

ngle valuedness check: 

f(x) = if #f{x} eq 1 then 3f{x} else n 

The operation f[s] is adequately defined in terms of f{x}: 

f(s] = [+: x e S] f{x} 

The fundamental problem in implementing these operations is to 

provide some method for rapidly locating, within a set, all n-tuples 

(n > 2) that begin with a specified component. 

Note, as a slight complication, the fact that functional appli

cations with several parameters are allowed. The fundamental 

definition 

f{x,y} = (f{x}) {y} 

specifies the semantics of two-parameter functional applications, 

and similarly for f{x,y,z}, etc. Given a set f containing triples, 

we may treat fas a function of either one or two variables. That 

is, both of the expressions f{x} and f{x,y} can be evaluated. A 

similar remark applies to sets containing quadruples, etc. 

Our present implementation supports a reasonably efficient 

realization of all these functional application operations, at least 

if the mappings f with which we deal do not contain any very long 

tuples. 

Salient details of this implementation appear in the example 

shown on the following page, which depicts a set containing six 

triples and illustrates how it is stored. For the set shown, 

f{A} = {<P,U>,<Q,V>,<R,W>}, and 

f{A,P} = {U} 

The set's root word points to a primary hash table in which are 

stored two objects that are encoded as "special pairs'' (data type 

17 of a previous figure). One special pair has as first component 

the object A, and as second component the set of- all tails of 

n-tuples that begin with A. This is denoted by SA in the figure. 

SA has the same layout as any other set. 
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TUPLES IN SETS 

REPRESENTATION OF 

{<A,P,U>, <A,Q,V>, <A,R,W>, 

<B,P,X>, <B,Q,Y>, <B,R,Z>} 

Root word 

HASH (A) : 

HASH(B): 

HASH (P) : ·<P, U> 

HASH(Q): <Q,V> 

HASH (P) : <P,X> HASH (R) : <R,W> 

HASH(Q): <Q,Y> 

HASH(R): <R,Z> 
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To evaluate f{A}, the hash code of A is calculated and used 

; an index into the primary hash table. An overflow list 

starting at that point is then searched for eit~er a 2-tuple or 

a special pair beginning with A. If a special pair beginning 

with A is found, it represents an entire set of items belonging 

to f{A}, in an already appropriate form. To this set we add the 

second components of any 2-tuples starting with A which are found. 

To evaluate f{A,P}, we first hash A, and then locate a special 

pair <A,SA> as before. Then Pis hashed, and the secondary hash 

table SA is searched for 2-tuples or special pairs beginning with P. 

This search process is farily fast but its logic is complicated. 

The complications will not be dwelt on here, except to observe 

that if f is 

f = {<1,2,3,4>,<l,2,<3,5>>,<l,<2,3,6>>,<l,<2,<3,7>>>} 

then 

f{l,2,3} is {4,5,6,7} . 

Notice that the structure shown in the last preceding chart 

has objects A and B (or pointers to them) stored only once whereas 

each of these actually appears three times in an element of the set. 

Thus our representation affords some storage economy, in lucky cases 

at least. On the other ·hand, P, Q, and Rare e~ch stored twice. 

The above described method of storing tuples in sets is quite 

poor if one is dealing with a set of tuples that is not used as 

a function. To take an extreme example, a set containing a single 

100-tuple is represented using 99 small hash tables. 

Reference Counts 

The SETL implementation does not use reference counts to aid or 

eliminate the garbage collector, but rather in an attempt to avoid 

unnecessary copy operations. Before discussing implementation 

details, however, we shall make some remarks stressing the "value 

oriented" character of SETL. 

In the SETL assignment a= b, the object bis (conceptually) 

~npied, and a (conceptually) fresh copy of it becomes the current 

lue of a. This 'logical copying' takes place whether bis 'simple' 
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or 'compound' in implementation terms, i.e., whether bis an 

atom, tuple, or a set. 

Similarly, when an· object is put into a tupl~ or a set, as in 

a(3) = b, or s = s with b, it is (conceptually) a copy of b 

that becomes a member of s or a component of .a. Subsequent 

changes to b do not alter structures or variables into which 

a former value of b was previously incorporated or assigned. 

A crude but logically correct implementation of SETL would 

always generate copies of data aggregates when they enter into 

an assignment or are put into other aggregates (PL/1 does this; 

for example the array assignment A= B expands into a DO loop). 

SETL encourages, or at least does not discourage, what might 

be called a "high level coding sytle" in which one frequently 

assigns large aggrega.tes to variables, creates maps of aggregates 

to aggregates, etc., without regard for efficiency questions. 

To simply generate copies in all these cases would be disastrous 

both for execution time and for storage requirements. 

The issue appearing here may be called the "copy problem". 

We plan to minimize copying using a strategy with both compile 

time and run time implications. This optimization is probably 

the most important optimization for SETL. 

Consider the assignment 

s = s with x; 

wheres is a set and xis a 11 long" item. In the most efficient 

implementation of this we "destroy" the copy of s available 

immediately before the assignment, by putting a reference to x's 

value (i.e., the root word of x) directly into the hash table 

represP.nting s. It is often safe to destroys in this case; i.e. 

to avoid creating a copy of s either in performing the;! with 

operation or in making the assignment. 

Consider also the assignment 

k = i + l; 

where i is a long integer. In the most efficient implementation 

of this operation, we destroy the copy of i available immediately 

before the assignment, by adding 1 directly to it, and then makins 

k simply point to the result. 
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To achieve this type of pptimization, we will use run time 
1 0gic associating a reference count field with most objects in 

te heap. In addition, compile-time live-dead analysis of 

variables will be used. 

A "live" occurrence of a variable is an occur_rence at which 

there exists a path from the occurrence "bo a use (i.e., "right

side" context) of the variable. An occurrence of a variable 

that is not live is "dead"; i.e., all paths from such an occurrence 

lead either to assignemnts or to program ·termination. 

The reference count associated with an object, which is labeled 

"R" in a preceding figure, indicates the number of. variables or 

aggregates that point to the object. A value of zero signifies 

that the space occupied by the object may be collected, but the 

present garbage collector does not make use of that fact. 

(There are two heap items, the one word block and the two word 

block, that do not have reference count fields. Hence the 

garbage collector must employ a "bit table" to determine ·what 

space is available). 

Copy minimization is based on the following rules. 

1. Always move only root words on a~signment and when putting 

objects into _data aggregates. 

2. If a variable is dead and its reference count is one, then 

the existing copy of it may be updated, even in a manner 

which will modify it irrevocably. 

These rules defer copying until it "must" be done. A concrete 

example is depicted below. 

Figure. 

Original 

x:CJ-42] 

--CJ-42] 

b: CJ-42] 

Example showing use of reference counts. 

After 

a = a with x 

b = b with x 

x: 

a: 

b: 
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In this example we show three sets x, a,· and b; and proceed to 

make x a member of both a and b. To evaluate "a with x", the 

compiler generates a call to a set "augmentation" routine, which 

irrevocably modifies the old value of a. This is permissible since 

this is dead (the value of a is immediately changed by the assign

ment a= a with x), and since a's reference counter is one. The 

set xis not copied; instead its reference counter is incremented. 

Hence in executing the statement a= a with x no copying of 

items other than root words is done. 

The statement b = b with xis executed similarly. 

Next the program modifies x by adding the integer "l" to it. 

The compiler will generate a call to the "augment" routine, as 

before. However, the augment routine will test the set's refer

ence counter before adding the element "l" to it. Since this 

reference count is greater than one (it is three), the augment 

routine will first copy x and then proceed to put "l" into the 

new copy. 

This illustrates the compile time and run time activities 

which eliminate much unnecessary copying in our proposed imple

mentation. 

Based on our experience to date with an approximate subset 

implementation (SETLB) of SETL, we may make a somewhat surprising 

observation. The SETLB implementation, which is. based upon •an 

extended Lisp. (BALM) system, does not follow SETL in regard to all 

details of the semantics of copying. F~r example, assignments 

always move only root words and :the with routine usually destroys 

the set being augmented (an exception is made of the null set -

adding a member to it does not destroy the one and only copy of the 

null set!). Thus the SETLB coder must in principle take care to 

insert calls to the copy routine in his source program whenever 

necessary. 

Surprisingly, this burden is not very large. Our experience 

to date shows that in the majority of algorithms it doesn't matter 

whether a copy is made or not. 
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Item 80 TECHNICAL PERSPECTIVES. 

Our initial experience shows that, as hoped, the SETL system 

allows us to program complex processes with surprising ease. 

SETL programs are much shorter than conventional programs realiz

ing the same function; still more, the number of bugs per line of 

code is sharply decreased from what common experience at the 

FORTRAN or PL/1 level suggests, and rather straightforward 

diagnostics connect most bugs closely to their sources. This 
• I 

means that a good part of the greatest obstacle to headway in 

programming, namely debug time, is in large part overcome by our 

methods. It now seems clear that a faster running and smaller 

SETL system, well engineered from the human factors point of view, 

would allow complex algorithms to be programmed and debugged with 

remarkable rapidity. It has also become clear that interactive use 

(which when harnessed to conventional languages does not always 

yield the degree of advantage which its enthusiasts claim) will 

undoubtedly be of great benefit when used in connection with a 

language in which bug symptoms are often quite close to their 

causes, and in which three-fourths of all bugs can be spotted in 

a few minutes of inspection. 

As part of our own work a substantial number of algorithms, 

drawn from such areas as optimization, parsing, and theorem

proving, have been written and debugged in the language we call 

SETLA. The SETLA Users Manual (Item 11) describes this language 

and lists a few debugged algorithms. It is of course difficult 

to quantify the relative difficulty of programming the same 

problem in different languages, but SETLA users, comparing 

SETLA and FORTRAN, report ratios such as 1/10. 

Our experience to date as user~ o.:f; the. pre$.ent1y available 

prelimintary version of SETL (a bulky and very slow system) 

convinces us that the labor of progr~mming can be reduced at 

least to 1/5 of current levels or better by providing a polished 

SETL environment fast enough to eliminate turnaround delays. 
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Holding this basic view, our overall aim is to demonstrate what 

we think can in time become new widely accepted programming 

technique: the writing of programs in a very powerful language 

having the abstract flavor of SETL, followed by its optimization 

by a combination of automatic and programmer-assisted procedures. 

We aim to demonstrate this technique, first as a technology for 

program design, and subsequently as a _technology of program 

implementation. 

We have realized from the start,of our work that programming 

by the use of very high l,evel, mathematicized dictions will at 

first imply a substantial loss of effic.iency. · (See below for 

estimates.) We have hoped that by gaining a deeper understanding 

of the optimization problems which arise in connection with 

languages of high level, and by applying our new dictional tools 

to the specification and design of the required optimizers, a good 

part of this loss can be made up. Our two years of work have in 

fact clarifieq the problems which must be faced in this connection. 

These problems now seem quite soluble, though by no means easy. 

A significant step in this direction is the development of the 

Data Structure Elaboration Language discussed below. However, 

success in our immediate objective of attempting to demonstrate 

a system must of course rest on the levels of efficiency which 

we are able to achieve in the relatively short run. Here our wo~k 

is far enough along that we are able to predict the following 

levels of performance with a good degree of confidence. 

(Note that here and below we refer to FORTRAN simply to be able 

to name a typical low-level language of good efficiency.) 

Predicted efficiency of SETL system presently under construction: 

Sped, as fraction of FORTRAN speed 3 % 

Space required, as multiple of FORTRAN array size 6/1 

These efficiency levels obviously imply. severe limitations 

on the programming load supportable on presently available hardware. 

Nevertheless, they will allow our new programming techniques to be 

demonstrated on a scale substantial enough to be convincing. To 

get a feel for what is implied, we consider two types of job: fiI 

a 'module debug' job, in which a fragmentary group of subroutines 
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(equivalent in logical function to a few hundred FORTRAN statements) 

; being tested against a very small sample data set; secondly a 

;ystem integrate' job in which many routines (constituting, for 

example, an optimizing compiler) are being tested together. The 

first type of job we define as requiring 0.4 sec. (6600 time, 

exclusive of compile and I/O time) if executed in FORTRAN; the 

second type of job we assume will require 2 min. if executed in 

FORTRAN. Runs of.the first type will use 12 seconds (of 6600 time) 

in our new SETL system. Runs of the second type will require 1 hour. 

We define an ideal debugging environment as an interactive 

system capable of providing a programmer with l_run every 5 minutes 

through a 4-hour debug session. This is 48 runs/day; on the 6600, 

these runs would consume about 10 minutes/day of processor time. 

Six programmers steadily at work in a 'module debug' mode (probably 

equivalent to a group of 18 with access to the system) will therefore 

consume 1 hour/day. 'System integrate' debugging will of course 

impose much more substantial burdens on available computational 

resources. Approximately 18 runs/shift are probably ideal for 

this type of work; the 6600 is capable of providing only 1/2 this 

much. On a dedicated 6600, two projects operating in 'system 

integrate' mode (one day shift, one night shift) would probably 

coexist acceptably. 

Faster machines would proportionally increase the sustainable 

load; the following figures are suggestive. 

CDC 6600 (3 megacycles) 

CDC 7600 (12 megacycles) 

Supportable 
'Module Debug' 

Population 

18 

72 

Hypothetical 100-megacycle computer 600 

Supportable 
'System Integrate' 

Proj~ats 

2 

6 

50 

The last alternative describes an active national algorithms 

laboratory; the second a much more modest level of activity., but 

still one that should amply demonstrate the specification technology 

we are in process of developing. A 7600 system would probably 

provide a level of service which could be rented to organizations 

tempting to develop large and difficult systems; even a dedicated 

__ oo system is too small to permit more than a minimum demonstration 

of our techniques at the 'system integrate' level. 
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It is worth noting that the vigorous development of new higher

speed hardware is the most straightforward. if also the most 

expensive, way of getting into a position in which the availability 

of new programming techniques can be clearly demonstrated. There 

is at the present time nothing particularly difficult about building 

a 100 megacycle machine; however, the capable manufacturers lack 

the will to do so. 

The technical picture sketched above only becomes complete if 

we add to it a discusson of the amounts of memory required to support 

the envisaged debugging and integration activity. 

The bulk of compiled SETL will consist of calling sequences. 

Examination of typical code of this kind reveals the following 

rules of thumb. Each 'active token' in SETL source must compile 

into at least 4 bytes of code at the machine level. We count as 

active tokens each variable name and operator symbol appearing in 

the source; it is reasonable to count'{' as an active symbol, but 

to regard the matching')' as a possible mark required for syntactic 

purposes only. Four bytes are about minimal, since 2 bytes or 
l 

more.will normally be required for an operand or code sequence 

address, 1 byte additional for opcode information, and at least 

1 byte additional for miscellaneous overhead connected with 

machine-level housekeeping. Tokens average out to about 3 charac

ters, and 15-20 tokens make the average SETL card. Thus we must 

compile about 80 bytes/card, and in fact will probably wind up 

compiling 160 byt~s/card. By the same rough reckoning, FORTRAN 

compiles as 3 bytes/token, and about 16 bytes/card. Since 10 

FORTRAN statements have roughly the logical function of one SETL 

line, _code sizes in SETL programming should run at roughly par 

with code sizes of programs of equivalent functions written in 

FORTRAN, except that a substantial initial block of code, namely 

the 'run time library' realizing the SETL operations, forms part 

of the SETL memory requirements. These considerations lead to 

the following rough formula for the anticipated size of SETL runs, 

in which we write FCOOE for FORTRAN dode size, FOAT for FORTRAN 

data sizes (in bytes). 

SETLSIZ = 240,000 + FCQOE + 6 * FOAT 
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This establishes 300,000 bytes, or approximately 120K (octal 6600 

Lchine words), as the minimum size of a run in the next SETL 

~1stem. Software paging should re.duce core requirements somewhat, 

possibly making minimum runs in less than l00K possible. 

It is also worth considering the space which would be required 

for a large 'integration' run. Assume, for example, a program 

4,000 SETL cards long, probably equivalent in logical function to 

a 40,000 card FORTRAN program (e.g., the whole of an optimizing 

compiler). The FORTRAN program is taken to require 320,000 

·(decimal) bytes of data space. Applying the above formula we 

estimate a SETL size of 2,800,000 bytes, or 350,000 (decimal) 

6600 machine words. Jobs of this type could therefore actually 

be run on CDC 7600 computers furnished with large amounts of 

bulk core. 

The figures just given indicate that one more step of hardware 

development is all that is necessary for the methods we propose 

to become quite practical, at least as techniques for the specifi

cation and rapid prototyping of complex systems. For an entirely 

convincing demonstration to be made using present equipment, we 

require some technique which increas:es efficiency considerably 

without reimposing an over-heavy burden of programming. The 

preliminary theoretical studies which we have carried out indicate 

that it ought to be possible to meet demand by developing a 

number of optimization techniques, including in particular a 

Data Structure Elaboration Language (DSEL, explained below). 

We estimate that the use of this optimization technique should 

approximately double programming effort (as compared to the use 

of 'pure SETL') but should improve efficiency to the extent shown 

in the following figures. 

Prediated effiaienay of SETL with use of DSEL 

Speed, as a fraction of FORTRAN speed 20% 

Space required, as multiple of FORTRAN array size 2/1 

These estimates point up a particularly exciting technical possi

bility. One-fifth of the speed of FORTRAN is a lvel of performance 

1ite acceptable even now for a wide range of commercial applications. 
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It will be made still more acceptable by the hardware developments 

currently under way. We therefore consider that a perfected 

SETL/DSEL combination will constitute a 'new software technology', 

usable broadly in the commercial marketplace, which could more 

than cut in half the labor generally required for appiications 

programming. 

However, full development of the optimization methods which can 

culminate in the DSEL requires the solution of conceptual and design 

problems which we have not yet fully unraveled, and will also 

require a substantial programming effort. The availability of a 

SETL cum DSEL system therefore lies some years in the future. 

As a stopgap we therefore need some more readily accessible technique 

for bringing critical programs to a usable level of efficiency. 

Something of what we desire can very probably be achieved by allow

ing a 'mixed style' in which the bulk of a program is written in 

SETL, but certain portions vital for efficiency {in the sense 

either of run-time or of data size) are rewritten directly in the 

LITTLE implementation language. Since programs generally spend more 

than.90% of their time. executing less than 10% of their code, this 

could bring us to 20% of FORTRAN speed and within a factor of 3 of 

FORTRAN data sizes, still with a 40% reduction in programming effort 

as compared to conventional technique. In comparison, we expect the 

perfection of.the DSEL, a much more difficult task, to attain the 

same speed, to reduce data space requirements to not more than twice 

FORTRAN sizes, and to allow a 60% reduction in programming labor. 

Moreover, a DSEL system would in many cases eliminate most of the 

240,000 byte SETL run-time library code from the final compiled 

form of SETL programs, though the SETL/DSEL compiler that accomplished 

this would undoubtedly be substantially larger than a simple SETL 

compiler. 

Data Structure Elaboration Language {DSEL) 

An important issue which we will eventually have to face is 

connected with our notion of a data structure elaboration language: 

There is an inevitable conflict between optimization and interactive~ 

ness. High-quality optimization requires that :extensive global 

analysis should be applied to a program, and that the information 
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aained by this analysis should be used to transform the program 

Ktensively and globally. Such a process leads one via a complex 

sequence of decisions to a tightly integrated optimized code. 

However, for debugging, easy modifiability and quick incremental 

patching are most desirable; to this end, the more loosely bound 

a system, the better. This conflict of approaches may at a later 

stage in our work force us to develop two closely related but 

quite distinct SETL systems, one for debugging, the other incor-
' porating all the optimization techniques which we are able to 

discover .. 

A similar tension exists between two possible approaches to 

program optimization. Optimization is ideally fully automatic; 

automatic optimization has the obvious advantage of imposing 

no optimization-related labor on the user of a programming language. 

We have already begun to use our improved programming tools to 

explore fully automatic optimization techniques in as penetrating 

a way as we can. However, we are presently of the view that the 

SETL level of abstraction may leave open too wide a choice of 

combinations of data structures for fully automatic optimization 

to reach successfully from this level of description to the choice 

of truly optimal data structures. On the one hand, this indicates 

the success of part of our original SETL plan, namely, to allow a 

programmer to postpone the choice of data structures without fore

closing any important structural possibilities. Our success however 

leaves open so total a range of possibilities as to im~ly that 

the fully automatic optimization of SETL programs into efficient 

code is probably a very difficult problem. On the basis of these 

reflections we have decided not to employ only fully automatic but 

also programmer-assisted optimization techniques in connection 

with SETL. 

The data structure elaboration language will ~tand at the center 

of our approach to programmer assisted optimization. This language 

is essentially a language of declarations; inclusion of appropriate 

DSEL statements in a running SETL algorithm will not affect its 

results but will improve its efficiency substantially. The informa-

_on specified by DSEL statements is essentially that inherent in 

the initial 'data structure design' which is an important initial 
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consideration .. for programmers using conventional techniques. HowevAr -

the DSEL allows this design to be described formally; conventional: 

this essential informa~ion plays only an informal role. In a con

ventional approach, the programmer holds in his mind both a data 

structure design and a set of algorithms, and compiles these 

manually into a detailed code. In the approach toward which we are 

working, a formal data structure design and a debugged algorithm 

will be submitted to a compiler which will then produce all necessary 

code. 

It is important in contemplating what a data structure elaboration 

language can accomplish to have a clear understanding of the general 

nature of the transformations which a programmer conventionally 

applies to an algorithmic plan in order to arrive at a detailed 

data structure design. We see the following as basic to this process: 

those objects which are to be used as 'indices', i.e., which are 

elements of the domain of one or more mappings, are issued 'serial 

numbers' (the serial number of an object is generally the position 

within some hash table or other array at which the 'actual object' 

is stored). The values of mappings defined for such objects are 

then retrieved by direct indexing using the serial numbers of 

objects, rathe·r than by the considerably less efficient repeated 

hashing which SETL ordinarily requires~ Moreover a programmer 

will normally enhance the efficiency of a program by exploiting 

such information concerning the abstract objects appearing in it 

as the fact that all values of a function: may lie in a very small 

range, etc. The DSEL we project will allow both patterns of indexing 

and information of this latter sort to be declared, and, provided 

we are able to master the o~timization-related problems which it 

raises, should make possible the very significant increases in the 

efficiency of SETL which have been indicated above. 

Concerning our approach to the.choice of semantic facilities 

and detailed syntax for the SETL language, the following deserves 

to be noted. By deliberate choice we are restricting the present 

version of SETL to a subset of the full collection of facilities 

which our design studies have shown to be desirable. This subset 

language, essentially our present SETLB, is sufficiently powerful 

to furnish a clear demonstration of the new programming methods 
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toward which we are working. In addition, brought to an acceptable 

~sign point of speed and size, it furnishes us with the tool we 

need to develop a second, fuller, version of SETL, and also to 

attack the optimization problems outlined in the preceding 

paragraphs. 

As a byproduct of our experimentation with progrmnming technique 

in a wide range of application areas, we expect to produce a fairly 

comprehensive library of algorithms, written in SETL and actually 

debugged. We expect this library to be broadly useful. The 

algorithms which it is to contain will represent many of the 

processes of central interest in graduate computer science instruc

tion, such as compilers, optimizers, processes for gra~mar analysis 

and transformation, table compression, sorting algorithms, algorithms 

in the artificial intelligence area, and the like. It is our 

intent to use this library not only as a basic text for study by 

students wishing to learn how important processes are programmed, 

but also as a mechanism allowing them to experiment with a much 

larger family of processes than would otherwise be accessible to 

them. Moreover, these algorithms will be of use as prototypes to 

groups undertaking major software developments, ourselves included. 

We may also note that even that light use of our present system 

which we have till now been able to make convinces us that our 

'multiphase' programming technique, with its orderly progression 

from executable algorithm specification language to efficient 

lower level code will lead to the writing of better programs than 

ordinarily are produced by present technique. To write good final 

code, one must really begin with a penetrating contemplation of 

the algorithmic approaches suitable to a given problem, choose one 

. to,be implemented, bring it to logical completion as a debugged 

abstract program, and then, proceeding carefully at each stage, 

make the following steps: 

i. Review the text of the abstract program initially written, 

searching for simplifications of method, more natural and more 

modular descriptions of the same function, and improvements in 

·function desirable for generality or from a human-factors viewpoint. 

!Vise and re-debug the abstract program, to bring it to a high 

standard in all these regards. 
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ii. Consider, in as many variants as necessary, data structures 

into which ~he abstract program resulting from (i) can be mapped 

in a manner implying concrete efficiency; make whatever software 

measurements are necessary for the relative advantages of each 

particular data structure to become clear. Choose that particular 

design which appears from such study to be optimal; record it, 

using a formal or semiformal language ~ike the SETL D~EL to do so. 

iii. Using an appropriate implementation language, code the 

concrete algorithm specified by (i} and (ii), in this process paying 

particular attention to the realization of those 'innermos~• 

processes critical for efficiency. 

The realities of present day programming make it rare indeed for· 

all the steps of the deliberate approach outlined above to be 

accomplished accurately. Our new techniques should make it much 

easier to reach this degree of accuracy, and should in this sense 

lead to an overall improvement in the quality of programming. The 

SETL algorithm library which we have begun to accumulate will be 

an important first stage in this process, since it will come to 

consist of carefully thought out, debugged abstract programs on 

which concrete implementations can be built. 
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Item 9. A PRECIS OF THE SETL LANGUAGE. 

In the present section, we summarize the principal basic 

features of the SETL language, as they have been defined in the 

preceding pages. It is hoped that this precis can serve as a 

useful brief reference. 

Basic Objects: Sets and atoms; .sets may have atoms or sets as 

members. Atoms may be 

Integers 

Real 

Examples: 0, 2, -3 

Examples: 9., 0.9, 0.9E-5 

Boolean strings Examples: lb, Ob, 77b, 00b777 

Character strings Examples: 'aeiou' , 'spaces-

Label (of statement) Examples: label:, <label:> 

Blank (created by function newat). n is special 'undefined' atom. 

Subroutine. Function. 

The operator~ x returns the type of the object x. 

Basic operations for atoms: 

Integers: arithmetic: +, -
comparison: ~, 
other: ~, 

Examples: 5//2 is l; 3 max -1 

* I, , , 

ne, it, 

min, 

is 3; 

// (remainder) 

s..!:,, ~, R.e 

abs 

abs -2 is 2. 

Reals:.Above arithmetic operations (with exception of//) 

plus exponential, log, and trigonometric functions. 

Booleans: logical: and (or ~) , or, exor, implies . 

(or imp) , not (or n) 

logical constants: t (or true, or lb); 

f (or false, or Ob). 

Character strings: conversion·: dee, oct 

Examples: dee '12' is 12; oct '12' is 10. 

Strings (character or boolean): 

+ (catenation), * (repetition), a(i:j), a(i:) (extraction), 

# (size), nulb, nulc (empty strings). 

Examples: 'a' + 'b' is 'ab'; 2 * lb4 is 11001100b; 

2 * 'ab' is 'abab', 'abc' (1:2) is 'ab', 'abc'(2:2) is 'be', 

'abc' (2) is 'b', # 'abc' is 3, # nulc is 0. 
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General: Any two atoms may be compared using~ or ne; 

atom a tests if a is an atom. 

Basic operations for sets: 

€ (membership test); n1 (empty set); 3 (arbitrary element)~ 

# (number of elements); ~,~(equality tests); 

incs (inclusion test); with, less (addition and de.letion of eletent) ; 

lesf (ordered pair deletion); pow(a) (set of all subsets of a); 

npow(k,a) (set of all subsets of a having exactly k elements). 
+ (set union), * (intersection),// (symmetric difference). 

Examples: a c {a,b} is i, a e n1 is f , 3 n1 is n, 
3 {a,b} is either a orb, #{a,b} is 2, # n1 is 0, 

{b} with a is {a,b}, {a,b} less a is {b}, 

{a,b} less c is {a,b}, {a,b} incs {a} is t. 

pow ( { a , b } ) is { n 1 , { a } , { b } , { a , b } } • 

npow(2,{a,b,c}) is {{a,b},{a,c},{b,c}}. 

Tuples 

Ordered tuples are treated as SETL objects of different type 

than sets -- e.g. tuples may have some components undefined. 

Operations on tuples: 

T~ple former: If x,y, ... ,z are n SETL objects then 

t = <x,y, ... ,z> is then-tuple with the indicated components. 

#tis the number of components oft 

t(k) is the k-th component oft 

t(i:j) is the tuple whose components, for l~k~j, are t(i+k-1) 

hd tis t(l) 

t1 t is t(2:) 

+ is the concatenation operator for tuples 

Examples: hd <a,b> is a. t1 <a,b> is <b> which is not the same 

object as b. rf· t = <a,b> and T = <a,c> then 

T = t + -r = <a,b,a,c> T(3:2) = <a,c> 

Tuple components may be modified by writing 

t(j) = x; 

An additional component may be concatenated tot by writing 

t(#t + 1) = x; 

Set-Definition: by enumeration:· {a,b, •.. ,c} Set-former: 

{e(x 1 , ..• ,xn), x 1 ce 1 , x 2ee 2 (x 1 ), •.. ,xncen(x 1 ,.~.,xn-l) 

I C(x1,···,xn)}. 
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;-----------------------------------------~---

The range restrictions x c a(y) can have the alternate 

numerical form 

min(y) ~ x ~ max(y) 

when a(y) is an interval of integers. 

If tis a tuple, the form x(n) et can be used, see below, 

iteration headers, for additional detail. 

Optional forms include 

{x ca I C(x)} equivalent to 

{e (x), x c a} equivalent to 

{x, x ca I C(x)}; 

{e(x), x ea I t} . 

and 

Functional application (of a set of ordered pairs, or a programmed, 

value-returning function): 

f{a} is {if #p gt 2 then tt p else p(2), pc f I if~ p ne tupl 

then f else (#p) ~ 2 and (hd p) ~ a}, i.e. 

is the set of all x such that <a,x> € f 

f (a) is: if # f{a} ~ 1 then 3 f{a} else n, 
i.e., is the unique element of f{a}, or is undefined atom. 

f[a] is the union over x ea of the sets f{x}, i.e., the image 

of a under f. 

More generally: 

f(a,b) is g(b) and f{a,b} is g{b}, where g is f{a}; 

f[a,b] is the union over x ca and ye b of f{x,y} • 

If f is a value-returning function, then 

f{a,b} = {f(a,b)}, f[a] = {f(x), x ca}, etc. 

Constructions like f{a,[b] ;c}, etc. are also provided. 

Compound operator: 

[op: x c s]e(x) is e(x 1 ) op e(x 2 ) op op e (x ) , 
- n 

wheres is.{x 1 , •.. ,xn}. 

This construction is also provided in the general form 

[op: x 1 c e 1 , x 2 e e 2 (x 1 ), ..• ,xn e en(x 1 , ... ,xn_ 1 ) 

I C(x 1 , •.. ,xn)]e(x), 

where the range restrictions may also have the alternate 

numerical form, or the form appropriate for tuples. 
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Examp'les: [inax; X 

[ +: X 

[ +: X (n} 

[op: X 

Quantified boolean 

3 x e a I C (x} 

general form is 

€ 

€ { 1 , 3, 2} ] ( x+ 1} is 4, 

€ { 1, 3, 2}) ( x+ 1} is 9, 
n 

€ a)x is SETL form of I 
i=l 

nt)e(x} is n . 

expressions:· 

\Jx e a I_ C (x} 

3x 1 e a 1 , x
2 

e a 2 (x
1

}, Vx3 e a 3 (x
1

,x 2 } , ... 

a 

where the range restrictions may also have the alternate numerical 

form, or the form appropriate for tuples. 

Evaluation of 

3 x e a I C (x} 

sets x to first value found such that C(x} eq !· 
If no such value, x becomes n. 

The alternate forms: 

min 2, 3 x ..s_ max, max ~ 3 x ~ min , max ~ 3 x > min, x (n} e t, etc. 

of range restrictions may be used to control order of search. 

Conditional expressions: 

if bool 1 then expn 1 else if bool 2 then expn 2 ... else. expnn . 

a orm b abbreviates if a ne n then a else b 

a andd b abbreviates if n a then f else b 

Statements: are ·punctuated with semicolons. 

Assignment and multiple assignment statements: 

a= expn; f{exp} = expn; is the same as 

f - {p e f (hd p} ne exp}+ {<exp,x>, x e expn}; 

f(exp} = expn; is the same as f{exp} = {expn}; 

f(a,b} = expn; f{a,b} = expn; etc. also are provided. 

<a,b> = expn; is the same as a= expn(l}; b = expn(2}; 

<a,b,~--,c> = expn; <a,<b,c>, ... ,d> = expn; etc. are also provided. 

<f(a} ,g{b}> = expn; is the same as f(a} = expn(l}; g{b} = expn(2}; 

Generalized forms: 

< f (a} , g { b , c_} , ... , h ( d} > = expn; 

<f(a},<g{b,c},h{d)>, ... ,k(e}>-= expn; etc. also are provided. 
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Use of general expressions on left-hand side of assignment 

catements (sinister calls). 

e(x 1 , ... ,xn) = y; must be no-op if executed immediately after 

y = e(x 1 , ... ,xn); and vice-versa. The use 

op op' x = y;. --
of a product operator on the left-ha~d side of an assignment 

expands as 

t = op'x; 

~ t = y; 

Op
1 

X = t; 

with similar rules for multiparameter compounding. These rules 

allow user-defined functions to be used quite generally on the 

left-hand side of assignment statements. The 'left hand' signi

ficance of a function is often deducible from its standard right

hand side form, but may be varied by using specially.designated 

code blocks which are executed only if the function is called 

from right-hand or left-hand position respectively. These 

have the respective forms: 

(load) block; (execution only if function called 

· from right-hand side of assignment) 

(store x) block; (execution only if function f called 

is from f(param 1 , ... ,paramn) = x;). 

Commonly used operators having special side effects: 

expn is X has same value.as expn and assigns this value to 

X in s; same as s = s with x; 

X from s; same as X = 3Si s = s less x; 

X out s; same as s = s less x; 

Use of code blocks within expressions. 

If bloak is a section of text which could be the body of a· 

function definition, then [; block] is a valid expression which 

both defines and calls this function. Such code block expressions 

~n be used freely within other expressions. 
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Control statements 

go to label; 

if cond 1 then block 1 else if cond 2 then block 2 ... else blockn; 

if cond 1 then block 1 else ... else if condn then blockn; 

Iteration headers 

(while cond) block; 

(while cond doing blocka) block; 

is equivalent to (while cond) block blocka; 
(Vxi e a 1 , x 2 e a 2 (x 1 ) , ... ,xn· e an(x 1 , ... ,xn_ 1 ) 

I C(x 1 , ... ,xn)) block; 

in this last form, the range restriction may have such 

alternate numerical forms as 

min~ x ~max, max> x > min , min< x < max , ·etc., 

which control the iteration order. 
If tis a tuple, bit string, or'chara9ter string, then the 

operator of form (Vx(n) Et) block; is available. This is an 

abbreviation for 

(1 < Vn ~ #t I t(n) ne n)x = t(n); block; 

Iterators of this form may also be used in set formers, 

compound operators, quantifiers, etc. 

I-cerator Scopes 

The scope of an iteration or of an else or then block may be 

indicated either with a semicolon, with parentheses, or in one 

of the following forms: 

end V; end while; end else; end if; 

or: end Vx; end while x; end if x; etc. 

Loop control 

quit; quit 1x; quit while; quit while x; 

and 

etc.; 

continue; continue Vx; continue while; continue while x; 

The quit statement terminates an iteration; the continue statement 

begins the'next cycle of an iteration. 
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Subroutines and functions (are always recursive) 

To call subtoutine: 

sub(param 1 , ... ,paramn); 

sub[a]; is equivalent to (Vx ea) sub (x) ;; 

Generalized forms: 

sub(param 1 ,[param 2 ,param 3 ] , ... ,paramk) 

are also provided. 

To define subroutines and functions: 

subroutine: 

define sub(a,b,c); text end sub; 

return; -- used for subroutine return 

function: 

definef fun(a,b,9); text end fun; 

return val; -- used for function return 

infix and prefix forms: 

define a infsub b; text end inf sub; 

definef a infin b; text end infin; 

define ;erefsub a; text end erefsub; 

definef ;erefun a; text end ;erefun; 

Namesco;ees 

Scope declarations divide a SETL text into a nested collection 

of scopes. Scope names are known in immediately aajacent, 

containing, and contained scopes. Other than this, names are local 

to the scope in which they occur, unless propagated by include or 

global statements. 

Declaration forms 

sco;ee name; ... ; end name; 

scopes with specified numerical level 

sco;ee n name; .•• , end name; 

global declaration 

global name 1 , .•• , namen; 

with specified numerical level 

global n name 1 , ••• , namen; 

nclude statement. 

include li~t 1 , .;. , listn; 
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Example: 

include bigscopel (scopel x,scope2(-z) ,scope3(x,y,u[v])) ,bigscope2~ 

'*' signifies all elements known in scope, '-' signifies exclusion 

of those elements listed, [ ] modifies the 'alias' under which an 

element is known in scope in which included. Subroutines and 

functions are scopes of level O. Macros (see below) are trans

mitted between scopes in much the same- way as variable names. 

The declaration 

owns rou tname 1 (x 1 , ... ,xnl) '. routname 2 (y 1 , ... , y n 2 ) , 

states that the variables xj are stacked when routname
1 

is· entered 

recursively, the variables yj are stacked when routname 2 is entered 

recursively, etc. 

Macro blocks 

To define a block: macro mac(a,b); text endm mac; 

To use: mac(c,d); 

Initialization 

initially block; (block executed only first time -process entered) 

Input-Output 

Unformatted character string: 

A SETL file is a pair <st,n>, where st is a character string 

and nan integer indexing one of its characters. 

er is end record character; input, output are standard I/0 media; 

the function record(s); -- ·reads a file <st,n> from position n 

till er character or string-end is encountered in the character 

string st. 

Standard ·format I/0 

An interval file f in SETL is a pair_ <st ,n> consisting of a 

character string st and an index n to one of the characters of st. 

f read name 1 , ... ,namen; using standard format reads from file 

<st,n>, starting at position n 

f print expn 1 , ... ~expnn; using standard·form transfers external 

representation of objects to files= <st,n>, starting at 

position n as above. 

The set {s 1 , ... ,sn} is represented as {r
1

, ... ,rn}, 

is the external representation of s .. Similarly, 
J 

<s 1 , ... ,sn> is represented as <r 1 , ... ,rn>. 

where r. 
J 

the tuple 



An external file st in SETL is character string catalogued 

with the operating system supporting SETL under some 

identifying name catname (which is itself a string). 

The statement 

x = open catname; 

makes the string st into the value of x. The call 

close(st,catname) 

makes the SETL string st into the contents of the external file 

named by the string catname. 
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I tern 10. CORRESPONDENCES BETWEEN SETL AND SETLA. 

SETLA, the presently implemented SETL subset, differs in a 

number of regards from the 'official' SETL described in Item 9 

of the present work. We now give a few remarks, which we hope 

will help clarify the correspondence between the SETL and SETLA 

languages. The text of the SETLA users Manual then follows as 

the final item of the present manuscript. 

Item (in SETL Precis) 

character strings 

Boolean operators 

atom 

set functions 

quantified boolean 

expressions 

code-blocks within 

assignment statements 

control statements 

Comment 

SETLA users the f sign for quotation 

marks 

Neither exclusive or nor implies are 

included as SETLA operators 

In SETLA, the TYPE function is used 

instead of this predicate. 

In SETLA, arbitrary element (ARB.) 

is the first element of a set, in 

an implementation defined order. 

it is not random. 

Seep. 97 and also p. 126 of SETLA 

Users Manual. 

Supported in SETLA, but with slightly 

variant syntax. Cf. the formal 

grammar, pp. 121-124 in the SETLA 

users Manual. 

Seep. 97 and p. 108 of SETLA 

Users Manual for extent of 

implementation. 

Review the formal grammar pp. 121-12 4 

of SETLA Users Manual to see 

extent of implementation. 

Conditional statements and condition 

expressions are included. 
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loop control 

nam~ scopes 

include and local 

declarations 

macros 

initialization 

compile function 

input-output 

quit and continue are not 

implemented in SETLA~ 

In SETLA, name scopes are external 

(global) unless declared local. 

Moreover, they are handled dynami

cally rather than statically. 

Not implemented in SETLA. See 

BEGIN and LOCAL statements~ p. 98 

of SETLA Users Manual. 

Seep. 109 of SETLA Users Manual. 

To use, in SETLA, write: mac(C,D); 

To define in SETLA write 

+*mac(A,B) = text** 

Not implemented in SETLA. 

Not explicitly implemented in SETLA, 

but available through BALM 

'incremental compile' feature. 

Seep. 126, 127 for input-output 

in SETLA. 

-89-



Item 11. SETLA USERS MANUAL 

!cTL NEWSLETTER NR, 70 
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sc,~A IS AN IMPLEMENTED VERSION or A SUBSET ~r SF-TL, A 
SET•T~~ORETIC LANGUAGE DEVELOPED AT NYU BY JACK SC~WAqTz, A 
UfTAlL~D DESCRlPTTON or SETL CAN BE FOUND IN ~o~ PRCGRAM~lNG ~ ' 
VC~S1 I AND Ile SETLA IS FOR THE MCST PART A C~MPATI8LE SUBSET 
OF s~,b (TO A MUCM GREATER EXTENT TMAN ITS PREDtc;s~OR, SETLB), 
HCW~VER, RALM STILL PLAYS AN IMPORTANT ROLE IN THF ~T~UtTURE OF 
SETLA~ AND THIS IS REFLECTED IN SOPE OF ITS FEATURES ;WHICH DO NOT 
PROFE~bY ~ELONG Tn STANDARD SETL~ ~OTE IN PARTICULAR THAT : 

A~D THE SPECIAL CONVENTIONS WHICH APPLY TO 

bEGIN ~LOr.KS ANO STATEMENT LABELS ARE THE SAME IN seTLA, 

BAL~SE!L., ANO, tNnEEO, IN BALM. THE Sfil.,A PRECEI')ENCE RULES 
A~D P~UCEDURE ~lNKAGE MECHANISMS ARE HOWEVER THOSE rr SETL ' 
AAT~E~ THAN THOSE OF RALH OR BALMSFTL, 

•EALMSETL• ABOVF RErERS TO A SERIES OF BALM PROCEDU~Es ~HtCM 
l~PLE~~NT SETL PRtMITtVES AS RA~M EXTENSIONS, T~E STRUCTURE~ 
~~c ,~~EEO THE EXiSTENCE or BALMSETL OUGHT TO BE INVlSlRLE TO 
T~E SETLA USER, AND WtLL BE fOR THE MOST PART,SEE H~WEVEA SEC, 
~ • 5 A N O 8 F" O R lJ N A V O I D A B L E I N S T A N C E S O F" 8 A L M S E T l: V l c: I g I L. I T Y , 

T~l~ MANUAL IS NOT INTENDED TO PROVIDE A DESCRIPTIO~ OF 
SETL F~R SE, THE READER IS ASSUMED TO PE FAMILIAR WITH THE 
~IRST !WO ITEMS IM eON PAOG~AMMING~ , VOL ll, 

s,TLA SUPPORTS A FEW EXTRA STATEMENTS, NOT BELONGING TO 
STA~OAHD SETL, TH~SE PROVIDE VARIO~S BALM•LlKE FEATURES• IN 
PARllC~kAR, INCREMENTAL EXECUTION AND BALM BEGI~~ENn ~LOCKS, 
J~ESf fTATEMENTS WILL BE EXPLAINED IN DfTA?L BELOW, 
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T~E LEXICAL ~ONVENTIOflS OF SETLA ARE ESSEN,lALLY THCSE 
~ET reHTH IN •ON PROGRAMMI~G~ VOLII, WITH SOME 'LIG~T 
C~A~GEij TMAT CAN ~E GLEANED FROM THE rrLLO~lNG SECTION, NOTE IN 
PARllC4LAR THAT i 

A, •U~OERLINED~ N4MES or STANDARD SETL ARE REPRESENTEO 
CQ~~ESPONOING PERIOD-TERMINATED NAMES IN SETLA, 

8, SE, ~RACKETS ARE ~ AND ~ , 
~. lME MEMBERSMIP OPERATOR IS REPRESENTED ev ~ 

P.Y THE 

T~E ~ETLA PREPRnCESSOR INCORPORATES THE LITTLE 
MAG~OF~OCESSOR, AND TMERErORE SUPPORTS MACROS LIKE THOSE 
CF Ll•T~E, CF, TH~ GUIDE TO THE LITTLE LANGUAGE ron DETAILS, 

MAC~OS WITH PARAMETERS ARE OECLA~EP JN THE FORM I 

•• MACRDNAME(ARG1,ARG2,,,,ARGK) = ~ACROBQOY •• 

MAC~US WITH NO ARGUMENTS ARE OECLARfD IN THE PORM I 

•• MACRONAME = MACROBony ••. 

•• HDHDTL ·= ~D, MD, TL, ~• 
•• SUMM(X, Y~ Z) : (X • V • z, ** 

!~ESE MACROS CAN ~E lNVOKEO AT ANY POINT IN THE P~OGR4M BV 
~RlT,~~ ; 

MACRONAMECSUB1, SUB2,,,iSUBK) 
OR Sl~~~YI . 

MACRONAME 
J~ THE CASE OF A MACRO WITHOUT ARGUMENTS, FOR EXA~PLE~ 

~Cl) = HOHOTL SUMMCA~ TL.B, C) I 

Wl~L EXPAND INTO THE FOLLOWING STATEME~T 

VCl) = HD,HD:TL~CA • TL.B • C) I 
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2.~ETLA fUNCTIONS, ~ONSTANTS AND OPERATORS 

ME:A~ING --~~~--
TYPE F~NCTION 
ATO~ FHE:O!CATE 

PPcSI 
.. - • - !' 

lt-.TE~ER 
fd: AL 
81:.A~K 
SE: T 
TL:P-LE 
C~AFi~TRJNG 
LABE~ 
ijCOL~AN 
SlBI.OUTINE 

GCNSTANTSi 

NlLL::tET 
NLLL;,STRJNG 
NLLt•TUPLE 
lf;VE 
f' ALU. 
Ut-.OEfJNED 

SF.TLA -----
TYPE, 
ATOM, 

JNT, 
REAL, 
BLANK, 
SET, 
TUPL, 
STR, 
LAB, 

. BI TS~ 
SUBR, 

NL, 
NULC, 
NULT, 
T • 
r • 
OM, 

~CMP~~JSON ANO BOnLEAN OPERATORS 

EGIJA~S 
NCT l::OUAL 
1. ES 5. TH A·N 
1;,ES!•EQUAL 
GREATER 
GREATER•EDUAL 
lt-.CL4DES . 
l~PLIE:S 

EO, 
NE, 
LT, 
L.E • 
GT, 
GE, 
INCS, 
l~P, 

A,,ANO, 
O,,OR, 
N,,NOT, 

REMARKS 
----~~--

SET•THEORETJC INCLOSICN, 
APPLIES TO BOOLEANS ANO 
RIT .. STRINGS, 

FCR ~,T .. STRINGS or AR8ITRA~Y LENGTH, THE POLLOWJNG rUNCTinNS 
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--------------------------------- -- --

2,,ETLA ~UNCTIONS, ~ONSTANTS ~NO OPERATORS 

AF,~ Pf.QVIDED S 
A I\ 0. 
OF 
EXCLl!ISIVE QR 
CCMF~EMENT 

LANO(X,V) 
LOR(X,V> 
XORCX,Y) 
LNOT(X) 

PLVS + 
MINL~ ~ 
TlMf~ • 
PIVIUE / 
RESIUUE // 
~x~r.N~NTIATION EXP, 
MAXIMUM MAX, 
MINIMUM MIN, 
AE~r.~UTE VALUE ABS, 

~ETLA ~UPPORTS ARAITRARV PRECISION INTEGER ARIT~METIC~ I,E. 
l~E Afi1THMETIC OP~RATORS CAN BE APPLlED TO INTEGE~S OF AP.BITRARV 
~IlE 1 

C~A"ACTER STRING OPERATIONS 

DECIMAL CNVT 
CATRNATE 
REPEAT 
S1,,BST.RtNG 

.1.E:NGTH 

DEC, 
♦ 

• 
Ct I 1J> 

CATENATE AND REPEAT ARE 
ALSO PROVIDED roR BJT~STRINGS, 
EXTRACT J IT~MS, 5TARflNG WITM l~TH 
·suBSTR!NG AND LENGTH A~SO 
APPLV TC Bli•STRJNGS ANO TUPLES, 

THE EX•~RNAL RE?RESENTATION OF ANV ATOM XIS RETUR~ED 
B Y TI-E ~-UN C TI ON S TR I NGO F" ( X ) , 

.... 
TUPL~ QPERATIONS I 

TL;PLE•FORMER 
~EAt 
TA IL 
CCMfQNENT 
LENGTH 
CATENATION 

<Xl~ •• ,,XN> 
HD, 
TL.' .. 
T Cl > 
• 
• 
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2,SETLA FUNCTIONS, CONSTANTS ANO OPE~ATORS 

SET QFcRATIONS 

MEM~~RSHIP 
NLM~t:R 
w IT~ 
1.,ES5 
~E SF 
DIMINISH 

'ALGloll:NT 
OIMlNlSM-f' 
u~1eN 
P,,TEHSECTION 
P. I ff c,RENCE 
SYM.lnFr, 
Afil~, ELEMENT 

SET Or GIVEN 
l:\..EMENTS 

' ·' 

X,.A 
~ 

WITH, 
LESS, 
LESF", 
X OUT,,S 

X OUTF',S 

• • 
"' 
II 
ARB,S 

~CTE tlSCREPANCV RETWEEN SETLA AND. SETL, 
It\ SE'~' SETS BV FNIHH:RAT!ON TAl<E THE F'ORM I 

SX1~,.,XN~ 

PCW&~SET 
ALL N•ELEMENf 

~4RSETS 

GE~ERl~ SET~FORHER: 
S EllO,X .. AtC(X)~ 
S ~ t X > , x·,. A~ 
S f; n-n, 1<N<K~ 

f)OW(S) 
NPOW(N,S) 

S Ef~,N),X .. A, l~=N<•M• C(X,N) -~ 

T~~ SJMPLE SET•FORMER EXPRESSION l 

CA~ B~ ABBREVIATEn AS I 

-~ )(9:'AtC(X) ~ 
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2,~ETLA F.UNCTIONS, r.ONSTANTS ANO OPEFATORS 

fU~CTl~NAL APPLICATION 

AFPLJCATION FCX) 
ML~TIVALUEO rsx~ 

-APPLICATION 
RAN~c F[X] 

l~E CORRESPO~DING FORHS EXIST FOR FUNCTIONS OF SEVERAL 
\/ARI ABLES 

f(X1,,,~XN) 
,:sx1,,,. x~.J~ 
F[X1,,.,XNl 
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2,SETLA ~UNCTIONS, CONSTANTS ANO OPEFATORS 

(YX~~, BLOCK I 
(vX~~tC(X))BLOCKJ 
(vM<=K<=N>BLDCKJ 
(YM~•K<=N tC(K),BLOCKJ 

ALL Mf-NlNGFUL CO~BINATIONS or COMPARISON OPERAlOAS CAN 8E 
us~c lU SPECIFY AN ARITHMETIC RANGf. FCR EXAMPLE, 

(vMcK<=N)BLOCK; 
AS kELL AS 
(vM•~K>:N)8LOCK1 

~CTE tlSCREPANCV qETWEEN SETLA AND SETLI 
.~ se,~A, THE ITERATION SVMBOL APPEARS IN fRQNT or THE AANGF 
SFECJF~ER, AND NOT IMMEDIATFLV PRECEEn!NG ·TME JTERATJQN VARlABLE, 

SETLA AND SETL ALSO PROVIDE COMPOUND ITERATORS 
(vx-~,M<X><=Y<=N<X)•C<X~Y>)BLOCKI ETC, 

W~ILE ■ ITERATQRS, 

(~Hl~E G)BLOCKJ 
(~~!~E G DOING RL0CK1)BL0CK2J 

~co~TINUE• AND ~QtJIT• STATEMENTS CAN BE USED ' BOTH WITHIN •fORAL~~ 
A~C •~HILE- ITERATION LOOPS, THEIR ACTION HOWEVER~ IS LIMITED TO 
T~E ~fOP THAT CONTAINS THEMJ JUMPS OUT or SEVERAL LOOPS AT ONCE 
A~~ NC!. ALLOWED, FITHER KEYWORD MA~ BE fOLLOWED B¥ UP TO 4 TOKENS 
CCRfiE!PONOJNG TO THE ~OOP OPENER, iN ACCORDANCE TC THE USUAL SETL 
8L~E$, SEE_SEC,3 ON ITERATOR SCOPE5 FOR DETAILS; 
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2,~ETLA fUNCTIONS, CONSTANTS AND OPEFATORS 

~LA~T!flED BOO~EAN EXPRESSIONS: 

;X~!tC(X) F.XISTENTIAL QUANTIFIER 
:~<; K <:NtC(X) 

Q~ EXIT FROM AN EXISTENTIAL SF.ARCH•LOOP, THE QUANTirIED VA~ 
RIAE~E IS ASSIGN~ □ TO THE FIRST O~JECT IN THE SPECtFfEr RANGE 
W~ICM ~ATISFIES cnNDITION c. JF NO SUCH OBJECT rs rou~o~ THE 
QLA~TftlEO VARIABLE HAS VALUE OM• 

¥X•S•C(X) !JNIVERSAL OUANTIFJER 
v~<=~<=NtC(X) 

CCMFOLND FORMS FOR BOTH QUANTIFIERS ARE SUPPORTED 

:x~s, v~F<x> • rcx,v> 
~x•Sa v~G(X), U(Y)<:Z<=W(X,Y) t C<X,Y,Z) 

FCR CCMPOUND EXPRESSIONS THAT USE EOTM QUANTIFIERS~ TME
SECCNt QUANTIFIER SHOULD APPEAR AS PiRT OF THE EXPRESSIO~ 
fCCLO~JNG THE• SIJCH THATw ~YMAOL, FOR EXAMPLE S 

~X•5, :Y~F(X) t CCX,Y) 
vX•~ t (:Y~P(X) , C(X~Y>) 

M~ST EE WFITTEN AS I 
TO WHICH IT IS CLEARLY ECUIVALENT, 

NOT~; TO AVOID AMBIGUITIES, THIS CONSTRUCT S~OdLD 
BE PATENTHESIZED W~ENEVER TT IS PART OF A MORE 
COMPLICATEn EXPRESSION, E,G, I 
X= ctr v~s THEN A ELSE B) • CJ 

NOTE l~AT TME •ELSEw CLAUSE IS.REC0IRED, 
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2,SETLA ~UNCTIONS, r,ONSTANTS AND OPEF.ATORS 

CCMFOLNU OPERATORS: --------,. ' - .. -----·---
[+:x~s, FOO 
l•:x~s , r.cx,, r<x> 
(+ll<N<=M, Y~S(N)tC(N,X)JF(X,N) 
tMIN,;X•Y]F"(X) ,ETC, 

$l~I~H:H F'ORMSI 
•-'!'·~~~- ----9!' 

~AME = EXPRESSION 
I.,,, U I NAME - EXPRF.SSIONJ -lb, NAME = EXPRESSIONJ 

~AME(PARAM1,,,,PARAMK) = EXPR[SSICN; 
~~MESPARAM1,;,,PARAMK~ - EXPRESSIONJ 
~~ME[PARAM1,,,,PARAMKJ = EXPRESSION; 

l~ESE SINISTER FORMS ARE EVALUATED FRcr RIGHT TO LEFT; l,E, 
T~E •EXPRFSSJnN- ts EVALUATED FIRST, T~EN THE INDICES; AND 
(!~ALLY THE OBJEC+ BEtNG ASSIGNED TO, TMIS DEPARTUQE FROM THE 
STA~UAHO LEPT•TO-RIGHT EVALIJATION ALLOWS THE CONSTRUCTION or 
EXP~E5SIONS WHERE EVALUATION OF RM[ R,P,S, or TRE ASSIGNMENT 
(TMAN~S TO A RECURSIVE CALL ,SAY) HAY ACTUALLY MOetrY THE OBJECT 
ijEl~G ASSIGNED INTO, 

~AME(PARAM1,,,,PARAMK): OM,J 
~AME(N11N2> :EXPRESS!ONJ 

NCTE I THIS LAST CONSTRUCT IS NOT A GENERAL SUBSTRING 
REPLACEMENT rUNr.TION. IT REQUIRES T~E LENGTH or THE RE~ 
PLAC~HENT SUBSTRING TO Be EQUAL TO·N2, 

gEN~RA~lZED SINISTER ASSIGNMENTS, CF THE roRM I 

<F(A)~4(1), HD9 Y> = TUP J 
HE1 TL1 HD, X = Y ; 

ARE NCT CURRENTLY SUPPORTED, 
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2,?ETLA fUNCTIONS, r,QNSTANTS ANO OPERATORS 

FUNCTIQN,SUBROUTl~JE, AND OPERATOR rErn:ITICM; 

t~FINE SUB(PARAH1,,,~PARAMK)J 
r~FINEF FNC(PARAM1,,,,PARAMK>; 
f.EFJNE MON, PARAM.J . 
C~FINEF MQN, ,PARAMJ 
tEFINE Pl ~IN, P2; 
t~FINEF P1 QJN, P2;. 
tijFINE NOAR~OPRJ 
r~FINEF NOARAOP!J 
Fi c TURN; 
~~TURN(EXPRESSION) 

Jt\PLT •OUTPUT, 

FHiNT, EXPN1~,1fEXPNKJ 
~f:;AD, NAME1, •• ,NAMEKJ 
~HlTE,FILENO~ NAME1,,,,NAMEKJ 

MONADIC F'OP,~S 

BINARY FO~MS 

FORMS WIT~ NO ARGUMENTS 

-•RETURN FROM SUBROUTINE 
-~RETURN VALUE FRO~ FUNCTION 

SEE SE~18A_ F"OR DETAILS or CURRENT l'-'O H-1PLEMENTATION, 
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2.SETLA fUNCTIONS, CONSTANTS AND OPERATORS 

MlSCcL~ANEOUS SYSTEM FUNCTIONS, 

RETURNS A NEW JDENTIFI~R, OR BLAN~ ATOM, 
A T E AC H H; V O C A T I ON , . 

rr X JS A~ JNTEGEF, THIS FUNCTION RETURNS 
A PSEUOO~PAN~OM INTEGEF IN THE RANGE 
(1,X] , Jr If IS A STRtNn ~A TUPLE OR A 
SET, A RA~DO~ ELEMENT IS RETUR~ED, 

Ml$CELbANEOUS ADOJTIONAL STATEMENT FOR~S: 

'- lN, S I 
A OUT,S J 
A FROM,S J 

FJNlSHJ 
~UOPJ 

~oN THE FLY~ ASSIGNMENT i ~AS THE 
SAME VALUE AS EXPN, jNr ASSIGNS THIS 
VAL,.UE TC S, 
EQUIVALENT TO S = S W?TH,A J 
EQUIVALENT Tn S = S LESS1 A 
EQUIVALENT iO; 

A:: ARe.s J A OIJT,S I 

~REQUIRED TERMINATOR PCR COMPLETE SFTL PROGRAM 
~NO OPf.;RATION 

~RETURN FROM A CODE BLOCK (SEE SEC. ◄ >. 
EQUIVALENT TO T~E BALM/BAL~SETl . 

RETURN () 1
~ 

LOCAL NAM~A,NAMEB,,,,, 
•OECLARES LOCAL VARIABLES WIT~JN A 

SUBROUTINE CR FUNCTION, Ir USEC~ 
SHOULD FOLLCW I~HEDlATELV ON 
SUBROUTINE/FUNCTION OEtlNlTlON HEADER, 

fOJ ~STARTS A BALM/BALMSETL DO OROUP, 

CUMPUTE I 

THE ELEMENTARY UNIT or EXECUTION. 
SHOULD BE TEAMt~ATEr, BY 
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~,STA,~MENT LABEL~, JTERATOR SCOPES, ITERATION SCCPF. ENo~MARKSZ 

• ~ABEL IS A NAME FOLLOWED BV A COLON, A STATF.~ENT 
MAV BE PRErIXED BY ANY NUMRFR or LABELS, E.G. 

LAt,EL: X=Y1 
LABEL1: LABE!2Z V=Y•1J 

Jf''PCIHANT : 

NOTE THAT IN SETLA < AS IN SETLB) LABELS ARE ~~cOGNIZED 
~y THE BALM ~VSTEM ONLY IF TMFV ARE •NOT• WITHIN T~E SCOPE 
Cf A wFORALL• OR •WHILF• ITERiTOR, THIS MEA~S T~ERE 
~~ST BE NO U~CLOSED SCOPES BETWEEN THf DEFtNITtON or A LABEL 
ANU THE PRoc~DURE OEFINITION STATEMENT, FOR EXAMPLE~ 

OEFINE SUBA(X)I 
IF X EQ9 1 THEN GO TO LABlJJ 
PRINT, ~CA~E1,q 
LAR11 PRINT, -THIS LABEL OK-J 
RETURNJ 
ENDJ 

,~ OK, SINCE THE DEFINITION or ~LAB- IS INN~ SCOPE, MnWEVER, 

DEF'INE SUBA(X)J 
(v 1<; NTIMES ~=5) 
Jr X ED, 1 THEN GO to LAa1,, 
PRINT, -CASE1-J 
LAB11 PRINT, -THtS .LABEL OK1J 
END v 1< NTIMESJ 
RETURNJ 
ENOJ 

~ILL NOT WORK, SINCE THE LABEL IS DEPtNED WfTHIN A FORALL LOOP 
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3, LA~El.~, SCOPES 

A SCOPE 
l, A 
2, A 
3, A 

IS OPENED BYI 
~FORALL- ITERATOR 
~HJH I 1. Et I TERA TOR 
SUBRnUTlNE OR PUNCTIO~ DEtlNlTION ; 

EACH SUCH SCOPE MUST 8F. C~OSEf BY A CORRESPONDING 
END-ELEMENT, WHJCH MUST ~AVE ONE or THE f~LCOWING 
FORMS1 

A, AN EXTRA SEMICOLON 
B, ,ENI),_ 
C, ,ENOI, POLLOWED PY 

THAN SEMlCOLClt\, 
UP TO 4 TOKE~S OTHER 
~CLLOWEO BY A SEMICOLON• 

~XAMPLESS 
< ... x .. s, x=XJJ 
, ... x .. s, x=XJF.ND ~xJ 
(WHl~E ~ .. s OOING X=X+1J) Y=XJ END WHILE x~s: 
OEF"!NF. A OP, BJ ... ,q, END A OP.J 

JF A 5~0PE ts ENDeD IN THE rORM C, DESCRIBED ABOVE, T~E 
EXISTENCE OF A SCOPE OPENER MATCMtNG THE SCOPE ENDEA ~,~L BE VERirIED, ANO ANY UNCLOSED SCOPES P.OLLnWtNG 
lME LAST•OPENED MATCMING OPENER WILL -BE CLOSED~ WITH 
j~PROPRIATE eRROR MESSAGES BEING GIVEN, 

~CTEI THAT THE MANNER IN WHICH A SUBROUTJNE OR 

F4NCTION IS ~NDEO DlrfERS SLIGHTLY rROM 
•~E CONVENTION APPLIOABLE TO OTHER SCOPES, 
~,-NcE NEITHER tDEF!NEt NOR -DErINEFt ·SMQULD 
6PPEAR AMONG THE FOUR OPTIONAL TCKfNS ro~LOWtNG 
•IND,, TME FOLLOWING ARE VALlC S 

DEF"!NEF FN(X) J ' ' ' • • • ! ENOJ 
DEF I NEF" FN(X) I EN[) FN( . . . . . ' . ' ' DEFINE SUB(X,Y) ' ENO SUB . • • • • • • • , 
DEFINE SUB(X,Y) ' . ' . . . . . END SU8(X,Y ' DEFINE X OP,Y J t t t f t I ' END X OP, ; 
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4 ■ AOCITIONAL MIS~ELLANEOUS SYNTACTIC INrORMATIONI 
'. 

e~ERATOR PRE~EDENCE ~ rUNCTIO~AL APPLICATION, 

CODE BLOCKS ~!THIN EXPRESSIO~Sz 
~--------------- -----------

OFE~A,OR PRECEDENCE RULRS. IN SETLA ARE THE SAME A~ 
I~ ~ET~~ THE USER SHOULD CONSULT-~ ON PROGRAMMJNGt ,VOL JI 
FO"- t~TAlLS, 

Q~~y ,~o OPERATOR PRECEDENCE LEVELS ARE vseo IN SETLAf 
A,VARIOUS BOOLEAN~VALUED COMPARISON OPERATORS,TO WtT 

WHICH RIND MORE STRONGLY THAN OTHER OPERATORS 

e, OTHER OPERATORS ASSOCIATE TO THE LErl 

SETLij ~SERS PLEASE NOTE ; THESE PRECEDENCE RULES 
ARE T~E ONES INTENDED FOR SETL, AN[ NOT THE _ONES PREVtOlJSLY 
JN ffF~CT lN SETLR, 

MC~AOJC OPERATORS HAVE MINIMAL SCOPE, THUS 
•A•B M~ANS C•A) ♦ B, N, X A,Y MEANS (N,X) A:Y 

NOTEI •s FQ, 0 MEANS •<S Ea, 0) 
SINCE BOOLEAN•VALUED OPERATORS B!NO -
MOST STRONGLY, 

SI~ILARLY, TME EXPRE~SION A•B GT, C•D 
~iL~ ~E P~RSED AS A+(6 GT,C)•D 

USfRS §MOULD KEEP THESE PRECEDENCE RULES IN MIND, AS 'HEY 
pl,FE~ SOMEWHAT r~OM THOSE or OTHER PROGRAMMING L•NGUAGFS, 
~~E~ !N DOUBT, PARENTMESIZE, 

THE FCbLOWING EXAHPL~S WILL 1LLUSTFATE T~E PRECEDENCE RULES 
t~SCRIBED AAOVEI 

A~B•C 
wA•B 
EX•S•rcx>A,V 
[+;X•S]r.(X)•Z 
X A,Y NF,W 

MEANS (A•B)+C 
MEANS (wA)•B 
MEANS (:X~S•rCX)) A,Y 
MEANS ([+IX4$JG{X)t•Z 
MEANS X A,C~ NE~ W) 
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X NE,v A,W MEANS fX ~E,Y) A, W 

s:<1,2>~<2,3>,<3, ◄ >~ <2> 
IS A LEGITIMATE tMAP APPLIED TO PARAMETERt 
EXPRESSION, AND HAS lHE VALUE 3, S!~ILA~LV, 

s:<1,2>~<1,3>,<2,4>,<3,5>~ t<11,3>J 
ls ~EGITIMATE, AND ~AS THE VALUE 

~ i 2, 3., 5~ 

WARl\l~~ ; IN SETLA, THE OPERATOR ~Is,~ IS TPEATEO AS 
AI\Y O'HER INFIX OPERAtOR, AND DOES NOT POLLnw T~E PRE~ 
CEDENCij RULES SPEciflED rnR IT IN C,P, VOL II,P~~b. 

CCCE f60CKS WITHIN EXPRESSIONS: 

S~TLA,LJKE SFTL, ALLOWS A B~OCK or COPE TO ae USED AS 
PART Cf" AN EXP~SSION, BOTH FOR 'THF VALUE fT RElfU~NS ANn r-""OR 
T~E staE-errecTs WHICH ITS ~VALUATION MAY .cAuse; A 8LOCK OF 
CCOE LSED IN TMIS WAY BEGINS WITH THE SYMBO~S [. AND 
E I\ D S "' l T H T 1-4 E S V M ~ 0 L. ' , S U C ~~ A B L O C K S J-11') lJ L D C O N 't' A l N A T i.. E A S T 
O~E SlATEMENT OF THE FORM ; 

REiN EXJ 

WHERE •EX- DENOTES ANY EXPRF.SSION, ONE or THESE STATEMENTS 
SHOL~t HE THE LAST STATEMENT EXECUTED WITHIN lTS BL~CK, TME 
VA~L~ OF ~EX• THE~ OEr1NES THS VALUE or THE ENTJRE 8LOCK 

c X Ar,, PL~. I 
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5, ~A~E ~COPING• PRnCEDURE ~INKAGE, 
--~---~~~------------------~-------

~ETLA IS AN EXTFNSl0N or AALM, MENCE THE NAMESCOPtNG RULES 
ARE •HOSE OF BALM, 
T~E SEIL ~EXTERNA( ~ STATEMENT IS NOT CURRENTLY SUPPORTED, 

T~E t □ LL0WING BASIC FACTS ABOUT PALM NAMESC0PING RU~ES 
S~OL~r UE NOTED : 

. 4 GLOBAL VARIABLE IS NOT DECLARED EXPLICITLY, 
JT JS ~NOWN AT THF. OUTERMOST PROGRAM L.FVEL AND INSIPE ALL 
~~cc~~ IN WHICH THE SAME NAME HAS NOT eEEN DECLAAEn 

AS A LOCAL VA~lABLE, 

A LOCAL VARIABLE IS DECLARED WITHIN A PR0CEDURF. BLOCK BY 
~~TEAING ITS NAME IN A LIST IMMEDIATELY 
,c~LOklNG T~E KEYWORD •LOCAL•, A LOCAL VARIABLE rs KNOWN IN 
T~E P~QCEDURE lN WHICM lT IS DECLARED AND IN ALL PRCCEOUAES 
-~HIC~ ARE CALLED FROM THAT PROCEDURE ANO WHICH 
co~~• C0NlAIN A nECLARATION or A LOCAL VARIABLE WITH THE 
SAME ~AME, . . . 

THE STATEMENT 

MLST jPPEAR AS TH~ FIRST STATEMENT WITHIN T~iE SUBA0UTfNE 
~cp,, SUCH A STATEMENT CAUSES THE VARIABLES lN T~E NAMF~LIST 
W~JCH lT CONTAINS TO BE. LOCAL TO THE SURR0UTINElrUNCTI0N . 
Wit~l~ WHIC~ IT APPEARSJTMESE VARIABLES WILL, IN PA~TlCULAR, 
ijE STAgKED/UNSTACKED ON SU8R0UTlNE ENT~Y/RETURN; 

r~e ~~ijR0UTlNE DErINITION 

DEFINE F(X)J,,,eonv,,,JENDJ 

PARSE~TREE roR THE BAL~ EXPRESSION 

f• PR0CcX,,BEGIN(),,,,rRANSLATI0N Cf eonv,·,;c1ENC END, 

jF A LQCAL STATEMENT APP~ARS, AS IN 
. 

DEFINE r(X)JLOCAL A,B ;,,iJENDJ 

TME ~ARSE•TREE PRODUCED CORRESPONDS TO I 

,!PROC<X>,BEGIN(A,B)~, •• TRANSLATtbN or B0D¥,,,()BND END, 
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5, ~A~~ ~COPING, PROCEDURE LINKAGE, 

CAL~ING CONVENTIONS OF SETLA ARE "THbSE or SETL, 
THEY UlFFER FROM THO~E or RALM ANr SF.TLB, SETLA LINKAGF. 

ME~~A~l~HS PROVIDr-CALL BY VALUE WJT~ DELAYED ARGUHENl RETURN, 
EXEcu,, □ N or A PROCEDURE CALL ENTjILS TME fOLLOWING = 
1.- 0~ l:NTRY TO A PROCEnURF;," THE CAL-LING PAnAMETERS A~E 

CCPl~U INTO A LnCAL BLOCK RESERVED FOR THE PRnCEDURE•S 
FCR~AL ARGUMENT~, AND AN IDENTirtER roR EACH CALLI~G 
PARAMETER IS CR~ATED AND SAVED, lHlS IDENTIFJER REFERF~CES 
T~E cNVIRONMENT IN WHICH EACH CALLING PARAMETFR RF.SfD~S. 
JT ~l~L TA~E O~E TME FOLLOWING FORMS c 
A, 9 A SYMBOL TAqLE ENTRY ( FOR GLOBAL VARIABLES,) 
~.~ A POINTER I~TO THE ENVIRONHE~T BLOCK Of THE CAL~lNG PROCEDURE 

( FOR LOCAL VARtAR.LES OR FOR~AL ARGUMENTS or THE CALLING 
r'ROCEDURE>, . 

c,~ UNDEFINED, ( FOR EXPRESSIONS), 
?•• UFUN RETURN fqQM THE PROCEDURE, THE CURRENT VALUES OF 

. T~E fORMAL ARGUMENTS ARE COPIED EACK INTO THEIR ENVfRON~ENTS, 
ijEFl':HE: RETURNJNr. CONTROL TO THE CALLING PROCEDURE, 

T~E U$~R MAY REFER TO SETL NEWSLETTER 60 FOR FURT~ER DETAILS, 
IT FCbLOWS TMAT rUNCTIONS AND SUB~OUTINES CAN ~AVE SfOE~ 

EFFEtl5 ON GLOBAL VARIABLFS AS WELL AS ON ·TllEIR CALLl~G PARAMETERS, 
FCR E:)IAMPl.E 

C~FINE EFFECT<X,Y~Z,T,U) J 

X = 0 J 
Y !I! NL1 ; 
l<l> , 5 J 
T ; T WITM,U J 
l.i = 2•~ J 
~~0 I 

A ~ 2 fl J 

ts ~ 0 ' C = <t,2,3> I 
D = N~ .I J 
c = Ill A t:,CDE~ • , 

EFFEC,~A,B,C,D,E) J 

PNl~TfA,B,C,D,E> 1 

Wl~L PHOOUCE THE rOLLOWING OUTPUT 

NCTE HOWEVER,· TI-IAT ARGUMENT RETUF?N O~LY 'TAKES PLACE ·roR 
ATO~lC ARGUMENTS, AND NOT roR GENE~AL EXPRESSIONS" TMAf MAY 
BE VALYE•RECEIVIN~,FOR EXAMPLE~ IF EXEtUTION or PROCEDURE 
$UBCX',Y) MODIF"lES ITS ARGUMENTS, THEN ·THE CALL. 

SUB(Z,S(V~) . 
~l~L twUDlF'Y Z, BUT NOT THE VALUE Of' SCV), EVEN IF' S lS A SET 
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5, ~A~E ~COPING, PRnCEOURE LINKAGEe 

(~AFPING) FOR WHir,H T~E ASSIGNMENT I 
c;(V) = W I 
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-
A SETL.A PROGRAM CONSISTS OF PROCEDURE DEfINITIONS ANr. EXECUTA 

8L~ CC~E, BRACKFT~D lN -BLOCKSt BY ~on~ AND ~COMPUTE~ STATEMENTS, 
A oc~coMPUTE R~OCK MAV CONTAIN SEVFRAl PROCEDURE CEFINITlO~S,AS 
WELL A~ EXECUTAAL~ conE, SUCCESSIVF co~coMPUTE 8LCCKS ARE COMPILED 
SEQL~~~IALLY, Ir A RLOCK CONTAINS EXECUTABLE COOE, IT t~ EXECU~ 
l~D l~MEDIATELY AfTER ITS COMPILATION, AS A CONSEQUFNCE~ FUNCTIONS 
l~AT AHE INVOKED AV AN EXECUTABLE CODE FRAGMENT MUST APPE6R WlTMlN 
EARLlEH DO•CQMPUT~ BLOCKS TMAN THEIR INVOCATION; 

SIMP~EST PROGRA~ ORGANIZATION ~ILL HAVE THE MAIN PROGRAM IN THE 
~AST cu~cOMPUTE B~OCK, SEGREGATED rRo~ ALL PROCEDURE DEFINITIONS, 

T~c UO-COMPUTE qLOCKS PROVIDE NO NAME ISCLATION, AND SERVE NO 
OT"EH ~URPOSE TMAN THIS SEQMENTATICN AND RF.PEATED COMPILER INVOCA~ 

TJC~, lQ AVOID MEHnRV OVERFLOWS; !T IS ~ECOM~1ENDED T~AT rC-COMPUTE 
~LOCKS CONTAIN NO MORE THA~ 200 LlfES er CODE, 
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T~c ~YSTEH CDNSiSTS or THREE PHASES I 
1, A f~6NT•END WHlrM PARSES THE SETLA SOURCE, PRODUCE$ AN 

l~TER~~DIATE TEXT FOR TME NEXT PHASE AND OUTPUTS SOURCE AND 
.SYNTAfTIC DIAGNOSTICS( If ANY), 

2. A~ EXTENDED BALM COMPILER, CONSISTING or TWO EXTE~SrONS 
TC T~F ~ALM SYSTEM I 

A~ A SEHIES OF TREF~WALKING ROUTJNES WHICH TRANSFORM THE INTER~ 
~E[JATE TEXT PROnUCEO IN PHASE 1 INTO VALID BALM PARSE"TREES, 

81 A SEHtES OF BALM PROCFOURESC CQRFESPONOING TO T~E BALMSETL OF 
PRECfUlNG IMPLEM~NTATIONS) WHICH ~oorrv THE BALM cnoE GENERATOR 

A~O ~~TEND THE MBALM MACHINE TO IMPLEMENT SETL SEMANTfCS, 

·3. AN lNTERPRETER FQR THE EXTENDED BAL~ SYSTEM ANt THE cone IT 
PROCUCES, TOGETMEQ WlTH A RUN•TIME LIBRARY CSRTL) W~IeH IM~ 
PLE~~~TS THE SETL PRIMITIV~S, THE INT~RPRETER AND LIBRARY ARE 
OESIG~~D TO WORK tN A DYNAMIC STORAGE AREA OF FIXED S!ZF., FOR 
9,C~VE~IENCE, "THRE~ DirrERENT FILES ARE PROVIDED, ~ITH INCREASING 
STO"AGc S!ZF.S, 

f~t MfUULES JUST nESCRIBED RESIDE IN THE.tOLLOWING ri~es 
1, FRfNT•FND I SETLA, . 
c, EALMSETL AND TREEWALKING ROUTINES I SAVSETL, 
J, IN,~RPRETER ANn SRTL : THREE fILES WITH THE 

FO~~OWJNG DYNAMIC STORAGF AREAS : 

se,~Al 
S~lbA2 
.sE,bA3 

DYNAMIC 
STORAr,E -----~-

?7000 
32000 
48000 

RfL FOR 
EXECUTIO~ 

201000 
~21000 
265000 

COGTAL) 

T~E ~OLLOWING CONTROL CARD SEQUENCE IS REDUJR~D TO ~UN A 
~ETLA ~ROGRAM USING CtMS KRONOS 2,1 I 

JCijNAME,TXXX, VOUR NAME 
C~ARGE(TO,SOM~ONE) 
AlTACHCSETLA,L'.GO~SETLA1iTAPE8=SAVSETL~LTLLIB/UN~SBTL> 
RP~C150000) 
SFTLA, 
R,~(207000) 
Lr:Q, 

E-O~R 
YCYR SETLA SOURCE DECK, 

~-o-~r 
C~E et THE OTHER S~TL rILES CAN REPLACE SETLA1, IF CARE IS 
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7, LSE Cf THE SYSTEM 

TAK~N AT THE SAME TIME TO REPLACE THE RrL CARD THAT pqecEEDS LGO 
W l T ~ 'f Ii E ONE I ND I r, A TE n I N Ti◄ E TA 8 LE A AC VE , 

l~t.:REMEN.TALITV, 
•!911!•-----·-----T~E INCREMENTALJTV OF BALM IS PRESERVED tN THE SETLA SYSTEM, 

T~E SlATE or ~HE ~ROCESSOR (HEAP, STACK, SYMBOL TAALE AND POINTERS) 
CA~ ~E SAVED AT ANY POINT DURING EXECUTION, BY USI~G THF PROCE~ 
bWR~ ~SAVESETL~. EXECUTION or THIS PROCEDURE, INVOKED PY 
T~E SlATEMENT ~AVESETL J CREATES A PAIVATf SAVEFlLE 
~~IC~ ~AN BE USED TO RESUHE EXECUTlON AT SCHE LATER TIME, THIS 
SAV~F!bE WILL CONTAIN THE ~ALMSETL SYSTtH, PLUS ALL PROrEnURES 
CCMFlL~O BY THE USER, THESE SAVEfILES ARE U5AOLE ON A~Y ONE or 
ThE SEtLA FILES, so THAT IT· IS POSSIBLE TO CREATE A SERIE~ nr 
~~OCEtUHES USING A SMALL HEAP, AND EXECUTE THEM USlNG A LARGER 
O~E, ~HEN COMPILI~G LARGE PROGRAMS, THIS APPROAC~ WILL PROVIDE 
PAST~~ TURN~AROUNry TIME ( WMJCH GIVEN ·TME SlZE OF TME SYSTEM, IS 
~CT A~ ACADEMIC C~NSJOERATION,) 

USEN SAVErILES ARE WRITTEN ONTO tAPE9, WHICH JS RESERVED 
~CR T~AT PURPOSE ALONE, (SEE SECT!CN ON INPUT~OUTPUT); TC HAKE A 
SAVEFl~E PERMANENT UNDER TM~ NAME -~NEWSAVE• 1 INSERT 'HE rOLLOWING 
~ARC F.~FORE THE LGO, CARD I 

UFflNE(TAPE9=NEWSAVE) 

TC ~~SUME EXECUTION FROM THAT SAVEFlLE, PODIFV THf ATfACH CARD 
TC Fi!:H) : 

AlTAC~C••• TAPE8=NEWSAVE, •~- ) 

T .AP Eb 's RESERVED FOR THAT PURPOSE AND SHOUL.D N·or BE OSED FOR OTHEH 
l"'O OF~HATIONS9 
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7, USE C~ THE SVSTE~ 

C O N T R O L C A R D P A R A ~ F. T E P S 

THE SET~i FRONT END PROVIDES SEVERAL CPTtONS WHICH T~F USER 
MAY SE~FQT BY SUPPLYING A LIST OF TH[ NECFSSAPY KEV~ORO~ 
ON THE CONTROL CARO FOR SETI.A, THE KEYWORDS AND TH;JR 
INTERPRETATION ARE AS FOLLOWS 

-XRF-,THE CROSS•REFERENCE OPTinN, IF THIS OPTION rs SEL~CTED THEN 
THE OLT~UT FILE WTLL INCLUDE A COMPLETE CROSS REFERENCE MAP FOR ALL 
NAMES l~ THE SETLA tNPUT PROGRAM, 

-SL•,ccue LIST OPTION, IF THIS OPTIC~ IS SELECTED T~EN TH~ SETL 
sc~~CF PROGRAM IS LISTED ON THE OUTPUT FILE, THE D~FAULT 
SETTJ~u IS •ON•, 

•HE~P~ REWUEST DEBUG~ING AIDS, DEFAULT IS OFF, IF DERUGGI~G 
AIDS AHF ~EQUESTED, THE~ THE FRONT~ f.ND WILL INSERT 
CA~LS TC TRACF ROUTINES IN THF BALM SYSTEM AT KEY PnI~TS 
OF T~c L~ERS SOURCE CODF., DETAILS or THE USE OF 'HES~ 
FEATU~~s ARE CONTAINED IN THe SECTIO~ ON •DE8UGGING AIDS• 

•SN~ REUL~STS STATEMENT•BY•STATEHENT ·TRACE,THIS DERUGGtNG AIO 
CA~ ~E ACTJVATEn WITHOUT THE rULL -MELP• PEATURE (WHICH PRO• 
VlpES ~EVERAL ADDITIONAL TRACING PPOCECURES>1 DFrAULT IS OFF, 

•ABT- A~CHT ON LEXICAL ERRORS,DEPAULT rs -oN~,If LEXICAL ERRORS 
A~E DETECTED IN TME SOURCE, EXECUTION WILL BE TFR~?NiTEr, 
IF lH!~ OPTION JS OISABLED,RALMSETL CO~PILATION AND EXECUTION 
wlLL FHOCF.ED AS FAR AS POSSIBLE, 
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7. LSE ev THE S~STEM 

THESE CPTIONS ARE SPECIFIED BY PROVIDING A LIST or 
NECES5A~Y KEYWORDS ~ND VALU~S,ENCLOSfD IN PARENtHESfS~ nN THE 
CONTRC~ CARD WHIC~ iNiTIATES EXECUTION or THE SETLA F~ONT-END, 
A KEY~O~~ IS ASSIGNF.0 A VALUE BV FOLLOWING THE KEYWORr 
WIT~ AN EQUALS SIGN (:) ANO THE VALUE, TµE VALUE MU5T BE 
A ~C~•Nf~ATIVE INTE~ER, ONF OF THE WORD~ •ON•, ~ves~ OR -T

(W~JCH CORRESPOND fo VALUE OP 1), OR ONE or THE WORDS ~orr-
~NC; 0~ •F- (WMlCH CORRESPoNn TO VALUE OF O). . 

Al~ OF ,HE FOLLO~ING CONTROL CARDS ARE EQUIVALENTS 

SETLA, (Hf::LP) 

SETLA. (HELP,SL=1) 

SETLA, (HELP=YES,SL,ABT:ON> 

HEHE_ ~~E SOME EXAMP(ES OF PARAMETER LISTS: 

SETLA, 
L1ST INPUT,NO TRACING,ABORT If LEXICAL ERRORS FOUND·, 

SETLA, (ABT~0,HELP) 
LtST INPUT, ~NABLE TRACING FEATURES, EXECUTE EVEN IF 
LF.XICAL ERRORS PRESENT,. 

SETLA, (SN=1,SL=0) 
~~ JNPUT LISTING, ENABLE STAT[:MENT•BY~STATEMENT TRACE. 
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7, USE e~ THE SYSTEM 

r. E; B l) G G I N G r ~ A T U R E S 0 F S E T L A ---

T~E ~ETLA TRANSLATOR PROVIDES SEVERAL USEruL DE~UGG!NG 
FEATU~~S, · AT THE USERS REQUEST, T~E TRANSLATOR WILL 
J~SER' JN THE BALM CODE ~ALLS TO SYSTEM TRACE ROUTINES 
~IT~l~ THE BALMSETL SVSTE~, AT EXECUTION TIME 
T~E VA~UES OF GLOBAL VARIABLES <SWJTCMES) ~AV BE SET BV THE 
~ScR ,u. CONTROL TME GENERATION OF DEBUG ourruT 8Y TMESE 
T~ACE ~OUTJNES! THE TRACE FEATURES CURRENT~Y AVAILABCE 
PROVlt~ FOR T~E TRACING or PROGRAM ENTRY ANO RETURN TO 
S~BFRf4RAMS, TRA~E or ASSIGNMENTS STATEMENTS, ANC 
STAT~~ENT~sv~sT~TFMENT EXECUTION TFACE, 

A$ A~ EXAMPLE OF HOW THE TRACE PACKAGE WORKS CONSI~ER THE 
SETLA ~EQUENCE FOR THE LAST FEW LINES IN P~OCEDURE ~Pe 

,1, A=10J RETURN <A)J END PJ 

TMlS JRANSLATES JNTO THE EOUIVALENT OF THE BALM SEOUE~CE 

A: tU, RETURN A~ ENO PJ 

IF E~TRY/EXJT TRACING tS R~QUESTEC T~EN THE 
~CD,E G~NERATED IS 

•~1.0, 
•TEXVAL:A, 
•fEXITVC3,=P~ATEXVAL>, 
~~TURN (ATEXVAL), 

IF STtHES TO ~A~ ARE BEING TRACED, THEN THE CODE tS 

A~l.O, 
A!SETV(2,~P, =A, A), 
A!EXVA~~A, 
ATEXITV(3,=P~ATEXVAL>, 
~~TURN (ATEXVA~), 

,, TME OUTPUT ls ONLY TO INCLUDE,~~ TRACES or ASStGMENiS AND 
~NT~Y~~XIT STATEMFNTS, THE OUTPUT WILL BE AS roLLOWS 
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•~••• AT LINE 2 IN PA JS 10 
···~· RETURN rRnM 3 IN P WITH VALUE 10 

J~ IN ADDITION, T~E STATEMENT-8Y•STATE~ENT TRACF. IS ACTIVATED, 
T~E AtUITIONAL CALL 

ATSN(2,:P) 

IS INSijRTED IN THF CODE, AND THE FOLLOWING LINE WILL APPEAR IN 
T~E OlTPUT : 

•~••• LINE 2 IN P 

THE E~AMPLE ILLUSTRATES THE THREE .LEVELS OF USER CONT~OL 
QF TMF UERUG OPTinNS 

Ae Wr~THER TO GENERATE CALLS TO TRACE ROUTINES 
8, W ► ICH KINDS 0~ CALLS TO GENERATE 
c, E~§CUTIO~ TIMF CONTROL OVER ou,PUT RY CHANGING 

~~kUES or GLnBAL VARIARLES USED BV THF TRACE 
~VUTINES, 

~E ~o~ DISCUSS EArH OF THESE OPTIONS IN MORE DETAIL. 

AGTIVATING OF.BUG PACKAGE IN S[TLA TRANSLATOR 

T~E •HELP· OPTION ON THE SETLA CCNlROL CARD ACTIVAT6S 
AL~ T~~CING PROCEnURES I .ENTRY/EXIT TRACE, ASSIGN~ENT TRACE, 
A~P SlATEMENT•BY-~TATEHENT F.XECUTJC,N TRACE, 

T~IS LAST TRACE CAN BE ENABLED fNDEPENDE~TLY BY T~E ~sN
QPTIO~ ON THE SETLA CONTROL CARD, 

IF ONE OR BOTM OF THESE OPTIONS ARE PRESENT, 'HE APPROPRIATE. 
GA~LS ARE INSERTED IN THE cnoE, MOWEVER, THE USER CAN CONTROL TME 
~XECUl}ON OF THESF CALLS BY MEANS or THE fOLLOWING GlOPAL FLAGSi 

ATE~TRC I 
ATc~!RC 
ATS~TRC 

~ .. . 

CONTROLS ENTRV/EXfT TRACING, 
CnNTROLS ASSJGNMENT TRACJNG, 
CONTROLS STATEHENT~sv~sTATEMENT T~ACJNG. 

T~E QEfAULT SETTINGS ARE TRUE, TRUE, PALSE RESPeCTIVE~Y. - . 

lF THE TRACES HAVE BEEN ENABLED, BUT .THE CQRR~SPONOfNG 
FLAGS ARE OFF, THF CALLS TO TRACING ROUTINES ARr. ST!L~ FXECUTED, - . . 

ij~T NC OUTPUT WILL BE PROOUCED, 
WIT~ ,~E OEFAU~T SETTINGS SPECIFIEt ABOVE, A SIMPLE l~VOCA~ 
TIO~ Cf •HELP~ ON THE SETLA CONTROL .CARP WlLL RESULT fN 
T~E ~,~TING or EN+RY/EXrT ANO ASSIGNMENT TRACES;IN ORDER TO 
OBTAI~ THE STATF.MF.NT TRACE, THE USER CAN INSERT IN MIS PRO• 
GRA~ T~E STATEMENT I 

-116-



7, ~SE rr THE SVSTE~ 

ATSNTRC = T9 I 
Sl~ILAR ASSIGN~ENTS TO THE 0THEF TRACE FLAGS CAN BE USED 

SE~Ec,jVELY TO TRACE ONLY CERTAIN PORTIONS nr A PROGRAM. 
NCTE THAT rr TM~ HELP OPTION IS -5PECJrIEC, TRACIH~ CALLS ARE 

l~S~Rl~U TRH0UGH0llT THE CODE, EVEN IF ·TME TRACING OUTPUT WILL 
~ATER ~E TRIMMED qV JUDICIOUS USE CF THE T~ACE FLAG. fMFS~ 
T~ACl~G CALLS EXPAND THE RESULTING CODE NOTICEA8LV, ANO ~AY 
~EQLl~~ FOR ITS·C0MPlLATinN AND EXECUTION A LARGE~ HEAP TMAN 
T~~ b~IGINAL UNTRACED PR6GRAM ~ 

TC ~~STRICT THE INSERTION OF ENTRY/EXIT AND ASStG~HENT 
TRACES I TME •CHECK~ STATEMENT HAS eEEN PR0VI0E0;IT tS DESCRIBED 

J~ THE FOLLOWING SECTION, 
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~cTLA STATEM~NTS CONTROLLING tEBUG FEATURES 

A ~CME~K~ STATEMENT HAS BEEN ADDED TO 'THE S[TLA LANGUAGE~ 
1~15 STATEMENT HAS THE FORM 

<CHECK/ NOCHECK> <STORES/ ENTPV > J 

W~~RE ~/~ INDICATFS TMAT ONE OF THE OPTIONS lS ALLOWED, 
IF •HE STATEMENi : 

C ► t:CK ENTRY ; 
AFPEAfi~ IN THE USFRS SOURCE CODE, ·THEN SUBSEQUENT PROCEDURES 
ARt CC~PILED WlTH ENTRY/EXIT CALLS tNS~RTEr, AND THE ~OnRES
PCN[p,la FLAG, ATEXTRC , IS SET ON, tF T~E STATEME~T 
. Ne~HECK ENTRY J 
IS ENCOUNTERED LATER ON, SUBSEQUENT PROCEDURES ARE COMPILED 
WJT~OlJ TRACING CALLS, 

T~t ~AME APPLIE~, PARI PASU, TO THE 5TATEMENT1 
C~~CK STORESJ 

A~P. PCkLOWING ASIGNMENT STATEMENTS, 

F'C H REFERENCE, 1,.iE LI ST MERE THE 'iRACE ROUTINES CALLED. BY 
,~~ UE~UG9ING AIDS PACKAGE i 

ATS~(ll~~, SUB) ~ CiLLED AT END OF EXECUTABLE STA,E~ENTS, 
THIS PROCEDURE SAVES ITS ARGS, ANV MAINTAINS A LIST OP THE 
LAST ~o StATEMENiS EXECUTED, THIS LIST 15 DISPLAYED 
AFTE~ A USER CRA~H, 

ATE~TRYf~UB> • CALL~D W~EN ENTER ROUtJNE 
PAIN'~ ARGUMENT ir ~ATEXTRc~ HAS VALUE ,-TRUE~ 

ATijXIT(LJNE,SUB> • CALLED WHEN RETURN FROM ROUTJNE 
PRIN•~ ARGS tr ~ATEXTRC~ rs •TRUE· 

ATSETVt~lNE,SUB,NAME,VAR) ~ CALLEO 6V SIHP~E ASSlGNMENf 
PRINl~ ARGUMENTS IF' ~ATEQTRC• IS ,,-TRUE• 

ATSETLS~(LJNE,SUB, NAMELIST~ VARLIST).CALLEO roR MULT!~ASSIGN 
EC: <A,B,C> = SJ 

P~IN,~ ARGUMENTS IF •ATEXTRC• lS TRUE 

WHcR~ "!Ll~t:.• IS INTEGF.R GlVtNG STATEME~:T.NUMBER, ANO ~sua!il' 
JS 5UEPHOGRAM NAMF, •NAME• IS NAMECF VARIABLE (PRECEDSD BV ~), 
•VAh~ IS VARIABLE NAME, 9NAMELIST• IS LIST OF QUOTEO NAMES, 
A~C ~~~HLIST~ IS LIST or VALUES, 
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,~E FOLLO~INr. LL1 BACKUS GRAM~AR roR SETLA MAY AID 
t~ lME UNDERSTANDTNG OF VARIOUS.OF ITS SYNTACTIC nETAILS, 
T~~ NtTATJ·ONS USEri IN THE GRAMMAR ARE AS rOLLOWS: 

<STYP~>, 
<•L.TYF~> 
~ITEH•~,~LITERAL~ 
c-CCMfolcNT> 
cSTYPE•> 

~DENOTES A SY.NT ACT IC TYPE 
~nENOTES A LEXICAL TYPE 
,■..nENOTE LITERALS 
~nENOTES A COM~ENT 
~DENOTE~ INDEFINITELY HANY REPETITIONS 

or A SYNTACTIC TY~E 
<STYPE(M,N)> ~DENOTES A ~IMITEO NUMf,F:R OP P.EPETITIONS 

OF A SYNTACTIC TYPE 
MCMINIMUM NUMBER·REQUJREC 
NIMAXIMUM NUMP,ER ALLOW~O 

S~~CESSIVE ALTERNATIVE EXPANSICNS OF A SYNTACTIC TYPE ARE 
INDICATED AV SUCFSSIVE EQUALITY SIGNS, AS fCLCOWS& 

= <FIRST ALTERNATIVE "EXPANSION) 
(SECOND ALTERNATIVE EXPANSION) 
<ETC,,ETC,) 

1,EXICA~ TYPESI 
H1E: F'OLLO,jJNG LEXICAL TYPES OCCUR tN SETLA A~D APPEAR IN 

T~E reHMAL GRAMMAR GlVEN BELOW; 
i•~j~f> 9A VARtABLE,SUBROUTINE,OR FUNCTION NAME, NOT 

P(RIOD•TEF,MINATED 
EXAMPLES1 X~V,ZO,ZOOO,ZOA1 

~•QPNAME> ~T~E NAME Or A SYSTEM OR USER~DEFINEO 
OPERATOR, POSSIBLY PERtoo~TERMINATED 

EX~MPLESI MAX,, MIN~, •, //, MVMON~D:, MYDYAD, 
<•Q~A~~> •ONE OF.A GROUP OF PERlOD-TERMIN•TED NAMES KNOWN 

TO THE COMPILER AS.THE NAME OP A SPECIAL 
· QUANTITY OR QUANTff'\f.,RETU~IN~~ O ... PARAMETER 

EXAMPLESi T,~F,,NL,,NULC,rNULT,~NEWAT: 
~•~CGC~> eONE OP A SPECIAL GROUP Of QPERA'O~ NAMES KNOWN 

TO THE COMPILER AS LOGICAL OPERATORS OF 
HlGH PRJOAITY 

EX~MPLESI GT,,EC,,NE,,GEi,lNCS, 
<•CCNS!> AN INTEGER ·OR STRING CONSTANT 

EXAMPLES~ 17,960,~THE LONG GOODBYS~ 
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<PRCG~M-1> 

<!?~CCI(> 

<LAtEL>-

<STATEMENT> 

=<STATEMENT> <STATEVENT•> 

=<STATEMENT> <STATE~ENT•> 

= <LABEL> <STATEMENT> 
=IF' <EXPN> TMEN <BLOCK> <ELS[tf•> ELSE <FLOCK> 

<ENDER> 
=Ir <E><PN> THEN <BLCCK> <ELSEIF'•> <ENDER> 
:(y <ITERATOR>) <BLQCK> <ENDER> 
:(WHILE <EXPN> DOING <~LOCK>) <BLOCK> <E~DER> 
:(WHILE <EXPN>> <BLCCK> <ENDER> 

=<•NAME> (<EXPN> <CCMEXPN•>)J 
: <•NAME> J 
~c.susqouTJNE CALL IN INFIX roRMl> 

<EXPN> <•OPNAME> ·cEXPN> I 
= <•OPNAHE> <EXPN> I 
= c•OPNAME>- I 
=<-CALL OF SUBROUTINE TO ALL ELEMENTS or SET:> 

<•NAME> [ <EXPN> <COHEXPN•> J J 
= c•OPNAME> r <EXPN> ] J 

= ASSERT <EXPN>; 

= <•NAME> -s~ <EXPN> I 
= -HD,- <•NAME>-~- <EXPN> J 
= ~TL,- <•NAME>-~- <EXPN> J 

= <• INDEXED ASSIGNMENT 'rORMSl> 
<•NAME> (<EXPN> <COMEXPN•>) -•- <EXPN> J 

a <•NAM~> S<EXPN> <CCMEXPN•>~ -=- <~XPN> J 
= <•NAME> [<EXPN~ <COMEXPN•>l ~~, <8XPN> J 
= ~•NAME> < <EXPN> ~ <EXPN> ) = ~EXPN> J 

= cCHECKWORD> <CHECKOP>J 

=Gl'ITO <EXPN>J 
·=Go· TO <EXPN>I 
•NOOPI 
=CnMPUTEJ 
=OFF I NE <DEF'ORM> :<BLOCK> <ENDER> 
=OFrtN~F <OEroRM>. <BLOCK> <ENDER~ 
=LnCA~ <NAMELlST> J 
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~C-EF Qfl'H'I> 

<El,.Scff.> 

<ENCE~> 

~ITERA10R> 

<COt'll~REXPN> 
-CITE:REXPN> 

c;t\A~~LIST> 
~~At1ce~ 

= tPRlNT,~ <EXPN> <COMEXPN•> J 
= tREAD,it <NAHELIST> J 
= tWRITE.t <~AMELIST>J 

=FTNISM J 
= t<- <NAMFLLST> it>- ;t:;t <EXPN> J 
= PETURN J 
= RETURN <EXPN> I 
= < .. SPEC I A L ;t RE T URN ;t S TA TE ME rJ T F" r:l R US E H: 

CONNECTION WITH CCDE BLOCKS;~ 
RF.TN <F.XPN> J 

= <•NAME> < <NAMELIST> 
= <•NAME> <•OPNAME> <•NAME> 
: <•NAME> 
= <•OPNAME> <•NAME> 
= <•OPNAMF> 

= F.LSE Ir <EXPN> THEN <BLOCK> 

= ' = F ND J· 
= ~NO <NOSEMSC1,5)> J 
I!! <•NOSEMI> 

= cJTEREXPN> <COMtTEREXPN•>, <EXPN> 
= <JTEREXPN> <COMJTFRE~PN•> 
= ·, < l TEREXPN> 
- <•NAME> • <EXPN> 
= <EXPN> ccOMPAREOP> :<•NAME> <GOMPAREOP-> 

... 
= < 

= < -= ;t : ', <E:XPN> 

= <*NAME> <NAMSC> 
= ', <•NAME> 

a: CHECK 
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8, FQ~MA4 GRAMMAR 

I -<CHECICQP> 

<FACTCH> 

= NOCHECK 
= STORES 
= TIME 
= ENTRY 

= <FACTOR> <•OPNAME> <EXPN> 
= <FACTOR> 
= iF <EXPN> THEN <EXPN> <ELSEXPN,> ELSE ~EXPN> 

= FLSE IF <EXPN> 

= <•OP~AME> <FACTOR> 
= :: < I, TERFX!"IJ> <COM I TEREXPN> , <F' ACTnR> 
- ~ <ITEREX~N> <COMJTERFXPN> t <fALTOR> 
= [ <•nPNA~(> I <ITERATOR> ] <FACTOR> 
= <ELEMENT> <•LOGOP> <FACTOR> 
= <ELEMENT> 

= <ATOM> 
= <ATOM> 
= <ATOM> 
= <ATOM> 
= <ATOM> 

: <•NAME> 
::: <*NAME> 
= <•NAME> 
: <•NAME> 

( 
( 

~ 
[ 

<F.XPN> I <EXf'N> ) 
<EXPN> <COHEXPN•> ) 
<F.XPN> <COMEXPN•> ~ 

·<F.XPN> <COMFXPN•> l 

<EXPN> :<COMEXPN•> ) 
~ <EXPN> :<COMEXPN•> ? 
t ~EXPN> .<COMEXPN•> l 

= <•CODE BLOCK TREATED AS EXPRESSION> 
( I <BLOCK> J 

=~<•NAME> • <EXPN> ,<ITEREXPN> t <EXPN> ~ 
= ~ <•NAME> ,. <EXPN> , < I TEREXPN> . ~ 
= ~ <EXPN>, <JTERATOR> ~ 
: < <EXPN>-) 
= t <•OPNAME>) 
= SI~ 
: SI <EXPN> .<COMEXPN•> ~ : ~<-<EXPN> <COMEXPN•> ->
= <•QNAME> 
= <•CONST> 
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1, IJ IS FORBIDOEN TO HODirY THE VALUE or THE ITERAfioN 
~ARIABLE OR nF TME ITERATION FANGE WfTHIN 'HE BOOY OF A 
FURALL ITERATION, 
lHE rOLLOWIN~ IS THUS ILLEGAL: 

FORALL X F.L s REPF.AT no . ' ' .. 
s=s ~ESS X 

END 

;RRORS MAY RF.SULT Ir A REC.URSIVE PROCEDVRF ~ALLS 
~HOM WITMJN A LOOP OVER A SET, FOR EXAMPLE, 

DEFINEr REC<S >J 
/•SUMS NESTED TUPLES OF' INTFGERS•/ 
LOCAL X,VALJ . 
VAL=OJ 
IF' (TYPE, S> ,EQ, INT, THEN RETURN SJ; 
(¥X ~> S> VAL=VAL+REC(X)J. 
RETURN VALJ 
ENDi 

ITSELF' 

~AY CAUSE PRnB~E~s. 
THE U~ER MUST SUPPLY 
•HE LOCAL BLOCK, AND 
lUOP, AS F'OLLOWS, 

IF CODE CF THIS SORT lS NECESSARY, THEN 
A TEMPORARY VARIABLE, SAY •XT~, IN 
EXPRESS THE SET ITERA,ION AS A ~WHILE~ 

DEF'INEF' REC<S )J 
/•SUMS NESTED TUPLES or INTEGERS•/ 
LOCAL X,VAL, XTJ 
VAL=O; 
IF' (TYPE, S) ,EQ, INT, 'THEN RETURN SJ; 
XT; NtLVECTJ SINITIALISE FOR ITERATlON 
X~NEXTELT(S,XT)J $SET X 
U.HULE X NE, OM, DOING X=NEXTEl,;TCS,X"t')J) 
VAL'-=VAL•REC<X)J 
ENO WHtLEi 
RETURN VALJ 
ENOJ 

I~ ,~E CODE ABOVE, TWO BALHSETL RESERVED WORDS MAVE BEEN 
yTILUt:Dr 

1,- ~NILVECT• IS A SYSTEM CONSTANT WHtCH SERVES AS 4 FLAG 
re lNDIC~T~ T~E BEGINNING OP A~ ITERATJON, 

-~• ·•NEXTELT• I~ A SYSTEM PROCEDURE W~ICH ACTUALL~ PERFORMS 
TM~. ITERATION; 
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9, HALMS~TL HIGHLIG~TS 

ThE APPEARANCE OF THESE KEYWORDS ( WHICM SHOULD NCT BE USED FOR 
A~Y o•~ER PURPOSE IN 4 SETLA PROGRAM~ 1s A BLATANT (U~ESTHETIC) 
PATCH, IT 1S [~POSED BY TME BASIC IMCOMPATJRILI'IES BETWEEN 
bAL~ ANO SETL NAMESCOPING RULES, 

!HE W~JLE LOOP CORRESPONDS TO THE CODE THAT WOULD RE GENE~ATED 
IF A •fORALL• LOOP WERE WRITTEN, HOWEVER, THE REQUIPEO 
TEMFO~iRy -xr~ IS NO LONGER GLOBAL, AND 1s THUS RfSTOREn 
gcR~EeTLY IN THF ~VENT or RECURSIVE CALLS, 

3. COPYING ANO DIRECT MODJrtCATION or ~ATA OBJECTS IN SFTLAi 

lHf USER SHOULD BEWARE OF ERRORS WMICH MAY BE CAOSED BY 
T~E Ff~LOWING LOGYCAL DISCP~PANCY PETWEEN SETL AN~ AALM. SETL 
IS A CUNSJSTENTLY ~VALUE ORIENTED~ LANGUAGE, IN W~I~H~ AS A 
MATT~~ OF LOGICAL PRINCIPLE~ OPERATIONS WHICH MODJrv EXISTING 
VARIAEbE VALUES CREATE ENTIRE~Y NEW DATA STRUCTUR~S~ AND 
~EAVE A~L OTHER VARIAALE VALUES UNCHANGED, 8A~M 0~ THE OTHER 
HA~C I~ -ADDRESS ANO POINTER~ ORlENTED IN ITS TREAT~ENT OF 
tCMFULND (THOUG~ NOT OF SIMPLE) DATA OBJECTS, sn THAT WHEN 
A CCMPUUND OBJECT A IS MAOE PART Of ANOTHER SUCM r.eJECT A, 
T~c VAbUE OF B MAY SUBSEQUENTLY CHANGF. WHEN A IS ~onlrlF.C, 
TC SUFPRESS sue~ FFFECTS, WHICH ARE NOT CONSONANT WTTH T~E 
~WHE INTENT or SETL. fT MAY BE NECFSSARV TC INSERT OCCASIONAL 
¢A~LS TO THE ~CREATE INDEPENDENT NEW COPY• FUNClinN COPY(X), 
- T~E ~URRENT IMPt.EMENTATION INSERTS AUTOMATIC COPIES IN MOST 
SITtA,jONS WHERE~ COMPOSITE OBJECT 15 BEJNG MOOirJED; OR RETRIE~ 
VED F~UM A LARG~R ORJECT, roR EXAMPLE ~IN 'TME ASSIGNMENT 

Y = r<x> , 
T~E VA~UE ASSIGNEO TO y IS A COPY or TME 'VALUE RETRJEVED BY 
tHE FlNCTJONAL APPLICATtON~ SO THAT SUBSEQUENT MODI~leATIONS OF 
j WILL NOT MAVE sfoE~EFFECTS ON THE SE~ r. HOWEVER, TME SI~PLE 
ASSIG~MENT V = ~ J DOES NOT PRorucE A COPY OF x, so TMAT MO~ 
DlflCAT-IONS TO ON~ Of THE VARIABLES MIGHT PRQPA~ATE TO THE OTMER1 
eXPERt~NCE WIT~ SFTL SO FAR SEEMS 'TO t~DICATE THAT ON~Y RA~ . 
RE~Y -r~ES THIS FORCE THE USER TO lNSERT EXPLICIT COPIES IN HIS 
PROGRAM, HOWEVER, IT MIGHT RE WISE TO KEEP THIS IRRF.GULARITY 
I~ ~J~U WHEN DEBUGGING, 
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.. -------~---

T~E S~~TEM PROVID~S THE FILES TAPE1,TAPF2,,,,TAPE7 FOR. 
USER !•0 OPERATJO~S, TAPEt AND TAPE2 ARE THE KRnNCS (~R 
SCQFt, lNPUT ANn nUTPUT FILES RESPECTJVF.LY, 

lf\ AUUITION, AALMSETL [lEr!NES lN'!'EFH-!ALLY A BUFFER CtLLED 
~t~FlLE• , WHICH rAN 8E ASSOCIAT~D WITH ONE OF THE SYSTF~ 
f l~ES~ AND WHltM ~PECIFIES THE rILE FROM WHICH DATA IS TO 
BE ~EAµ, INFILE I~ EQUIVALENCED TO ~INPUT~ RY DEfAULT; 

T~~ FORMAT OF THE I/0 STATEMEN,s IS AS roLLOWS: 

PRINTS SETL OBJ~CTS 01,,,0N I~ SETL 
EXTERNAL FOR~(SFE BELOW) ON FILE 
OUTPUT, THf JTEPS ARE SEPARATED BY 
ONE BLAt-;K, 

W~ITE,N, 01,0~,,,,0N J SIMILAR TO PRINT, BUT DATA lS WRITTEN 
ON FILE TAPFN, N MUS' BE INTEGER<8, 

01,02',,, ,ON J READS THE SETL EXTERNAL FORM er N OBJS 
rROM FILE tINFILE~, ANO STORES THE 
CORRESPONDING VALUES 1N THE VARIABLES 
01,,, ,ON, ti'EM :[lELIMtTER IS A 13l,.ANI< 
OR A SLASH, IT IS RECOMMENDED THAT 
THE SLASM BE USF.0 TO MARK ?HE END Of 
COMPLJCATEn SETS OR 1UPL~s:. 

•J~tILE- CAN BF REOErINED RY MEANS or TME ~MAKPILE· 
PRQCEt~RE, THE STATEMENT 1 
. . lNfl~E=MAKFlLECN,SIZ) J 
~~ER~ N AND S!Z ARE INTEGERS, SPECirIES.THAT THE NEXT READ 
QP~RA'ION IS TO TiKE PLACE ON rlLE TAPEN, WHERE DATA fS WRITTEN 
.~siz• 9HARACTERS PER RECORD, ON TAPE1 (THE STANDARD tNPUT FILE> 
!~JS FARAMETER HAS A OEPAULT SETTING nr 80, 

T~E QUTPUT LINE SIZE CAN BE SPECIPIED BY THE SA~E MECHA• 
NlS~, ~OR EXAMPLE~ THE STAT6MENT i 

DUMMY: MAKFILE(2,?2) J 
WlLL 'ORCE THE OUTPUT ON TAPE2 TO BE PRINTED JN 72 COWUMNS, 
... T"'-~ DEf AULT SETTINGS F'OR THlS 'PARAMETER ARE AS rO~LoW.s·: 
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9, 8ALMS~TL HIGHLIG~TS 

TAPE2 ~STANDARD OUTPUT F'ILE> s 130 CHARS/LINE 
AL~ OlMER F'ILES 80 CHARS/LINE, 

EXTER~AL FORM OF' nBJECTS (EXAMPLES) 

INTEGERS 1 23 ·-5 71863f4t5Q265 
~l::ALS 
e·,r STRINGS 
CHARACTER ST~INGS 
~bANK ATOMS 
LABELS 
FHOCEDURES 
LNOEF'INED VALUE 
EMPTY SET 
FMPTY TUPLE 
!I; T 
1'1JPLE 
"~UE, FALSE 

C, ~OOLEAN OPF.RATORS, 
-----------------

lHE HOOLEAN EXPRESSION 
A AND, ~ 

0,1 10,2E~6 
118 77770 
itARCDEF'CHIJKat 
ALK123 
LAB~45 
F"UN, RANDOM 
Of-1; 
NL.' 
NULT, 
~1 2 3 4?! 
<1 2 3 -41> 
TI F'. 

IS H~L:IVALENT To C ANO EVALUATED AS> 
( Ir A THEN 9 ELSE F",) 

J • E, I~ A IS F'ALSF., T~EN B WILL NOT BE 
S·J~ILARLY, THE BOOLEAN EXPRESSION 

. A OR, B 
JS E~llVALENT TO 

( IF' A THEN T, ELSE E> 

~~OT READABLE 
NOT READABLE 
NOT READABLE 

N C TE· ' H A T T HE A R G ll M ENT OF" A N - -I F' "' S TA TE HE NT W I L, L E E T A KE N T O BE 
TRUE IF IT IS NOT THE BOOLF.AN F", ( OR OB), THE JNTF.Geq·o, THE UN• 
OEFlN~U VALUE OM,~ THE NULL SET NL,, WILL:ALL ACT AS 'HE ROOLEAN 
T, IN THJS CASE, 
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9, BALMS~TL HIGHLIG~TS 

o, MISCEL~ANEOUS BALMSETL FUNCTIONS or lNTEREST 

TMlS IS AN I~TEGER VARIABLE (~HOSE INITIAL VALUE IS 10) 
~HlCH FIXES THE DEPTH OF THE PROCEDURE CALL NESTING DJSe 
FbAYEO WHEN A TERMINAL ERROR IS DFTECTED, THIS DEPTH CAN 
&~ CHANGED 8~ A REGULAR ASSIGNMENT SUCH AS 

. LEVFL=20J . 

'HtS INTEGER VARIABLE SPECIFIES THE MAXIMUM NU~BER CF 
CHASHES ALLOWED REFORE TERMINATinN OF A PRO~RA~, fT IS 
INITIALIZED TO 5, 

STRINGUF(O) 

,HIS FUNCTION RETURNS A CHARACTE~ STRirJG WRICH IS THE 
EXTERNAL REPRESENTATION OF ATOMIC OBJECT o; 
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TME fCLLU~lNG IS AN ALPHABETICAL LIST CF THE RESERVED WORDS OF THE 
BALMSEfL SYSTEM, THESE IDENTIFIERS SHOULD NOT BE USFD AS NAMES or USER 
CREATEp VARlAR.LF.S, 

AU~~Et\T 
BO~ 
jjQft\ 
COl,)E:Q 
UIMl"'IS~ 
OIMF 
DIMF'N 
1)0 

ELSE 
ELSElF 
ENO 
EQ 
EQl,)AI;. 
FA~Sc 
F'OR 
GAH6CC1,.L 
GE 
GEI\SEl 
G61\T(JF 
GO 
GOTC 
GT 
HD 
HEAC 
lF 
IN 
lNCS 
INPEX 
lNcG 
INPUT 
IS -
L.ANC 
LE 
LE§f' 
LESfN 
LESS 
L.NOT 
l. T 
MAKF'lLe 
MAX 
M I I\ 
NE 

NECUAL 
NEWA'T 
NIL 
NILQ 
NILVECT 
NL 
NOT 
NPOW 
NULB 
NULr, 
NULLSF.T 
NULT. 
OCT 

·oR 
POW 
PRINT 
PROC 
QUOTE 
READ 
RETURN 
SAVESETL 
Sl·UF'T 
SOf 
SOF'N 
SSOF' 
SSOrN 

,TAIL 
TAJKATIV 
THEN 
TIME 
TRUE 
TVPE 
VECTOR 
WHILE 
XOR 

NEXTELT (SEE SEC,8A,) 
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8 1 SQ~E ~AMPLE PROGRAMS 
T~E REMAINDER OF THIS MANUAL CONTAINS SEVERhL PROGRAMS WRITTEN 
I~ Sijl~A, THE SOtJRCE FOR THESE PROGRAMS IS AVAILABLE ON THE 
~ER~A~ENT FILE ~STESTPL•, WHICH IS AN UPDATE OLOPL, 

I* T~E~E PROGRAMS ARE PRESENTED TO ILLUSTRATE T8E USE OF THE 
5~TLA LANGUA~E. IN PARTICULAr, otrFEPENCES IN USAGE BETWEEN 
S~TL AND SET(A ARE INDICATED,CNLY SKETCHY INnicA,IONS 
CF TME UNO~RLYING ST~ATEGY US[D I~ THESE ALGORJT~MS rs GIVEN 
!~ TME TEXT WHICM rOL.LOWS~ FOR ADDITIONAL E~PLANATION 
s~~ THE SECTIONS or THE~ ON PROGRAMMil~G ~ CITED IN 
CONNECTION WiTH T~F PROGRAMS GIVF~ BELOW •I 

-129-



1 0 1 S ~ MF Ii, E I? R O GR A MS I N ·SE TL A 

FQCKET•SORT SORTING ALGORITHM: 

I• r~,s ROUTINE SORTS BY THE ~DISTRIBUTION AND COLLECTJCN
~~THOD USEn nN MECHANICAL CARD SORTERS•/ 

co: 
CEFl~~F POCKSORTtSEQ,P)J 
l•St:C IS A SEQlJE~!CE OF lNTF;GERS TC BE SORTED, 

F IS THE NUM~ER OF POCKETS TO BE USED,•/ 
/* Ml;~ r·1 TRUE AS LONn AS MORE THAf< o~,E POCKET HA$ r.Aqos • 

~VLTt = T,J Q: 11 
CW~IL~ MULTI DOING Q=Q•PJ) 

/* TME lTEMS ARE nISTRIAUTED INTO POCKETS BY KEYS 
INCREASING A~ THEJR RFS.IOUES ~oouLo P,P••2i P••3= ~Tc~~ 
AND THEN REGATHERED tN TME SEQUENTIAL ORDER or T~E 
Pl,1CKETS •I 
$~Q: GATHER(p,DJSTCSEQ,p,Q))J 

ENE t,;MILEJ 
F1ElUF<N SEQJ 
ENE FQCKSORTJ 

CEFl~~f DIST(SEQ~P,Q)~ 
l•DISTRigUTES SEQ AMONG P POCKETS ACCORDING 10 RESIDUE 
MODULO P•Q, 
ALSO CALr.ULATJNG FLAG ~MULTI~•/ 

POCKEt=NL,J 
(¥1<1:K<=•SEQ) 

~~V=.(SEQ(K)/n)//PJ 
FUCKET(KEY, ♦ POCKETSKEV~ ~1)= SE~(K)J 
E~O "I 

~ULT!~: l<=K<PtfPOCKETSK~ NE, NLl,)J 
RETIJ~N POCKETJ 
ENE tl.STJ 

CEFl~~F GATHER<P~POCKET)J 
/• GATHERS OISTRiBUTED lTEMS IN SEQUENCE :OF' POCKETS •I 

RETU~N C+SO<~K<P~ 1<=J<= •POCKETS~2J <POCKETCK~Jt>J 
ENE GATHERJ 
CQt,,PL;TEJ 
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FQRO-JOHNSON TOURNAMENT SORT (O,P, VOL II, PAGE 66) 
,. ,~,s rs TME FnRo~JOHNSON tMINI~UH COHPARJSO~ SOPTtNG 

r,,cTHOD, SEE THE CITED REF, •/ 

I* PLACE 

pc, 
DEFlN!f PLACE<ELT~NELTS~BtGR)J 
/* TH!~ AUXILIARY ROUTINE USES A BINARV SEARCH PRCOCEOURE 

l~ DETERM(NE THE PRbP~R POSITION CF itE~Tt WITHIN TµE 
StOUENr,E ~sen, •I 

~cc~~ ~OT,TOP,MIDJ 
t30T=1J 
TCP=NE!,,TSJ 
(w"I~fCTOP•R.OT) GT, 1) 

,.,,D=<TOP•BOT>/2J 
Jr HIGR(SEQ(MtD>,ELT)THEN 

TOP:Ml □ J 
I* ~~JijR- IS A ROnLEAN~VALUED COMPARISON FUNCTION •I 

El..SE ROT=MIOJJ 
(;f\0 WI-' L.E J 
JF EJGHCSEQ(BOT>,FLT) THEN RETURN EOTJ 

E~SE IF BlGRtSEQ(TOP),ELT> THEN RETURN TOPJ 
E~SE RETURN TOP+1;J 

f;~D PLACEJ 
CCMFUH:J 

I* 
pc, 

INSERT 

It ·•~IS AUXl~IARY fUNCTION INSERTS ;ELT- AT A SPECIFIED P~ACE 
~ITHJN iitSEQit •I 

QEFINE INSERT(ELT~PLACE)J 
iEQ=(S~Q(1:PLACE•i>•<ELT>)•SEQ(PLACE:(•S~O•<PLACE~1))t) 
RETL;R~J 
t;t\:0 P•~ERTJ 
CCMF ""'~ J )• . · FORD~ •I 

co, 
o~rIN,~ fORDJ(PAIR)J ' ' 
~CCA~ JTEM1,ITEM2~XTRA,MAP,tTEMS2,0SEQ~JTOP,JBO,,NELTS,j,AIGR, 

ITEMSJ · 
I• T~~s rs THE RECURSIVE -TOURNAMENT ·SORT, pRQOEDU~E PROPER, 

. ,i-ite INPUT rs ASSUMED ·to MAVE 'THE f'ORM ctT!MS, Bf GR>, WHERE 
·•ITEMS- rs SEQUENCE OF' ITEMS 'TO BE SORTl;D, AND ~BIGR~ IS THE 
,~e BOOLEAN•VALUED ruNCTION USED TO COMPARE TWO fTEMS •I 

pt;l"~!!;~I), PAIRI 
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10, SAMFbE PROGRAMS IN SETLA 

aiijN=~~, TL, PAIRJ 
I• IP THE SEOUENrE CONSISTS Of QNf ~R TWO ITEMS, 

ITS TREATMENT IS OBVIOUS •I 
JF(+lltMS)EO, 1 TMEN RETURN <ARB, ITEMS>;; 
JF(+fl~MS)EQ, 2 TMEN 

tTEM1= l TEMS ( i) J 
ltEM2=1TEMS(?)J 

JF ElGH(ITEH2,lTEM1) THEN RETURN <JTEM1~ITEM2>J 
ELSE RETURN <ITEM2,ITEH1>JJ. 

Ef\t) JF<•ITEMSJ 
/* OTH~RWISE DlVTDE THE ITEMS INTC TWO•ELEMENT SFTS, 

!NTRODUCINA A tDUMMY~ PXTRA lTEM tF NfCESSARY t/ 
XTR~:;~;WAT, J 
PE~S2!NULT,J 
MAP=N~1 J 

ir<<•ITEMS)//2)NE, 0 THEN ITEMSC(+tTEMS>•1>~XTRAJI 
l~Hl~E ITEMS NE, NULT,> 

JTEM1=1TEMS(~)J 
'T.EM2= ITEMS ( 1) J 
~l=+rTEMS•2J 
ITEMS=tTEMS(~:NI>; 

I* MA~ THE BIGGER OF THE TWO ITEMS IN EACM PAIR INTO THE SMALLER, 
AND CREATE A HALr~winTH SF.OUENCF. CONSISTIN~ er T~E ~IGGER ITE 
Cr EACH PAIR~ •I 

JF ITE~l EQ, XTRA THEN X=F,J 
El,,SE 
)f~BIGRC ITEM2~ ITEM1)J J 
!f X THEN <IiEM1,ItEM2~JK>=<lTEM2~1TEM1>JJ 

JTE~S2l•JTEMS2•1>=ITEM2J 
~AP(ITEM2)=IfEM1J 

E:t\Q w~ql..EJ 
i • l..'SE THE TOURNA~ENT SORT RECURS IVEL V TO .SORT THE 

~ALF~LENGTH SEQUENCE, •/ 
-SEQ=fCHDJC<ITEMS2~BIGR>~J 
,. New, USING BINARY SEARCM, INSERT THE REMAIN!NG EL8MENTS or THE 

CHIGlNAL SEQUENCE INTO THF.lR ·PROPER POSITION, •I 
OS=C = [+11<;N<=•SEQJ~MAP<SEQ(N)>J 

'"':1<QJ~= ( ,.OSEO)) 
IP OSEQ<J> NE, XTRA THEN 
NELTS=•SEQJ 
INSERT(nSEQ<J>,PLACE(OSEQ<J>,NELTS,BIGR))JJ END vJ 

liiETI.R~ SEOJ 
i;~O FCHOJJ 
COMPU,~J 
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10, SAMF~E PROGRAMS IN SETLA . 

/• ALPHeIGR ·•/ 
It HEHE IS AN ALPHABETIC COMPARISON ROUTINF THAT MAV BE US~D IN 

eUNNfCTION wtTH THF AAOVE, •/ 

CEFl~~F ALPHBlr,R CA, 8)J 
LOCA~ N, CHARS, r,HARPOS; 
/t OEtlNE CQL~ATtNG SEQUENCE FOR CHARACTER~*/ 
C~AR! =i ,ABCOEFnHIJKLMNOPORSTUVWXVZtJ 
CHARPQS: ~ <CHAPS(N), N>, 1 <= N <=•CHARS~; 
/t ceMPARE EITHER rtRST DISTINCT 'CHARACTERS, OR LEN~'HS •I 
IF~ 1 <• N <; (,A> MIN, (,8) • A(N) NE, BCN> 

THEN RETURN CHARPOS<ACN)) GT, CHARPOSCBCNt)J 
~LSE RETURN <•A> GT, C ♦ B)J END tfJ 

ENC A~PHRIGRJ 
CO~PL!EJ 
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10 1 SAMPbE PROGRA~S IN SETLA 

~,scELLANEOUS PERMUTAtION ALGORITHMS 

COJ 
••G • COMPUTEJ DO•• 

I• MA~t SEQUENCE Of TUPLE, •I 
DE~l~EF MAKSEQ, TUPI RETURNt+t1<=N<= ♦ TUPlSJ<N,TUPfN)>?J ENC MAKSEQ,J 

I• CtMPUTES i~EAni AS tUNCTION, •/ 
Dl;Flf\i;F" MOO(X)J. RETURN HP,XJ END HDDJ 

I• CCMPOSES FUNCTIONS, *I 
DEFlf\~F r c, GI RFTURN s <X,G(f(X))>' x. HOD [rl ! JENO f c,, 
I• lf\VERTS A F'UNr,TIQN, •I 
DEFl~EF INV, fl RETURN s < HDiTL,X,HD,X>, x~r ~J END INV, 

I• C~C~E FORM Of A PERMUTATION, */ 
CEFlh~f CYCfORM(f)J 
LOCA~- S,CYCSt. CVC,ELT,E J 
I• fCHM SET OF ALL ELEMENTS PERMUTED, CHOOSE ONE Cf THESE, 

AND REPEATEDLY A?PLY PERMUTATION, UNTIL FULL CYC~E IS 
G~NERATED, FLEMENTS or CYCLE ARE REMOVED FROM SET~ ANO THE 

·FHOCESS CONTtNUES UNTIL NO ELEMENTS AR~ LEFT JN THE SET,•/ 
S=~octFJJ CVCS=NL,J 
(W~ILij S NE, NL, > 

~~T F'ROM,S J eve= <ELT>; 
fWHlLE<F<ELT>IS,F. > ~ S DOlNG ELT = f(EhT)J) 

eve( ,eve +1)~ El E OUi, SJ END WHilEJ 
eve IN, eves, 
ENP WHILE S1 

RElY"N eves, 
ENC t!YCPORMJ 
GJ 

I• ,~VERSE or A PERMUTATION IN CV.CLE PORM, •I 
DEFl~~F INVCe evCSJ 
I• ~,~EN A PERMUTATinN IN CYCLE PCRH, [TS INVE~Se IS 

e~TAINED av REVERSING ~ACH CYCLE, •I 
RETU~N St+:1<= N~= •Cl<C(C•c~N> • 1)>~ c~cvcs~. 
ENC JNVC, J . 
CJ 
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10, ~AMP~E PROGRAMS IN SETLA -

I• !~VERSE OF A PERMUTATfON, •/ 

CEFl~tF CVCINV tF); LOCAL S,ELT,~EXT J 
,. r~,s ALGORITH~ RESEMBLES THE PRECEEDING ~CYCFORM-PROCEDURE, 

~OWEVER, CVC~ES ARE NOT FORM~t EXPLICITLY, BUT RAT~fR ARE 
l~ED IMPLlCITLY, THE INVERSE PERMUTATION BEING BUILT 
L~ BV MAPPIN~ EACH ELEMENT INTO TTS PREDECESSOR IN TME CYCLE 
lU WMICH IT AELONGS, •I 

S: HEµ[FJ; 
(W~P-~ 5 NF.,NL,) . 

E~T FROM, SJ NEXT :F(ELT)i 
(~HILE NEXT,. S) 

NEXT OUT,SJ 
<ELT,NEXj,FN,JK> =<NEXT,r<NEXT)iE~T>; 
r(ELT ):r:NJ 

E~P WMILE NEXT J 
~C~EXT)=ELTJ 1•C~OSING THE LOOP•/ 

ENC I.HILE SJ 
RclU~N FJ 
ENC eYCINVJ 
CO~Pl!EJ 
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10, SAHFbE PROGRAMS IN SETLA 

F-5RMUTATION r.ENERATOR 

I• 0~ SUCCESSIVE CALLS, THIS ROUTINE GENERATES SUCCESSIVE 
FijRHUTATtONS OF N ELEMENTS, IT -RETURNS A PAlR OF THE FORM 
c~ERMUTATION~ FLAG>, WHERE FLAG I~ ~TRUE~ UNLESS NO MORE 
F~RMUTATIONS CAN RE GENERATED, 
!N W~ICH _CASE PERMUTATION=OM, *I '* If CALED WITH MORE=~,, IT RE~INITIALISES USING N, AND 
~§TURNS THE FIRST PERHUTATlON ON N E~FMENTS, •I 

oc, 
UEFlNF.f PERM(N, MORE)J 
~CCAL ~, J, KK, FTND, LM, TJ, JKJ 

,. lNITIALIZ~ rr NEWCMORE=F,) */ 
AF~, MORE THEN MORE~T,JTUPL=NULT, J 

twl<=J<:N)TUPLCJ)·:JJJ 
~~TURN<TUPL,~ORE>; 
fNO IFJ 

/t lF TUP~E TS MONOTONE DECREASING THERE ARE 
NO MORE PERMUTATIONS, OTHERWISE PINO 
LAST POTNT OF INCREASE•/ 

fF ~, ,~N> J >;ttTUPL<J) LT, TUPL(j•1)) THEN 
~URE=F,JRETURN<OM,,MORE>J 
ENO IFJ . 

I• NEXT rIND THE LAST TUPL(K) WHIC~ EXCEEDS 

TUPL(J) AND SWAP •I 
flNCq;N>~ K >JtTUPL(J) LT,,TUPL<K)J 
<l~, JK, LM> = <TUPL(K), TUPL(J)>J 
l~PL(~~=JKJTUPL<Jt=TJJ 

;• REARRANGE ALL TME ELEMENTS AFT.ER T:UPL(J~1> 
INTO INCREASING ORDER •I 

(¥J<K<,C(N+J+1)/2)) 
KK=(N•K)+J+lJ 
crJ, JK, ~M> = <TUPLCKK), TUPLCK)~J 
lUPL(KK)~JKJ~UPL(K):tJJ 

~~D ~ w• 
HETLR~~TUPL,MORE>1 
c~O P6HMJ 
CCMFV,§J 
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~YfFMAN CODE ALGORITMMS 

I• T~b FOLLOWING ROUTINES TRANSFORM A TABLE OF C~ARACTER 
f~EQUENCl~S iNTO A HUPPMAN ,OPTIMAL-CODE TABLE. •I 

I• T~ij STRATEGY USED IS AS FOLLOWS, FIRST A BlNARV TREE, 
Tq WMOSE TWir,S ALL T~E CHARACTERS ARE ATTACHED~ !S BUILT, 
T~E CODE OF EACH CHA~ACTER JS THEN THE ADDRESS or tTS TWJG 
~~LATIVE TO TREE ROOT, FOR EXAMPLE, A CHARACTER RFACHEO BY 
~ALKING L•L•R•L~R•R~L PROM ·THf ROOT HAS THE CO~E 0010110 */ 

I• OECODING (SEE THE ROUTINE ~CSEQt BELOW), IS ACCnMPLiSHEO BY 
STARTING AT THE TREE TOP AND USING SUCCESSIVE e1,s or A STRIN 
,o BE RECOoEn TO GOVERN LEFT AND RIGHT STEPS DOW~ fHE TREE. 
LNTIL A TwJG IS REACHED, T~E CHARACTen AT T~IS TWIG IS THE 
~¥MBOL DECODED •I 

I• T~~ BINARY TRFE IS BUILT AS FOLLOWSI 
'HE TWO MINIMUM PREQUENCV CHARACTERS ARE FOUND AND MADE INTO 
'HE IMMEDIATE DESCENDANTS or A -COMPOSITE CHARACTER-~ 
er FREQUENCY EQUAL TO THE SUM OF 1ME "TWO FRECUFNCIES, WHICH 
F.~PLACES THEM, THIS CONT'INUES UNTIL ONLY ONE CHARACTER 
~~MAINS, THTS CMARACTER IS THE ROOT NOOE or TME TREE 
;y(~T UP BY THE ITERATIVE PROCESS THAT HAS BEEN 
l!~SCRI8ED9 •/ 

J• AUXILIARY ROUTINE TO CHOOSE MlNtMU~, */ 
COJ 
c~r,~EF GETMIN, ~ET; 
LOCAL KEEP,LEAST~XJ 
I• TAKE AN ARBITRARY ELEMENt OF SET AND GUESS !T TO 

► AVE MINIMUM FREQUENCY, •I 
KEEP;aARB,SET J 
L~AS,~WfREO(KEEP)J 
/t NCW REPLACE THE -MINlMUH~TO•DATE, WITH ANY ELEMENT 

~AV!NG LOWER FREQUENCY, •I -
<·v X "'SI; T) 

tt WFREQ(X) LT, LEAST THEN 
KEEP=XJ 
LEAST=.WF!~EQ C X) J 
END IF' J 

ENC w XJ 
It REMOVE TH~ MINIMUM tREQUENCY ELEMENT fROM T~E WOR~PiLE 

i;iSED BY THE MAJN IIIHUF'TABl.;E;e RCUTINE WHICH FOLLOWS, •I 
K~EP UUT, WORK1 
R~TU~N Kl;EPa 
END Gi?TM!N,1 
CQ~PW!f;J 
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10 1 S~MF~E PROGRAMS IN SETLA 

I! ROUTINE Tn PRODUCE MUFFHAN TREE AND CODE TAPLE, ·•/ 
ro, 

OcFl~cF MUFTABL (CHARS,FREQ); 
LQCAL WORK,SEQ,WrREQ,L,R~C1,C2,NiCODE~SEO,TQP; 
I• SlART WITH COLLECTION OF ALL CHARACTERS, KNOW~ FREQUENCIES, 

ANO TREE wITH NO NODES. •I 
WO~K=QHARS;WFREQ:FREQ;L=NL,;R=NL,J 
<W~ll~ (•WORK) GT, 1> 
I• ffHM NEW NODE WHOSE DESCENDANTS A~F THE TWO EXtSTJNG 

e~ARACTERS or MlNIHUM FREQUENCY, WHICH BECOME ITS 
tt;SCENDANTS, •I 
~i=GFTHJN, W~RKIC2=GETMIN, WOP.Kl 
~-NEWAT1 JL<N>=C1JR(N):C2J 
~~REQ(N):WFRP.O(Ct>•Wr-REQCC2)J 1• NEW NOOE iS AODED TO LIST OF CHARACTERS (THF TWO OLD 

CHARACTERS HAVE BEEN RE~OVF.D 8V ~GETMJN~), •J, 

~ IN, WQRKs 
END WHlLEJ 

CQC6~N~,JSF.Q=NULT,J 
ft C~ARACTER CODFS ARE FORMED BY ROUTINE ,wALKi, 

~~ICM nETERMtNES AODR~SS OF EACH TWIG, •/ 
TQF~A~B,WQRK ; WALK<TOP.>I 
RfTU~N <CODE,~,R~TOP>J 
ENC . .,UF'TABL. J 
COf"PL:fEJ 

DQJ 
CEFp.1; WALK(TOP)J I• RECURSIVE TREE"'WALKER 
~HIC~ aUJLDS UP ~DDRESS or EACH TWIG•/ 
It MlFTABLES EXTERNAL CODE,SEO,L,R•/ 
,. rc··BUILD UP A~DRESS, ADD A ~o- FOR EACH STEP TO THE LEFT, 

AND A ~1- FOR EACH STEP TO THE RIG~T, */ 
IF ~f!OP) NE, OM: THEN 

S~~=SEQ•<O>J WALK<L(tOP)); 
S~U~SEQ+<1>J WALKCR(TOP))J 

El,;SE:: /*AT_ TWIG•/ COPE<TOP)aSEQJ 
ENC f~J 
I• ~EfORE RECURSIVE RETURN~ DELEtE FINAL BIT OP NOD~ AriORESSi*/ 
IF (4$EQ) GT, 0 tHEN 

S~Q~SEQ(11•SfQ•1)JJ 
R.ETU'-NJ 
ENC 1,,,AL,KJ 
CQl"P.L!EJ 
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CQJ 
tEFl~§F CSEQ(MUFTABS,SEQ)J 
,. SEc PRECEEOINr. COMMENT roR EXPLANATION OF DECCOE ~ROCESS, •I 
<JK1L1R,TOP,JK>=~UFTABS, 
C~TP~ =NULC,J NOOE=TOPJ N:1; 
(~~lL~ N LE,,SEQ DOING N=N•lJ) 

If L<NOOE)EQ. OH, /•SO THAT WE A~E AT TWJG•I 
.. THEN OUTPU =OUTPlJ + NODE J 

NODE= TOP s N=N•.1 J 
&bSE IF SEO(N) EO, 0 THEN 

NOnE=L.<NnOE)J 
EbSE NODF~R(NODE>J 
ENO IFJ 

ENC 1.HILF. NJ 
RETU~N OUTPU •NOMEJ 
ENC e~EQJ 
co~ PW Tc, 
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10, SAM~~E PROGRAMS IN SETLA · 

LJNEAR TIME MEDIAN FINDING ALGO~fTHM 

,. KTHONE 

CUJ 
[bFINEF KTMONE(KPARAM, SETPARAM)J 

,. THE VA~UE OF THIS ruNCTION ts TME KPARAM~TH NUMBER, IN 
i~CENDING ORnER, OP THE GIVEN SET -SETPARAM-OF NUMBfRS, IF 
~~ARAM IS out Of RANGE, THE RESUlT IS UNDEPINEr, ., 

/t THIS rs TME ALGORITHM DlSCOVEqED BY fLOVO, ET AL, IN LATE 
1~71, IT RUN5 IN LINEAR TIME, •/ 

LUCAL BIGPJLE, CASE, I, I<, MEDIAN~ HIPPTS, SET;~ SMALPILE, 
U, V, Xi 

I* -KTHONEBL~ IS A GLOBAL VARIABLE (TO PREVENT S?ACKING ON 
~~CURSION), USER MUST INITIALIZE IT ·TO NULL CMA~. STRING, ♦/ 

I~ SETPARAM ~Q, NL, THEN RETURN OM,JJ 

I< = KPARAMJ 
St:;T = SETPARAMJ 
~rHONE8L ~ KTHONEBL • ~ 

fWHlLE <•SET, r,e, 3) 

/♦ SAVE FARAMETER5 (THIS ROUTINE•/ 
I• D-OES NOT ALTER T~EM); •/ 

~J I• TO INDENT W~EN PRINTING 
NUHB~R OF CCMPARlSONS, •I 

,. BUILD ser ~MIDPTS-, T~E SET OP MJDDLE VALUES rROM 
~SET~, TAKtNG THE NUMBERS T~REE AT A TlME, •I 
I = 2J 
Ml OPTS ;: NI __ ', J 

.(vX,.SET) 
I = <l•l)//3J 
IF l EQ, 0 THEN U • x;J 
IF I EQ, 1 THEN V m XJJ 
IF I EQ. 2 Tl-lEN 

I• ?UT MEDIAN OF' U, V, AND THE ,CURRENT X INTO SET 
MIDPrs; REQUIR~S 3 COMPARlSONS (WORST CASE), •I 
rr X Li, V THEN CASE= 11 ELSE CASE= 0JJ 
rr u L+. x THEN CASE 11 'CASE • 2n 
Ir V LT, U THEN CASE .. ;; 3.'" CASEJ J 
I• NOW CASE MUST BE 1, :~, OR 3, ♦/ 
MIDPTS = MIDPTS WITH, c~u, V, X>)(CASE)J 
END IF I ~Q, 2J 

END .,X·J 

PRJNT, KTHl'}NEBL, <•SET/3)•3J I• PRINT NUMBE~ er :COMPARP
JSOMS, INDENTED. ♦/ 
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I• AS MANY AS TWO MEMBERS or ;1!S(Tt HAVE ~OT BEEN CONSIDERED 
FOR PLACEM~NT IN tMinPTSt, BUT THE ERROR 1s NOT SUFFICIENT 
TO PREVENT THIS ALGORITHM F~OM WORKING JN LINEAR TIME1 

NOTE TMAT ,MIDPTS G[, 1, BECAUSE ,SET GE; 3·, •I 
I• NOW FIN~ THF <EXACT) MEDIAN OF -~!OPTS;, tN LiNEAR TIME, 
THIS ALGORt!HM CHOOSES ON THE LOW sine IF ,MIDP.TS IS EVEN,• 

MEDIAN: KTHONE((iMIDPTS+l)/2, MIDPTS)J 

I• NOTE THAT ;l!HEDIA~lt rs SOf,'EWHEAE IM THI; t-'lDDl.'.E TMIAD OF' 
;l!SETjl!, *I I• PRECISELY, THE NUMBER or MEM8ERS OF tSETjl! THA 
ARE LESS TMAN ~MEDIAN;!! IS AT LEAST (N/3•1)/2 + (N/3+1)/2, 
AND THE NUMBER OF' MEMBERS THAT ARE GREATER IS ~T LEAST 
N/6 + (N/3+2)/2, WMFRE N = ,SET, •I 

I• NOW DIVIDE ~SET~ INTO TWC PILESJ MEMBERS rr ;i!S~ALPILEt 
ARE LE. MEnIAN, AND MEMBERS or tBIGPILEt A~E GT. MEDIAN, •I 

SMALPILE = NL,J BtGPILE = ~L,J /• lNITfALIZE: •/ 
(iwx~SET) 

IF X L.F, MEDIAN THEN SMAl.PILf = St-lALPlLE WITH, XJ 
ELSE BlGPILE = BtGPILE WtT~, XJJ 

END ¥)(J 

PRINT, KTHnNEBL, •SETI I• FRINT NUMBER or CCMPARISONS, •/ 
I• SINCE •SET GE, 3, AND WE HAVE THROWN TH~ ~EDI~N INTO 
tSMALPILE~~ WE HAVE •SMALPILE GF, 2 AND ~BtGPJ~E GE, 1, NO 
ITERATE TO rINO THE APPROPRIATE MEMBER OP THE APPROPRIATE 
PILE, •I 

lF K LE, •SMALPILE THEN SET= SMALPILEJ 
ELSE SET = BIGPILEJ K = K ,. •SMAl,.PILEJ; 
END WHILEJ .I• GO BACK WITH NEW SET ANO ~OSSIB~V NEW K, •/ 

~THONEBL ~ KTHONEBL(11•KTHONE8L•3)J 
,. NOW •SET rs 1 OR 2 CIT CAN,r BE ZERO), K MAY BE OUT OF 
~ANGE rr THE ORIGINAL CALL HAD KPARAM OUT sr RANGE. •I 

If <•SET) ea: 1 THEN 
IF KEO, 1 THEN RETURN ARB, SETJ 

ELSE RETURN OM I J ENO rr K' 
E~SE /* •SET MUST BE 2, •I 

IF' K EQ, 1 THEN RETURN [MIN, J x;.seTJ x, 
ELSE Ir K EC, 2 THEN RETURN [MAX.~ .x~sETI ~, 

. EL.SE RETURN OM I J ,ENO r r; 
riNO KTHONEI 
eUMPUTEJ 
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'IME CHECK ROUTINE (PRINTS CURRENT CP TfME) 

TJMECHEK 

tQJ 
t~FINE TIMECMEKJ . 
It WRITES A TIME CHECK MESSAGf ON FILE ~oU,PUTt, USER SHOU~D 
INITIALIZE TME GLOBAL VARIABLE ~TIM~PPEV~ TO ZERO, *I 

LQCAL TIMENOw; 
'IMENOW: TIME(O>J I• INVOKE BAL~ TIME ROUTINE, •I 
FHlNT, ,tCP TIME C10TMS SECS)':: ~, TIMENOW, 

~J TIME SINCE LAST CHECK=~, "TIMEN~W~TtHEPREVJ 
llMEPREV ~ TtMENOWJ 
~i:TURNJ 
END TlMECHEK1 
~IJMPUTEJ 
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10; SAMFbE PROGRAMS IN 5ETLA 

L~X!CAL SCAN SETUP ROUTINE 

I• Tk~ PROGRAM W~ICH FOLLOWS REPRESENTS A LEXJeAL SCAN 
~ETACOMPJLER~ WHICH ACCEPTS INPUT DATA OESCRIBtNG ~ rINITE. 
STATE AUTOMATON. AND A COLLECTION or ,SPECIAL ACTIONS-
,u BE PERroRMED lN PARTICULAR LEXICAL SJTUATJo~s: 
'ME INPUT IS SYSTEMATICALLY C~EC~ED FOR CONSISTE~CY, AND 
T~ANSFORMEO tNTO A STATE TRANSITION TABLE tTAOLE~, 
~ CHARACTER-TYPE FUNCTION -TYPEft~ . 
A~D AN AUXILIARY ROUTINE PACKAGE ,PAKTExr,; •I 
I* THIS PROGRAM READS DATA fROM PILE ,tNrILE~, A SAMPLE SET 
C[ INPUT DATA IS SHOWN BELOW, CDlSCOUNT THE COMMENTING 
F~ACKETS)1 *I 

I• s,yov Of THF. rORM or THIS DATA WILL HELP TO U~DP.RSTANO THE 
LOGIC OF THE PROGRAM WHICH FOLLOWS, •I 

J• -ABCOErGHiJKLMNOPQP.STUVWXYZ0123456189 - • 
I* <fAt ~Ot tBL'> • 
I* S<,A, <tARCDEfGHlJKLMNOPQRSTUVWXYZ,>> • 
I~ <,o, <tOi23456789, ► > c,BL- <t ~>>~ • 
I* S<-NXT- <<,GOt INAME,> <-GC- -NUM-~ -SKl~~>> • 
It c;NAMe- <~CONT, c;oo- tZERCC- -CONT;> ,ENDCt>> • 
1• <,NUM~ <-~ND- -CONTt -END->>~ * 
1• S<,ZEROC- -NN=NN+1JACTION:IF CSTRJNG(NNt NE, 0 THEN * 
,. YYCQNTYY ELSE YYENDYYJ;>~ •/ I•·¥~= DOURLE QUOTES, • 

tOJ 
**TYPE:TYPI•• 

••~EOTYPEISEoTYPES•• 
INPILE=MAKfI(EC-?NFILEt, ?2)J I• ESTABLISH INPUT riLE •I 
tijFJNEF REEDCK<DUMMY)J 
I~ INPUT ROUTINE WHICH ~ECHOes, INPUT •1 
~OCAL XJ 
~EAD,CX)J 

FHINT,XJ 
E~SE RETURN XJJ 

ENO REEDCKJ 
CYMPUTEJ 

·••READCK=.REEOCK(O)•• 
I~ MACRO MAKiNG IT UNECESSARY TO WRtrE DUMHY A~GOMENTSi*/ 

c91 
•tijPlNEr SETU~CDUMMV)J. , , . _ 
LOCAL NERRORS,SEOTVPeS,CTYPES,TUPiTY~E,CLIST,N, 

. CSTRING~JibiTV,T0 ,x,c~~LLC,tYPEr,RAWTABL~ 
ROUTS,Rf,ROUTSC(D~PAKTEXTiTX~~RNUHS,R~TXZ~ 
STATSUSO,ST,YjTABLE,STATEiTR!P,S2iS3,AOUTSE,J 
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10 1 S~M.FbE PROGRAMS IN SETLA 

1• lNITIAL.ISF CHARACTER .. TYPE "FUNCTION TO Bf: F.VF.RVWHERE 
UNnEF'INEn, ., 

TYPEF'=NL,J 
I~ SET UP CO~LECTION OF' ALL CHARACTERS •I 
1• ;ER~ IS SPECIAL ;END RECORt- CHARAtTER •I 
AqSTR = READCKI F.R:;ERtJ 
A~LC: C•J1<=N< • ACSTRJ ~ ; ACSTR(N) ~WITH,ERJ 
I* THIS MACRO SETS UP THE TYPE OF' A CHARAC,ER, ACLOW!NG 

MULTIPLE TYPES, WHICH ARE DIAGNOSED LATER, •J 
••SETYPE(C>=TYPEF' SC~= TVPEF' SC~ WJTH, TYPE•• 
,. INITIA~ISF THE NUMBER Or ERRO~s TO ZERO; 

READ A TIIPLE LISTING TOTAL F'A~I.LV Of' CHARACTER 'TYPES, 
ANO ALSO READ COLLECTION CF' PAIRS DECLARING TV~ES OF 
PARTICULAR C~ARACTERS, •I 

~c;RRQRS:O; 
S§tHVPES=REAnCKJ 
CTVPES=READCKJ 
fvTuP .. CTYPES> 

<TYPE,CLIST,JK>=TUPJ 
I• NOTE THAT -CYPtEs- ts .A SET OF' PAIRS OF' T4E F'ORM 

<CHARACTER•TYPE,<TUPLE or STRINGS CONtAINING 
CHARACTERS or T~IS TYPE>> •I 

(vl<=N<=-CLIST>CSTRlNG=CkISTCN>J 
IF' r,STRING EO,;ERt THEN 

5E TYPE urn> I 
,. ~ER- rs U~ED IN A SPECIAL WAY, AS EXTERNAL PE?RESENTATION 
e~ AN INTERNAL ;ENO RECORD~ CHARACTER,·•/ 

ELSe (¥1<=J<=•CSTRING> C:CSTRING(J)J 
SETYPE(C)J; 
END IF' CSTRtNGJ 

END ""11 
ENP vTUPJ 
••ERROR~NERRnRS~NERROP.S+1*• 
1•.CMECK THAT RANGE or TVPEF IS INDENTICAk WITM 

RANGE OF TVPESEQ '*/ 
''; C•~1<=N<=,SEQTYPFSJS:SEQTYPE~CN>~J 

!U=f•IN•TYPEF'JSI HO, TL, N~J 
)IITY•TUJIP X NE,NL, THEN 

PRINT, -TYPES SPECIFJED BUT NOT USED AREi~~XJ 
ERRORJJ 

~!TU~TYJ Ir X NE,NL,THEN 
PRINT, -UNSPECfftED TYPES ARE USED, 'HESF ARE~-iXJ 
ERRORJJ 

I• CMECK TMAT NO UNANTICIPATED CMARACTERS APPEAR •I 
)I = ·~ PR • TVPEF t N, (HD,PR) '" A.LLC=!!I 
ff X NE, NL, THEN . . . . 

PRINT, -UNANTICIPATED CHARACTERS APP~A~1 TM~SE ~REJ-,XJ 
6RRORJJ 

l•CHECK T~AT AL~ CHARACTERS HAVE UNIQUE TYPE SPEeirIED•/ 
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10, SAMFbE PROGRAMS IN SETLA -

~=sc~ALLC•<•TVPEr~c~, F.Q,0~; 
I~ X NE,NL, THEN 

PRINT, tTVPE UNSPECirIED fOR fOLLOWING CMARACTERSct,XJ 
ERRORJ; 

~~s c~ALLCt(.TVPEF~C~)GT,1~J 
tr X NE,NL, THEN 
FHINT, ~TYPE MULTIPLY SPECIFIFD roR POLLOWtNG ~HARiCTERStt,XJ 

ERRORJJ 
It READ IN RAW FORM ~r LEXICAL STATE TRANSITION TABLE•/ 
I~ SF.E SAMPL~ DATA ABOVE FOR FOR~ OF PATA RE~D. •I 
~AWTABL:REAUr.KJ 

t~FJNEF MOO(X)J RETUR~ Ho,x; END HDDJ 

,. FORM COLLECTION or ALL LEXICAL STATES MENTtONeD IN DATA, 
THE STATF -NNTt DESIGNATING tNEXT TOKEN AAOUT TO BEGIN~ 
IS OR.LtGATORV, •I 

STATSUSD=~DD (RAWTABL)J /•CHECK THAT ~Nxr, BELONGS 
TO STATSUSD, ANO THAT THERE ARE NO REFETlTIO~S•/ 
IF N, -NXT~•STATSUSO THEN 

- PRINT, ,REOUJRED STATE •NXT~ OMITTED FROM TABLE-; 
ERRQRJJ 

~~SST•STATSUSDtC•RAWTABLSST~}GT,1~J 
IE X NE.NL,TMEN . 

PRINT9 ,~ULTIPLY DEFINED STATESl~,XJ 
ERRQRJ / ♦ FORCE TO SINGLE. VALUED PUNCTJaNt/ 
(vV ◄ X) R~WTABL<Y~=ARB, RAWTABLSY~JJ 

ENO If X NE, NL1 J 
1•CHECK T~AT RIGMT NUMBER OF "TERMS IN ALL 

ROWS or TRANSITION TABLE, •/ 
~~SST ◄ STATSUSD•(•RAWTABLCST)) NE, •SEQTYPES ~J 
tr X NE, NL, THEN 
F-AlNT, -STAT~S DEFINED WITH WRONG NUMBER Of TYPE ENTRIES1,,X1 

ERRORIJ 
'*CONVERT TO MAP or TWO INDICES•/ 
TABLE=S<STATF,SEQTVPE(J),RAWTABL (STATE)CJ)>, 
SfATE•STATSUSD, 1<=J<=•SEQTYPE~J. 
1• COLLECTION Of KEYWORDS REQUIRING PARAME,ERS, •I 
s~=s1,Go_, too-~• 
-t~TXY=TRIP(3>•• 
5~ =s:-END~.~SKIP_,,coNT-?J 
Ji KEYWORDS NOT REQUIRING PARAMETERS, */ 
1• CMECX T~AT PARAMEtERS ARE PRESENT :JUST WHERE THEY-ARE 

CALLEO FnR, •I 
~ ~ STRIP•TARLE• ((N,PAIR, 'TXY) A, N, TxY~S3) oR: 

PAIR, TXY A,N,(M0,TXY>~S2~1 
If X NE,NL, +MEN _ 
P~lNT, -ILLE~AL E~TRfES IN f0LLOWING POSITIONS OF TABLE-,XJ 
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ERRORJ: 
1• CHECK THAT ALL PARAMETERS IN ·iGO- ENTRIES 

ARE VALin LEXIr.AL STATES, •/ 
X~STRIP"TA8LF,CPAIR,TXV) AND, 

(HD,TXYl EQ,iGO~ AND, N, T~Y(2)~ STATSUSD~J 
!~_, X NE,NL., THE;N 

PRINT, 
-ILLrORMEO GO TO ~NTR?ES IN FriLLOWlNG TABLE POSITIONS:~ 

, X J 
ERROR;J 

;,NOW PREPARE TO CHECK WELLFORMEONESS or AbL CALL~TVPE 
ENTRIES•/ 
1• READ IN C~LLECTION Of LABELED, USER•OEf!NED ROUTINES, 

roRM SF.Tor ALL LARELS USED, •I 
~YUTSET:READCKJ ROUTS=HDO[ROUTSETJJ 
J•CHECK t~AT ALL ROUTINES UNlCUEL~ DEFINED•/ 
I~ INITIA~JSF FOR SUBSEQUENT .COLLECTION Of ALL ROUTINES 

MENTIONEn I~ TRANSfTION TABLE, •I 
FiUUTSCLD=NL,J 
x~~RT~RoUTStt+ROUTSET~RT~)NE,i~J 
!f. X NE,NL, THEN 

. PRINT, ~iLLDEflNED OR MULTIPLY oerINEO ROUTI~ESlt,XJ 
ERROR JJ 

It USING AUXiLIARY ROUTINE ~CALLOK~, ,GIVEN BELOW; 
tHECK ON WELL~FORMEDNESS or ALL ~co~ TYPE TABLF ENTRIES. 

~--~TRIP ◄ TA8LFt(PAIR,TXV) AND, 
(MO, TXV) ea. #DO- AND, N, CALLOK, TXV~J 

I~' X NE,N~, THEN 
PijlNT, ~ILLE~AL CALL~TVPE ENTRIES IN rOLLOWI~G POSiTtONS:-,XJ 
E.HRQRJJ 
1•CHECK THAT AL~ ROUT lNES CALL.ED ARE ,DcF' INED•/ 
)(!IIROUTSCLO•RnUTSJ IF' X NE, NL, 'THEN 

PRINT,-RoUTINES USED BUT NOT DEF'INED ARE•~~x, 
ERRORJJ 

It CHECK TMAt ALL ROUTINES DEF'INED ARE ACTUALLY USEC, •I 
)(~ROUTS~ROUTSCLDJIF X NE,NL,THEN 
~~INT,-WARNi~G •~•••~ ROUTl~ES DErlNED BUT NOT USEDl-,XJJ 
I• NUMBER ROllTINES */ 
~NUMS = NL,J (vR ◄ R00TS) RNU~S(R) ~ • RNU~S •1 JJ 
I_, AT TH Is Pn I NT WE eEG IN TO PRODUCE ,A BLOCK OF' VALID SETI., 

CODE, ULTIMATELY TO CONSTITUTE THE. AUX!LIA~Y ROUTINE 
PACKAGE iRPAK-. THIS CODE CONSJSTS or USER SUPPLtED CODE 
rRAGMENTS, MERGED WlTH STANOARn ~BOILERPLATE~~/ 

I• THE CODE REQUIRED HAS TME 'FOLLOWING FORM 
DEF'INEF qPAK(NUHROUT)J 
•A COMME~T ON EXTERNAL VARIABLES USED• 
GO TO < RnUT1, ROUT2,, . , , ~ ROUTN, 'ZZZZZZ> ( NUMROUT) J 
ROUT11 USEReSUPPLtED TEXT ,,, 
RQUT2f USER•SUPPLlED TEXT ,, 
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101 5AM~6E PROGRAMS IN SETLA 

ere. 
RE TUR,\J J 
END RPAK 1 •I 

/tSET UP RPAK FOR COMPILATION•/ 
~fINAL=,ZZZZ7ZitJ 
Ji DUMMY LABEL USED TO COMPLETE TUPLE*/ 
FAKTEXTi:itOEFJNE RPAK(NUMROUT)J~• 
-/•SETUP EXTFRNAL CSTRING,TOKfEGtN, CURPDINTER~ STiTEiTOKEN, 
tATA•/it . 
•~GOTO (<it +[+IROUT ~ ROUTSJ (ROUT• it,it) 

+ RF I NAL. + it>) C NUMRQIJT )I it + 
C+SROUT ~ ROUTS) <ROUT+ ,it+ ROUTSET(ROUT) 

+ itRETURNJI> • -ENO RPAKJitJ 
I* NOW RFPLACE ROUT NAMES lN •CTION TABLE 

BY COR~ESPONDJNG PWEX IN FPAK •I 
tw X ~ STATSUSD, Y ·~ TV t (PAJR, tARLf(X,Yl) 

AND,CHD, TABLE<X~V) EQ, itDOit) 
TXZ= TABLE(X,Y)J 
J = 1J 

fWHJLE (TXZCJ> IS, OP>NE,OM, 
OOINl'3. J:J+1J) 

TXX=TXZJ 
1, OP EQ, ~no, THEN 

END JFJ 
END WMlLEI 

TXXCJ•1~ ~ RNUMSCTXX(J•1))J 
TABLE<X,Y) = TXXJ 

END ..-xJ 
I* NOW R?AK I-IAS BEEN SET UP, ·TYPEF' SUPPLIEO, 

A ND TABLE CONSTRUCTED ·• / 
~~TURN<PAKTEXT,TYPEFiTABLE~J 
F-NP SETUPJ 
C:OMPUTEJ 

COJ 
CFrINer CALLOK, ENTRVJ 
,. AUXILIARY ROUTINE TO CHECK VALlDJTV or -oo, ENTRIES 

IN T~E ACTION TABLE, •I 
1• SETUP EXT~RNAL ROUTSCLD,STATSUSDI ••/ 
~OCAL OK,N,KEY,LABELJ 
,. EXAMINE ALL itGO~ AND ,ooit ITEMS IN COMPOSrTE TABLE, •I 
fw l<=N<= •ENTRY• (5NTRY{N) IS, KEY)·• 

S; iGot, -D0it2:) 
Jt ERROR IF' rINA~ ENTRV LACKS P.A~AMETER, •I 

IF' .N ea. • . ENTRY THEN RETURN :p I; J 
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101 SAMFbE PROGRAMS IN SETLA 

I* ERROR IF ~GO~ TO NONEXISTENT LEXICAL STATE•/ 
I• COLLECT NtMES OF ALL ROUTINES IN DO ENTRJES, •/ 
,, KEY EQ, -~o~ THEN tr N. ENTRY(N•1> ~ STATSUSD 

T~EN RETURN F,JJ 
ELSE l•KEV~CALL •I 
ENTRY<N•1> IN, ·RQUTSCLDJ 

ENO IF KEYJ 
ENJJ "'1<~J 
Fi~TURN T,J 
F.NP CALLO!<,; 
eOMPUTEJ 
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10~ SAMF6E PROGRAMS IN SETLA -

,HEE PRINTJN~ ROUTINES 

I• T~~ PACKAGE OF ROUTINES WHICH FOLLOWS PAINTS A TREE 
!NA TWO•DtMENSlONAL TREE-LIKf FORMAT, WITM THE ROOT_ 
AT THE LEFT~MAND EDGE OF THE PAGF, ANC PARFNTS CONNECTED 
FY ARROWS TO THEIR orrsPRING •I 

ue, 
I• T~~ ROUTINE WTLL HANDLE BOTH BINARV AND ORDERED TREES •I 
I• l,.AHGE TREES ARE RF.CURSIVELY BROKEN UP INTO SURTREES 

~HICH ARE SM~LL ENOUGH TO PRINT, •I 

I• Wf HEGIN WITH VARIOUS AUXILIARY ROUTINfS, •I 

I• T~JS ROUTINE CONVERTS A NODE TC BE PRlNTED INTO AN 
~XTERNAL FOR~ OF AT MOST 30 CHARACTERS LONO, •I 

C~PJNEF STRlNGF(OBJ>J 
LOCAL. XJ 
X:;:5TR!NGOF"(OBJ)J 
l,f•X>LE,30 THEN RETURN X; 
cl,.S~ RETURN X(tl30)JJ 
cNE STRINGF'J 

t~FINEF PADOUT<LINE)J 
1• THIS PADS A ~INE WITH BLANKS TO SPECirlEO LENGTH •I 

RETURN LINE•MRLANKS(liLINLIM~lLINE)J ·END PAOOUTJ 
t;CM.PUTEJ 

oe, 
OEftNE PRNTIN<NOOE>J 
/tPRlNTS NODE WIT~ ALL PREFIXED ARROWS, AND 

WITH ADDRESS IP IT IS TOP or SUBTREE•/ 
l•!PRJNT EXTERNA~ AUXS~Q,SEQNO•/ 
~eQAL LINE,AUX,NI 

/t THE VECTOR AUXSEQ IS SET UP BV THE MASTeR ROU1INE 
PRNTOUT, GJVEN BELOW, IT DESCRIBES THE S~T Of UP AND DOWN 
ARROWS, ETC'!,, TO BE PREF" lXEO TO ·THE NODE APPEARING ON A 
GJVEN LINE: 

JHE CODE •2 OR •3 DESIGNATES AN·• JN GIVEN COLUMN, 
CODE ~2 OR ~3 INDICATES A•• 
CODE •1 tNriICATES ,~, POINTtNG ·ro A ·RIGHT -OESOENOANT, 
CODE ,.1 INnICATES , .. , POINTING :C!RECT.LV ,a LEF"'f DESCENDANT, 

•I 
JFC•AUXSEQ) E~,1 TMBN .QO TO ISTOPH 
!.fNE::;:s 'f. ~J 

-149-



twi<=N<•AUXSEa~1> 
AUX=AUXSEQCN)J 
IF AUX GE~2 TMEN LlNE=LINE+t t tJ 
ELSE iF' AIJX LE, "'2 THEN LtNE=LINE,.. 'I- ., .tJ 
ELSE LINE=LlNE+t tJ 
END lF'J 

END Y1J 
A~X=AUXSEQ(~AUXSEa~1)1 
p; AUX EQ, 1 THEN LI NE=l-I NE• i / .. ~ J 

ELSE ~INF.= LINE+ t , .. t; 
END IF", 

/•NOW PRINT I~EM tTSELf•/ 
P~lNT, PAOOUT<~INE+Si~INGF(S(NOOE)))J 
REJURNJ 

lSTOPl/•HERE THE TOP NODE~ WtTH ITS NUMBE~,tS TO RE P~INT~D•/ 

pc, 

,. THE TOP NnDE A TREn OR SUBTREE IS PREFIXEC WITH 
INS, N BEING TME TR~E SERIAL NU~RER (ALSO ESTAqLtSMED 
~y PRNTOUT>, THIS SERIAL NUMBER IS USED TO REFERENCE 
CROSS•REF'E~ENCF.D SUBTREES, •I 

~INE=DEC, SEQ~OJLINE=~:t+<(49•LINE)•~ ->•LINE+~l~J 
P~jNT, PADOUT (LlNE•STRINGF(S(NODE)))J RETURNJ 
E~IJ PRNTINJ 
C~MPUTEJ 

DC .J 
D~~INE PRNfNOCNUM)J 
/•WORKS MUCM LIKE PRNTIN,BUT AUXSEO 1,SHORTER, 

ANO PRINTS ;<CONVERTED NUMAER) RATHER THAN S •I 
1• THIS ROUTTNE USED WHEN A REFERENCE TO A SUBTREE 

RATHER TH4N A NODE IS TO BE PRINTED, •I 
l•TPRtNT EXTERNA~ AUXSEO•/ 
~tCAL LINE,AU~,NI 
~l~E= -,. ,n 
,w;<=N<,AUXSE~) AUX•AUXSEQ(N)J 

Ir AUX GE. 2 THEN LINE=LJNE+; , .,_, 
ELSE IF AUX LEi@2 THEN- LtNE=LINE•, • tJ 
E~SE LINE=LINE•- ~I 

END IF'J 
E~P "'1J 
ALX=Auxsea<~AUXSEO)J 
lF AUX EQ,1 T~EN LINE~LINE•~ ,_.,_, 

ELSE LINF=LlNE• - ••-,.; 
END lF'J 

P~INT, PADOUT(LINE•.,_i-,.•DEC, NUM)J RETURNJ 
~~p PRNTNOJ 
ceMPUTEJ 
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10 1 SAMFl,,E PROGRAMS IN SETLA _ 

UFFlNFF AUXNE~D<TOP)J 
l•~ALCULATES THE NUMBER OP COLUMNS TO THE R!G~T 

WHJCH ARF NEEDED IF AN ITEM AND ITS JMHEDIATE 
OESCENDA~TS ARE TO BE PRINTED IN PLACE•/ 

l•TPRINT EXTFRNAL L,R,O,S,BIN•/ 
LCC.:AL OESCS,NJ 

1i fLAG ~BIN~ SET WHEN BINARY TREES, RATHER TliAN ORDERED TREE 
ARE BEING PROCESSED, •I 

I• TME PARENf/CHJLD RELATION IS GIVEN 8Y TWO FUNCTIONS tLt 
AND ~Ri ( LEFT AND RIGHT DFSCENDANTS) FOR AINARV 
TREES, FOR ORDERED TREES, DESCS(NODE><N> TS TME 
N~TH DESCFNDANT or NODE -NCDEi, •I 

1V HIN THEN Gn TO BINCASJJ 
1• NOTE THAT THE FUNCTION tSt ASSOCIATES WITM ~ACH TREE~ 

NODE, A RFPRESENTATION TO 8E PRINTED, •I 
DE~CS=D(TOP>; 
lF UESCS EQ, nM, THEN RETURN tSTRINGFtS(TOP))J 

ELSE RETURN •STRINGF(S<TOP)) MAX, 

E~LJ 
I fl 

([MAX,s 1<=N<=•DESCSJ<•STPINGrcscnESCSCN)))+3))J 
IF" J 
SINCE DESCENDANT NODE INDENTED THREE CHARACTERS~/ 

BINCASI IF LCTOP> EQ, OM, THEN 
IF R(TOP) Ee, OM, THEN RETURN •STRINGr (SCTOP))J 

EL.SE RE TUR r~ 
~STRJNGF(S<TOP)) ~AX,<•STRlNGF(S(RCTOP>>>•J>J 

ENO TF RI 
ELSE Jr R(TO?) EQ,OM, THEN -
RETURN •~TRJNGF(S(TOP)) MAX,<•STRJNGF(S(L(TO?)>)•J)J 
ELSE RETURN •STRINGF(S(TOP>) MAX, 

c•STRtNGf(S(L(TOP))}+3) MAX,c•STRINGf(S(R(TOP))>•3)J 
ENO IF L; 

~~U AUXNEEOJ 
CCMPUTEJ 

UiPlNE TPRlNT: XJ 
l•-T~IS IS THE MASTER TREEePRINT RQUTlNE,•/ . 
~egAL L,R,S,ToP,0,AUXLEN,PRP[LE.AUXSEQ~PRTUF,~lNS;NtOP, 
. SKIP,JK,r,ENNOJ 
;. THE ASSUMED FORM or THE AR~UMENT TO THIS ROUTINE 

IS AS POLLOWS1 •I .. 
l•X~<L,R,s=rUNCTION ASSOCIATING TMJNG 'TO PRINT WifH NODE, TOP> 

IP BINARY TREE•/ 
l•X~<DESC,S,ToP> IF ORDERED TREE•/ 
SIClP=iJf JtJ 
-,~ EXTRACT P~RAMBTERS PROM-ARGUMENT TUPLE, 
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SFT QR DROP -AINARVt FLAG, •/ 
JP(~X>E0,4 T~EN <L,R~S,TOPiJK>=XJ BJN=T,J 

ELSE <n,s,TOP,JK~=XJ BlN=F,J ENO yr; 
Gl:NNO:OJ 

-'~ GENNO SERVES TO GENERATE SER.JAL NU~OERS FOR SUBtREES, 
AS NEEDED, PRPILE rs PILE or SUBTREES WAlTtN~ ,o 8E 

PRINTED, •/ 
P"Pl.LE =~s<TOP,O> ~• /+THE ITEMS 0~ PRPlLE ARE 
.<TUP OF SUBTREE TO PRl!lT, SERIAL NUMBER or SUBTREE>•/ 
(kHlLE PRPlLE NE,~L,) 
,. NOTE THAT PRNTOUT WILL GENERATE NEW sus,REES IF THE 

TREE tT I~ PROCESSING IS TOO 8JG TO PRINT, •I 
PRTUP FRnM, PRPILEJ 

<NTOP,SEQ~O,JK>=PRTUPJ 
PRINT, SKiPJ PRINT, SKIP; /•THUS SKIPPING 2 LfN~S•/ 
AUXSEO=NULT I J PRNTOUT ( NTOP) J 

ENlJ WHILEJ 
f;cTURNJ 

c~U TPRINTaJ 
OC·MPUTEJ 

UC# 
OEflNE PRNTOUT(NTOP)J 
LCtAL N,OESCS~NTOLASTJ 

1i THIS IS TME PRINCIPAL EXECUTIVE ROUTINE OF THE TREE~PRINT 
PACKAGE, IT GENERATES SUCCESSIVE ~LlNESi Or T~E TREE 
TO BE PRiNTEO, AND CALLS ~PRNTIN~ TO DO THF. ACTUAL 
PRINTING: -NTOP- IS THE "TOP NODE or A TREE TO ee 
PRINTED, -AUXNEEOt REPRESENTS THE ENCODfD FORM OF 
A LINE, •/ 

/~TPRINT EXTERNAL BIN~D,L,RiGENNO,AUXSEQ•/ 
JF(AUXNEED(NTOP>+ 3••AUXSEQ•3> GT, LINLlM T~EN GO TO tSBlGJJ 
JF ~IN THEN GO TO BINCASJJ 
UESCS=D<NTOP)1 IF DESCS EQ, OM, TMEN GO TO 1WIGJJ 

I~ ENTRY lS MADE HERE WHEN A DESCENDANT NODE W~?CH 1S 
NOT A TREE~TWIG IS TO BE PRINTEDr•I 

I* HIE VECTOR ~AUXSEO~ KEEPS 'TRACK or THE lREEl!POSi'TION 
OF A GJV~N NODE, AND IS USED ev ~PRNTIN- TO set UP A 
PATTERN nf ARROWS ON THE LEFT~MANP poR,ION OP ·tHE LINE ON 
WHICH A NODE APPEARS,•/ 

I• AUXSEQ IS ESSENTIALLY THE TREE ADDRESS or A NODE, 
REPRESENTED AS A TUPLE OF INTEGERS, A POSITIVE INTEGER 
REPRESENTING A LEFT•HAND DESCENDANT <P □ SITtONED HIGHER ON 
THE PR1NtEn PAGE) AND A NEGATIVE INTEGER REPRESENTING A 
RJGHT•HA~D DESCENDANT (POSITIONED LOWER ON TME 
PRINTED PAGE>, •I 

Jt NOTE TMAT FOR A NODE WITH N DESCENDANTS IN AN O~DERED 
TREE, DESCENDANTS 1 THRU (N•t)/2 ARE REGARDED AS 
LEFT•MANn, AND TME REMAlNtNG DFSCENDAN,s AS 

-152-



10, ~AMF~E PROGRAMS IN SETLA. 

RIGHT•HANO, •I 
/t HOWEVER, THE CODING USED I~ AUXSEQ IS SOMEWHA' COMPLlCATEO 

RV TME NEED TO TRANSMIT ADDITIONAL INFOR~ATION TO ~PRNTJN 
SO THAT AN APPROPPIATE PATTERN OF RISING AND FALLING 
ARROWS CAN BF FORMED, 
FIRST, C~NSlOER A BINARY TREE, 
IF NODEl HAS NODE2 AS A LFFT~HAND DESCENCA~T~ THEN 
ALL THE RIGHT•HAND DESCENPANTS QF NQDE2 WILL -LIE UNDER 
THE BRAN~Ht CONNECTING NOrE1 TO NODE2, A~D TMEREFORE CA~L 
roR At AT THE LEVFL or NCDE1, THE SAME HOLnS WITH LEFT/ 
RIGHT ANn t/~ REV~RSED, ACCORPJNGLY, WE MAR~ EVERY 
LEFT•RJG~T OR RIGHT-LEFT REVERSAL IN AUXSE~ BY 
•3 OR ~3 INSTEAD OF •1 OR •1 AS A COMPONENT, THUS 
FLAGGING FOR THE PRINTING Oft OR~*/ 

It IN THE CASE OF AN ORDERED TREE THERE IS ANOTHER SLIGHT 
COMPLICATION TO BE FACED, THE OFF~PRING OF A -NON•F.XTREME 
LEFT (OR RIGHT> DESCENDANT ,Lt~S ~NDER THE BRANCH
LEAOlNG TO MORE EXTREHF L~FT inR RIGHT) SIBLfNGS OF ITS 
PARENT, ACCORDINGLY, •2 AND ~2 ARE USED TO SIGNAL 
NONEXTREME DESCENDANTS, ANO TO CA~SE t OR• TO 
RE PRINTFD, •I 

1• PRINT ~EFT DESCENDANTS rIRST, IF CURRENT NODE IS EXTREME 
RIGHT DE5CENDANT~ SET ITS PATH TO SHOW EVFN ?HOUGH IT 
IT WOULD NOT IF THERE WERE Nn REVERSAL; •I 

!F AUXSEQ Ea, NULT, THEN GO TO SKIF1JJ 
JF AUXSEQC•AUXSEQ) 6Qi•1 THEN AUXSEO<•AUXSEQ): •3JJ 
l•bEFTMOST DESCENDANT•/ 

SKlP1: AYXSEO=AUXSE~•<1~J 1•1 DESJGNATES LErTMOST•/ 
PRNTOUT<DESCS(1))J 
A~XSEO(•AUXSEn):2J 
I* 2 DESIGNATPS NONEXTREME LErT DESCENDANTS; •I 
/* PRINT REMAINING LErT•HAND OF.SCENDANTS•/ 
t~i<N<=C •DES~S•1>/2)PRNTOUT(DESCStN))JJ 
/* NOW PRINT NODE ITSELr, •I 
P~NTlNCNTOP)J 
A~XSEQ(4AUXSE~>=~2J 
1••2 DESIGNAT~S NON-EXTREME RIGHT DESCENDANTS, •I 
I• NOW BEGIN TO PRINT RIGMT DESCENDANTS, •/ 
N'ULAST=OM,J -
/* AUXSEQ ~IL~ HAVE ONE COMeONENT tr AT TOP OP TREE. •I 
IFC~AUXSEQ) NE, 1 

THEN NTOLA~T~AUXSEQ(tAUXSEQ~1)JJ. 
I• CORRECT •3 SETTING~ IF IT PERSISTS, AND CHANGE 1 ·ro 3 

IN NEXT•fO LAS~ LAST t □ MPCNENT or NODE ADDRESS VECTO~, •I 
i' NTOLAST EO. ~J . 

TMEN AUXSEOC•AUXSEQ•1>=•1J 
ELSE tr NTOLAST E0,1 
TMEN AUXSEQl•AUXSeQ•1)=3J 

E~~ IP NTOLASf J 
/t IN CASE or A SINGLE DESCENDANT, WHfCH lS TREATSD AS LErT, 
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THERE ARE NO RIGHT DESCENDANTS, •/ 
{f(•DESCS> EQ.1 THEN GO TO DON[Jr 
I• OTHERWISE PRINT ALL NONEXTRFME RIGHT DESCENDAN?S. •I 
(w~•DESCS+1>/?.<N<•DESCS> PRNTOuT(D~SCS(N))JI 
I• AND THEN PRINT RIGHTMOST DESCENDANT•/ AU~SEQt.AUXSEQ)~•1J 
P~NTOUT(OESCSt•D~SCS))S 

DONEf l'(•AUXSEQ) En, 1 THEN AUXSEQ=NULT,1 RETURNJ END tr, 
I• IF NECESSARY, CORRECT PRIOR LErT TO RIGHT tTURN~ FLAG,•/ 
JP AUX$EQ(•AUYSEQ•1) EO, 3 TH~~ AUXSEQ <•AUXSf0~1l=iJ J 

Do~ERI l~<-AUXSEQ>En, 1 THEN AUXSEQ=~ULT,1 RETURN, END tr: 
I• CUT OFF FINAL COMPONENT or ADDRESS B~FORE ~ECUQSiVE RETURN ♦ 
ALXSEQ=AUXSF.Qtll•AUXSF.Q•l>J PETURNJ 
I• ENTER HERE FOR TREATMENT OF BINARY 1REES~ ♦/ 

BINCAs,~µXSEQ=AUXSEn•~1>J IP L(NTOP) EQ, OM~ THEN GC TO NOLEFTJJ 
iF(•AUXSEQ)EQ~ 1 THEN 

PANTOUTCL(NTOP)>J 
GO TO Nou=FTJ 

Et-.lJ lF'J . 
I•· 1F NOT Top', ANO PRIOR rs RIGHT rESCENDANT, SJGNAL tTllRN~ 

BEFORE PRINTING LEFT•DESCfNDANT SUBTREE, •I 
1r AUXSEQ(•AUYSEQ•l) EQ,•1 THEN AUX5EO(•AUXSE0•1>=•3JJ 
P~NTQUT(L(NTOP~)J 
/• THEN PRINT NODE, AND SIGNAL roR RJGHT DESCENDANT. •I 

NO~EfTf~HNTIN<NTOP)1 AUXSEO~•AUXSE0t=~1J 
. I• lF NECESSARY, CORRECT PRIOR RIGHT TO LEFT 

ilfTURNI! FLAG, •I 
~JOLAST: OM, J 

lFC•AUXSEQ)NE, 1 
THEN NTOLAST = AUXSEQ( •AUXSEQ •1)JJ 

lP NTO~AST EQ,~3 ·THEN AUXSEQC•AUXSEQ•1>~~11 
/• ANO IF" NECESSARV, SET t..EFT 'i'O RJGHT IITURN~ rLAG,•/ 
ELSE tr NTOLAST E0,1 THEN AUXSEOC•AUXSEQe1)•3JJ 
IF R(NTOP) EQ, OM, THEN GO TO DONEJJ 

I• P-RtNT RIGHT DESCENDANT TREE If ANY, *I 
P~NTOUT(RCNTOP))J~O TO. DONEi 

TWJGI l•~ON•BlNARY tWIG CASE•/ 
ALXSEO=AUXSEQ+<O>J 
I• A OUMMY FINAL COMPONENT, StNC~ PRNT?N ASSU~ES 'HAT 

•AUXSEQ FQ, N+1 WHEN AN N•TH LEVEL NODE lS ?RINTED, •I 
P~NTlNCNTO~)Jr,0 TO DONER;• 
I• SEQUENCE FnR TREATING SUBTREE TOO EXTENDED TO PIT, 

GENERATE SEQUENCE NUMBER TOR SUBTREEJ PRINT fTS INDEX 
I NSTE An nF I TS TOP NODE' PUT 'SUBTREE INTO WORKP l LE 
roR FUTURE PRINTING, •/ 

lSBlGIGE~NO=GENN0+1J PRNTNO(GENNO)J 
<<~JOP,GENNO>)IN, ?RPILeJ 
RE!URNJ . 
E~ U PRNTOUT J. 

-154-



10 1 ~AMFbE PROGRAMS IN SETLA · 

CCMPUTEI PINiSHJ 
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/* ~QTEr TH~ INPUT IS AT THE ENO or THE PROGRAM•/ 
OCJ 

tEFl~~F NODPARS <INPU,GRAM,ROOT,SVNTVPES)J 

'* T~~ ROUTINE W~ICH FOLLOWS REPRESENTS JOHN C0CKEtS NODAL SPAN 
FARSINr, A~GORlTHM, SF:E THE CITED SECTION OF THE O.P, VOL II 
~~RA DETAIL~D ACCOUNT or THJS ALGORITHM, ANV VARIOUS 
IMPROVEMENTS OF IT DU[ TO JAV EARLFY AND O?HERS, •I 

It T~~ ARGUMENTS TO THIS ROUTINE ARE AS FCL,LOWSJ 
. INPUT• JS A TUPLE, REPRESENTING A TOKEN STRING TO BE PARSED, 
CHAM~ JS A nRAMMAR IN ~CHOHS~V NORMAL FORM-, I,~.~ 

CONTAlNING BINARY PRODUCTIONS ONLY, EACM PRODUCTION 
A~ 8C IS REPRESENTED BV A TRIPLe <8, c~ A~ , 

5YNTYPES • IS A MAP SENDING EACH to~EN INTO THE SET OF ALL 
POSSIBLE SYNTACTIC TYPE SYMBOLS WHlCH CAN REPRESENT JT, 

~OOT. IS THF ROOT SYMBOL or THE GRAMMAR, •I 
,. T~~ APPROACH rs AS FOLLOWS I IF THE N•TH THRU 

tM•1)•ST SYMROLS OF INPUT CAN BE PARSED AS AN ELEHF~T OF 
SQME SYNTACTtC TYPE ~A~, THEN THE SPAN <M,A,N> lS SAID TO 
E~ PRESENT IN THE INPUT, •I 

). T~J SFT or ALL SPANS PRESENT CAN AE FOUND AV,A BlNARY 
'PHANSITIVE•CLOSURE LIKE PROCESS WHICH CQMRJNES 
AUJACENT SPANS, •/ 

,. l~PUT IS GRAMMATICAL rr AND ONLY IV lHERE IS A SINGLE 
SPAN COVERINn THE ~HOLE OF IT, ANP IF THE SECOND COMPONENT 
ef THIS SPAN IS THE GRAMMAR,s ROor·sYMOo~. •I 

I• IF SUCH A SPAN EXISTS~ CALL IT THE ~TOPSPAN~, 
j SPAN IS iR~LEVANT-rr IT IS INVOLVED (ANeESTRA~Li) IN THE 
CUNSTRUCTlON or TOPSPAN, THE ALGORITHM GlVEN BELOW FINISHES 
~y CONSTRUCTiNG RELEVANT SPANS, KEEPING THEM, ANO 
tlSCARDJNG IRRE~EVANT SPANS,,,./ 

LOCAL ·rooo,s,N,NFXT,EN ,TYP,M10, 
S~END,TYP1,T~P2,NEWSP,TOPSPAN,DiXI 

/t _,ooo~ IS A WORKPlLE or SPANS WAITING TO BE COM9lNED WJTH 
'P~ElR LEFT•HAND NEIGH80RS, •I 

/t OIVLIS RECORD~ THE MANNER IN WHJCM EACH SPAN WAS ~ROOUCEO, ~/ 
TOCO~NL,JOIVLIS~NL,J 
I• l ~'Tl AL I S8 ~SPANSlll TO INCLUDE ];VERY ONE"'.LETl'E~ SPAN 

tQVERING THE FIRST INPUT TOKEN, •/ 
SPANS~ S <2,S,1>; S•SYNTYPESSINPU(1)~~J 
t•l<~~;•INPU) . . 
I• WC~KlNG FROM ~EFT TO RIGHT, ·GENERATE NEW ONEwSYMBOL;SPANS, 

A~D COM~INE tHEH WITM ADJACENi SPANS TO THE ~EPT; REPEATIN~ 
Aij LONG AS NEW COMBINATIONS ARE GENERATED, •I 
H>DO = S <N+1,S,N> ,S,. SYNTYPESSINPUCN)~ '~I 
fPANS=SPANS+TODOJ 
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tWHILE TOOO NE, NL,) 
NEXT F"RQM, TOOO; 

/* THE FOLLOWING MACRO CONSTRUCTS NEW SPANS AND PLACES tHEH IN 
SPA~S AND IN TOOO•/ 

I• 1' ALSO ADDS tTEMS TO THE DlVLIS ,ANCESTRY RECORDt 
•~ APPROPRIATE, •I 

••~A~NEW(NEXT): ~EN ,TYP2 ,MID>=NFXTJ HJD:MD, MJDJ 
I• CCMBINE SPAN <LAST, TVP2, MIO> WITH< MID~ TYP1; START> 

I~ GRAMMAR ALLOWS~ GENERATING NEW SPANS ANn ~AKING NEW 
iANCESTRV RECORD, ENTRIES, •I 

tv SFbNO~ SPANSS~lO~ , TVP ~ GRAM S(MD, SPEND) IS,TY~1~TYP2~) 
NF~SP=<EN,fYP~HD,<TL,SPEND)~; 
OfVLIS=DIVLIS WITM,<NE~SP,MlDiTVP1,TYP2>J 

ff N, NEWSP ~ SPANS THEN 
NEWSP IN: SPANSJ 
NEWSP IN~TODO; 

END lrJ 
cNO ,.SPENOJ 
•• 

·~ A KNEW (NEXT) 
· END WHILE TOnOJ 

ENC "' 1<NJ 
,. New CHECK GRAMMATICALITY OF INPUT STRING*/ 
IF N, <<•INPU•1,ROOT,1> lS,TOPSPA~> ~ SPANS THEN 

H~T.URN <NL,,N1:,,r,> JJ .. 
,.~LSE CLEAN UP SET or SPANS AND C~TERMINE A~BtGOITY *' 

PRINl1 -SPANS BE~ORE CLEANING-, SFANSJ . . 
PRIN'1 -DIVISION LIST BErDRE CLEANlNG-, PIVLISJ 
,. T~~ow AWAV SPANS, RELEVANT ONES WILL BE RECOVERED BY 

•~ETDESCSt, •I 
,. -•MB~ IS A rLiG SET TO TRUE 1, PARSE rs AMBIGUOUS: •I 
SPAN~~NL,JAMB;r,1GETDESCS(TOPSPAN)J 

/* T~f r0LL0WING RETAJNS IN T~E ANCESTRY RECORD ONLV ?MOSE TUPLES 
Wi,;IJSE F"IRST COMPONENTS ARE IN THE CLEANED SRANS •I 

1:IVLIS: S D•DIVLISHHD, D)•it :SPANS~J 
~~TURN< S~ANS,DIVLIS~AMB~J 
END NODPARSJ 

I* TH~ POLLOWtNG SUBROUTINE, BY lRACING S~AN ANCESTRY ·rRCM THE ROO 
~VMBOL DOWN,. ELIMiNATES UNNECCESSARY SPANS PRODUCED 

@Y MACRO MAKNEW, •I 

t~PlNE GETDESCS(TOP)J. 
· 1 tAUX IL I A RV 4 NCESTRY .. TRAC I NG -SUB ROUT I NE•/ 
LOCAL EN ,ST~RT,MID,T~Pl,TYP2~X,JKJ 
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-------------------

If TOP ◄ SPANS THEN RETYRNJJ ,oP IN, SPANSJ 
,. PARSE ts AMBlGUOUS If SOME RELEVANT ·sPA~ MAS 

MULTiPLE ANCESTRY, •I 
!r<•DIVLISSTnP~ )GT, 1 T~EN AMB= T,JJ 
It EXTRACT Cn,MPONENTS or SPAN TO RECONSTRUeT ANCESTRY, •I 
c~N ,JK,START,JK~: TOPJ 

(YX .. DlVLtSSTOP2!) 
<MID,TYP1,TVP2,JK> = X; 
GFTDESCS <<FN ,TVP2,M?D>)J. 
GETDESCS(<MID,TVPi,START>)J 

ENC'"' XJ 
~t:TURNJ 
~NO GETOESCS1 
t:OMPUTEJ 
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101 SAM~bE PROGRAMS IN SETLA 

\ 
\ 

o.c, 
I• T~~ FOLLOWING IS SAMPLE INPUT TO THE NCDA~ PARSf ~OUTINE 
A P~OCYCTION A•BC IS WRITTEN AS A 'TUPLE <,s;,;ct,~At>; 
ALL P~ODUCTIONS ARE INCLUnED IN THE SET GRAM, THEV ~UST BE IN 
G~O~S~V NORMAL rORM, THESE PRODUCTIONS CAN NOT INCLUDE TERMINALS 0 
RIG~T HANn SIDE ( NOR or COURSE ON THE LEPT) TERMINALS ARE 
l~ Si~~/ 

GRAM=$:<tAt,tBt,tSt>,<tAt,t8,,tAt>~;PRINT, tGRAM~ER;; GRAMJ 

/* CN IS THE INPUT STRING 
I~ THJS PARTI~ULAR CASE THE INPUT STRING IS XY!,•/ 

~~ = c~x;, tVt, tlt >J PRINT, tlNPUT STRINGt, CNJ 

,. ~S¥Nt ·rs A MAP SENOING EACM INPUT TOKEN TQ T~e· SET or ALL 
!TS POSSIBLE SYNTACTICAL TYP~S •I 

SVN=Sl<tXt,tAt>,<tYt,tBt> ~JPRINTrtSYNTVPESi, SVNJ 
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Item 12. DESCRIPTION OF THE SETL LANGUAGE. 

First Part: Object Types, Expressions. 

1. Introduction 

A programming language may be judged by the data structures whiGh 

it incorporates, which should ideally be useful in a wide variety of 

circumstances and permit at least moderately efficient manipulation. 

In presenting the SETL language which is now to be described we 

are suggesting that general finite sets can be repres~nted and 

manipulated in useful ways. 

Much of the expression semantics of SETL is modeled upon that 

used in the mathematical theory of sets, and many of the syntactic 

conventions used reflect notations which are standard in that 

theory. It is therefore worth making a few comments on mathemati

cal set theory itself before immersing ourselves in the linguistic 

details of SETL. (These comments will be of more interest to those 

readers with a mathematical background than to those principally 

interested in programming languages.) An elegant short summary 

of the axiomatic foundations of the subject appear in Cohen [1], 

pp. 52-56. Axiomatic set theory uses a very small number of 

formal primitives, in terms of which the whole struqture of mathe

matics can be built up rapidly and comfortably. We list these set 

theoretic primitives, and comment on the SETL constructions which 

correspond to them; of course, whereas mathematical set theory 

deals with both finite and infinite sets, SETL, intended as .an 

executable programming language, deals with finite sets only. 

The primitives in question are: 

(a) The null set. Provided as a basic entity in SETL. 

(b) For two sets a and b, the unordered pair· {a,b}. 

This set-by-_enumeration primitive is provided as a basic. construc

tion in SETL, even in a somewhat generalized form. It obvio·usly 

yields a set (of two elements), thus conforming to the desire of 

of pure set theory to avoid the introduction of objects other than 

sets. We may note in this connection that SETL will from the start 

take a somewhat different path from pure set theory, since its 
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semantic universe will include not only sets but also atoms. 

oms are customarily excluded from pure set theory on grounds 

of elegance. This exclusion, amounting to the insistence that 

set theory deal only with sets and not with objects of any other 

kind, is inconvenient in a programming language context, where 

one generally wishes for practical reasons to be able to speak 

of integers and character strings at least, without being forced 

to the trouble of mapping these additional objects upon objects 

of pure set theory. Thus for programming purposes a set theo.ry 

including atoms which themselves have no members but which may 

freely be members of sets is more convenient than pure set theory. 

SETL incorporates this convenient modification. The atoms of SETL 

will generally be 'primitive' data types, such as integers, 

character strings, and so forth, familiar from conventional 

programming languages; we will find it convenient however to 

consider 'tuples' to be non-sets also, in a manner to be explained 

below. 

Sets may have sets or atoms as members; two sets A and Bare 

equal if and only if each member of A is equal to some member of B, 

and conversely. Atoms differ from sets in that equality/inequality 

of atoms is determined by a rule special to the type of atoms 

involved. Note that any object class for which there is given 

a procedure for determining object equality/inequality can be 

accommodated without difficulty in a routinely extended set theory. 

(c) Any set theory requires an ordered pair and ordered n-tupZe 

notion. In conventional set theory one meets this requirement 

without introducing objects other than sets by making use of a 

trick construction. One possible construction of this kind is 

to define the ordered pair <a,b> as the set {{a},{¢,{b}}}, where 

¢ denotes the null set. However, in standard set theory, a somewhat 

different trick is used. One defines the ordered pair <a,b> in 

terms of unordered pairs as follows: 

<a,b> = {{a}, {a,b}} 

Ordered n-tuples are then defined inductively by <x 1 , ... ,xn> 

<<x 1 , ... ,x 1 >,x >. This line of construction, while mathemati-n- n 
tlly neat, leads to programming complications, and we will find it 
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more convenient to regard n-tuples as non-sets, using 

conventions whose details will be set forth below. 

(d) The set union operation is basic to mathematical set 

theory, and is provided as a primitive in SETL. 

(e) The power set or set of all subsets construction is 

important L1 set theory. This is provided in SETL as a basic 

operation. Note as a caveat that foi.:' _sets as large as the power 

set of a set having more than a very few elements, efficiency 

inevitably becomes a serious consideration, and it becomes 

reasonable to provide as built-in features operations which from 

the pure mathematical point of view are redundant. As a small 

concession to this very large fact, we provide in SETL not only 

the power set construction but an operation which, for a given set, 

generates the set of all subsets which have a given cardinality. 

(f) Set theory makes essential use of the ''choice" functions 

defined by the various versions of the axiom of choice. In SETL, 

these are all provided by a simple choice operation 3x, ~hich in 

an unspecified but implementation-defined way chooses some element 

out of each non-null set, x. 

(g) Another basic primitive of mathematical set theory is the 
11 range of a function" construction. This construction, one of the 

keystones of set theory in its more elegant representations, asserts 

that if A(:X,y) is any formula of set theory, depending on the two 

free variables x and y and determining y uniquely for each parti-. 

cular x, then, given any specified set u, there exists a unique set 

v consisting of ally for which there exists an x in u such that 

A(x,y). SETL is intended to be executable, and for this reason will 

not permit a construction quite as general as this; in SETL; we will 

on:ly allow the range set v to be formed in case we know a priori 

which set w must be searched in order to find the element y whose 

existence abstract set theory asserts; or if the element y can be 

constructed in some explicit way from x using basic and programmer

defined SETL operations, so that we may write y = f(x) using a SETL 

expression f(x) in which the variable x appears. In the former case, 

SETL will allow.us to write v as 

v = { y e w I ( 3x e u ) ( A ( x , y) ) } 

in the latter case, as 
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V = { f {X) ,· X €: U} • 

(h) Set theory assumes at least one infinite set, whose 

existence is asserted by the normal set-theoretic axiom of infinity. 

Such a set is used as a starting point to build up the theory of 

the set of integers (and beyond this, of all of the transfinite 

cardinals). The sequence .of integers is often defined in set 

theory as¢, {¢}, {{¢}}, {{{¢}}} ... etc. A construction of 

this kind, while set-theoretically very neat, defines the integers 

using what is in effect a unary representation, which is of course 

pointlessly inefficient in view of the existence of binary repre

sentations for the integers. In SETL we follow the invariable 

computer practice and regard the integers as a separate atomic 

data type, also providing various standard arithmetic operations_ 

as basic SETL functions. 

In set theory, once the set Z of integers has been defined and 

the axiom of mathematical induction proved, the existence of Z, and 

more particularly the possibility of speaking of the whole of Z as 

a single object, forms the basis upon which one builds all subsequent 
r 

inductive constructions. To construct a function f{n) defined 

inductively, the tactic generally used in abstract set theory is 

as follows: first, using mathematical induction, one proves that 

for each Ne:: Z there exists a unique set of ordered pairs, this 

set constituting the graph of the function f{n) for all n less 

than or equal to N; then, using the axiom of range, one forms the 

union of all these sets of ordered pairs, thus obtaining the graph 

of the entire function f. In SETL we replace this abstract argument 

by a construct. which not only avoids all reference to the 

infinite totality of integers but has significant advantages of 

efficiency: namely by programmed_ iterative loops, and more generally 

by structured patterns of recursive subroutine calls evaluating an 

inductively defined function directly. Thus, the label-plus-go-to 

mechanisms of SETL, and the recursive subroutines which the language 

provides, are to be regarded as a replacement for the axiom of 

infinity occurring in abstract set theory. As is known, recursive 

s1\broutines alone would suffi~e for this purpose, but we provide 

:plicitly programmed iterations as well, since they furnish a 
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mode of epxression more natural in certain circumstances and 

more efficient in general. 

2. Grammar of expressions 

The tokens of SETL are names, underlined names, signed integers, 

real numbers, c;:haracter string constants, and octal constants 

which denote bit-strings. Names and signed integers are formed 

in the usual way: character string constants are included 

within single quotation marks, and octal constants consist of an 

octal integer with the sqffix B. Tne formation of character 

string and octal constants is sufficiently well illustrated by 

the following examples. 

'This is a character string' 00237B 

(Quotes within quoted character strings are represented by 

double quotes.) Real numbers are 

2.0 , -3.14 , -3.14E-14 . 

SETL makes use of the following special symbols, each of which 

is a lexical delimiter: 

{ } 

< > n 3 V # 

* + I = 

3 e: 

Besides the operation symbols appearing in this list, additional 

operation symbols, both system and programmer defined, are provided, 

and consist of underlined valid names as in eq., ne, with, less, lesf, 

etc. Name$ may be used as labels, in which case they are followed 

by a colon. 

The basic entities of SETL are sets and atoms. Sets have 

elements and are defined by the elements which they contain. 

Both sets and atoms may be elements of sets. Atoms are either 

integers, reals, boolean elements, bit-strings, character-strings, 

labels, blank atoms, subroutines, functions, or tuples. Expressions 

of any of the types: tuple, real, set, integer, :eoolean, _bit-string, 

character-string, label, blank, subroutine, or function may be 

wr1tten; we shall shortly describe the structure of ~ach of these 

types of expressions. 
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2a. Elementary Set Expressions 

If x designates a set or atom, while a designates a set, then 

x e:: a is a boolean expression having the customary meaning. 

If a is a name designating any set or atom, then {a} designates 

the set whose only element is a. More generally, {a,b, ... ,c} 

designates the set whose only elements are a,b, ... ,c. We allow 

a,b,c, etc., to be arbitrary valid expressions. This bracket 

construction can be nested to any depth, so that, for example, 

{a, {a}, {{a}}, {{a},b}} is a valid expression in SETL, 

a,b designating any .sets or atoms. The null set is written as ni. 

If a and b are sets, then a+ b denotes their union, a* b 

their intersection, a - b the difference set of a and b, and a/b 

the symmetric difference of a and b {so that a/bis the same as 

{a~b) + {b-a)). The expression a+ {b} may be abbreviated as 

a with b; a - {b} may be abbreviated as a less b. 

If a is a set, then #a denotes the number of elements of a. 

Each object in SETL has a~- The type of a set is set. 

If a designates a set, then s a designates any arbitrary 

chosen element of this set. The notation pow{a) designates 

the set of all subsets of a, and npow(k,a) the set of all subsets 

of a consisting of precisely Y- elements. These operations, 

while provided in SETL, are good examples of the type of set

theoretic construction which should be used very cautiously if 

impossibly inefficient algorithms are not to result. 

2b. Elementary Tuple Expressions. 

Besides sets,which are unordered, SETL provides tuples, which 

are ordered. A tuple may be regarded as corresponding to a 

sequence c 1 ,c 2 ,c 3 , ... of components, all but a finite number of 

which are identical with the undefined atom n {see below). Two 

tuples are equal if and only if all their .components are equal. 

The length of a tuple is the index of its last defined component. 

If this component is c , then the tuple whose components are . n 
c 1 ,c~, •.. ,cn,n,n,n, ... will often be written as 

<c1,c2,· .. ,en> 

though of course it might also be written in•other ways, as for 

example el65-



<c 1 ,c 2 , ... ,en ,St> 

The tuple described by the·s~quence of components n,n, ... , 
which in the sense defined above is a tuple of length Or is the 

null tuple, and may also be written as nult. 

The type of a tuple is tupl. 

Given a tuple 

then 

. t (k) 

denotes the k-th component oft. 

written as 

hd t 

The notation 

t(i:j) 

The component t(l) may be 

denotes the tuple whose components, for 1 < k < j, are t(i+k~l). 

The notation 

#t 

denotes the length oft. The notation 

tQ, t 

is an abbreviation for 

t(2:#t-1) 

while t(i:) is an abbreviation for t(i:#t-i+l). 

Observe that all of these notational conventions apply also 

to tuples some of whose components are undefined. 

Given· two tuples t and t', t+t' denotes their concatenation. 

E.g. if t = <a,b> and t' = <c,a> then t+t' = <a,b,c,a>. 

2c. Functional Application. 

If f is a set and a any set or atom, and if f contains precisely 

one tuple <a,x> whose first component is a then f(a) designates 

the element x, i.e., the image of a under f. More generally, if f 

is a set of ordered pairs, then f{a} is the set 0£ all x such that 

<a,x> E f. This is_the set of all images of a by f. If f{a} 

contains no element or contains more than one element, _then f (a) 
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the undefined atom Q. If f and a are sets, then f [a] designates 

te union of all the sets f{x} for x ea. Note then that f{a} 

rndy be written as f [{a}]. 

More generally and precisely: suppose that f is a set, and x 

an object other than the undefined atom Q. Then the elements of 

the set f{x} are 

(a) all the second components y of tuples <x,y> of length 2 

belonging to f and having first component equal to x, together with 

(b) all the 'tails' <y
1

,y 2 , ... > of tuples <x,y
1

,y 2 , ... > 

of length greater than 2 belonging to f and having first component 

equal to x. 

We then define f(x) to be the unique element of f{x}, i~ this 

set has a unique element; otherwise to be Q. The set f[a] is 

defined as the union of all the sets f{x}, x ranging over all the 

elements of the set a. (Note that f[a] will also be assigned a 

meaning for fa character string, bit string, or a tuple; cf. below.) 

We also define 

and 

f{x,y} 

f{x,y,z} 

to be identical with 

to be identical with 

f (x,y, ... ,z,w) 

to be identical with 

(f{x,y, ... ,z}) (w) . 

(f{x}){y}, 

((f{x}){y}){z}, etc.; 

Note that if f is a set of triples <x;y,z>, and if g is the 

corresponding set of pairs <x,<y,z>>, (which is quite a different 

set) then f{x,y} and g{x,y} happen to be the same. 

It is also convenient to let f{a, [b]} be the ,union of all the 

sets f{a,x} for x e b, and more generally to allow such 

constructions as 

f{a 1 , ... ,[a.],a.+ 1 , •.. ,[a.,a.+l'"""'a ], ... }, 
l. l. J J . n 

which denotes the union of all the sets 

f { a 1 , •.. , xi, ai + 1 , •.. , xj , xj + 1 , •.. , xn, •.• } 

... i-ere xi e ai, xj e aj, xj+l e aj+l , etc. 
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In all of these expressions we allow f to be not only a 

function or set name, but any expression whose value is a functio: 

or a set. Thus, for example, the expression 

{<a,aa>,<b,bb>,<c,cc>,<a,ax>}{a} 

is legitimate, and has the same value as the simpler expression 

{aa,ax} . 

Of course, if f is a function (which is to say a programmed procedure 

with a certain definite.number of arguments) the correct number of 

parameters must be supplied to it. Thus, for example, if f is a 

functiqn of two arguments, the expressions 

f(a,b), f[a,b], f{{a},b} , 

etc. are all valid, while 

f(a), f[a], f{a,b,[c]} 

are all invalid. 

2d. Boolean Expressions, Quantified Expressions, Precedence Rules. 

Equality, inequality, and set inclusion are provided as operators 

having the form a eq b, a ne b, a incs b. Bit strings, character 

strings, labels, blank atoms, subroutines, and functions may be 

tested for equality and inequality by using the operators~ and ne. 

The special symbols~' f denote the boolean values "true" and 

"false" respectively. The standard boolean operations and, or, 

not, implies,~ are provided; and, not, and implies may also be 

abbreviated as~'~' imp. Between two integers or reals m and n 

the usual comparison operators, having the form~' ne, ~' le, gt, 

lt are provided. An element may be tested for having "atom" status 

by applying the operator atom a. (If a is a tuple, atom a is false.) 

If e is a set, and c(x) a Boolean formula in which a name x 

occurs, then a formula of either of the forms 

(1) 

(2) 

3 x e e · c (x) 

"Ix E e C (x) 

represents a Boolean value. The value of the first of these 

expressions, the so-called existentially quantified form, is 
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obtained by calculating the value of the Boolean expression C(x) 

>gressively for each of the elements of the set e, and by 

assigning the value ;rtrue" on first obtaining a "true" result, 

but assigning the value "false" if no such result is obtained. 

The second of these expressions, the so-called universally 

quantified form, is calculated in corresponding fashion but 

with "false" replacing "true" and vice versa in the preceding 

description. In forming expressions like (1) or (2) we wish, 

however, to exclude such ambiguous cases as 

'rJx e: e (D (x) or 3 x e:. e I C (x)) 

which are in a sense set-theoretical versions of those ambiguous 

programming sequences in which an iteration variable is explicitly 

modified within an iteration, or in which an iteration is headed 

by some such ambiguous statement, for example the FORTRAN statement 

DO l I=l,I+l . 

Such ill-formed cases may be excluded by applying the following 

technical rule. An occurrence of any name in the role of x in a 

formula like (1) or (2), i.e., an occurrence of a name x within 

a part P of a larger formula, P having either the structure 

3xjexpr Q or Vxjexpr Q, is said to be a dummy, or bound, 

occurrence of the name x. An occurrence of a name x which is not 

bound is said to be a real, or free, occurrence of x. We require, 

in order _that the boolean expressions (1) and (2) be properly 

formed, that all occurrences of the name x in the boolean expres

sion C(x) be free, i.e., that none of these expressions be bound. 

Several additional boolean expression forms closely related to 

the forms (1) and (2) are provided, and have the appearance 

( 3a) 

(4a) 

min< 3k < max 

min< Vk < max 

C(k) 

C(k) 

( 3b) 

(4b) 

max> 3k > min 

max> Vk > min 

C(k) 

C (k) 

In these formulae C(k) is a boolean expression in which the name 

k occurs, all of its occurrences being free; min and max are 

integer expressions in which k does not occur.· The value of the 

first of these expressions is formed by calculating the value of 

e boolean expressions C(k) for all integers in the range 
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extending from the value of min to the value of max, assigning 

the value "true" if C(k) ever assumes the value "true", and 

assigning the value "false" otherwise. If max < min, (3a) has 

the value "false". The expression (4a) has an equally evident 

meaning. 

The variant forms (3b) and (4b) provide for a variant order 

of search. Thus, ( 3a) implies an i ter.ati ve search in which 

integers k are tested in increasing order until the expression 

C(k) takes on the value t; and (4a) an iterative search in which 

integers k are tested in increasing order until the expression 

C(k) takes on the value f. Similarly, (3b) implies an iterative 

search in which integers k are tested in decreasing order until 

the expression C (k) . takes on the value .!:_; and ( 4b) an iterative 

search in which the integers k are tested in decreasing order 

until the expression C(k) takes on the value f. 

The evaluation of (1) will set x to the first value found.forwhich 

C (x) is true,if any exists. Similarly, the evaluation of (3a) .. (resp. 

(3b)) will set k to the smallest (resp. largest) integer 

value (in the range shown) for which C(k) is true, if any 

such value exists. More generally, we allow compound expressions 

having forms like 

which may be taken in an evident way as abbreviations for expres

sions compounded using the basic construction (1), (2), (3), (4). 

In a boolean expression of this kind, we require that e 1 
contain no occurrence of the variables x 1 , ... ,xn; that e 2 (xi) 

contain no bound occurrence of x 1 and no occurrence of x 2 , ... ,xn' 

etc. All but the first of a sequence of like quantifiers may be 

omitted, so that, for example, the formula displayed just above 

may be abbreviated as 

3x 1 e:: e 1 , vx 2 e:: e
4

(x
1

), x 3 e:: e
3

(x
1

,x
2

), ... lc(x
1

, ... ,xn) 

SETL will use an operator procedure rule which is simpler 

than those which have become customary. These rules may be 
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described as follows. 

i. All binary operators, except built-in operators producing 

ooolean from non-boolean values, arc to have the same precedence. 

These latter operators, i.e., the operators (£, ~' ne, incs, ~' 

le,~' and it) have higher precedence, and thus are evaluated 

first when they occur in compound expressions. Aside from this, 

unparenthesized expressions containing binary operators of equal 

precedence are to be evaluated from left to right. Of course, 

parenthesized expressions will be evaluated in the order indicated 

by parentheses. 

ii. Monadic operators will always have highest prededence, 

i.e., minimal scope, except as indicated by rule (i). Thus, for 

example, n x e:: a is equivalent to n(x e:: a), while n a and b 

is equivalent to (~ a) and b. Note also that - x ~ y is 

- (x ~ y), an invalid expression. 

iii. As indicated below, SETL allows programmer-defined infix 

binary and monadic operators.· The conventions just described apply 

to those operators also. 

A similar precedence rule is required to avoid ambiguity in the 

scope of quantifiers. One may ask, for example, if the expression 

'rJx e:: e I x ~ 0 or_ y ~ 0 

is to have the reading 

(\fx e:: e x~ 0) or (y ~ 0) ' 
or the reading 

'rJx e:: e I (x ~ 0 or y ~ 0) 

We adopt the following convention. A string of quantifiers 

terminated by a vertical bar is to be regarded as a monadic 

operator. As such, it will hav~ minimar scope (except insofar 

as built-in operators producing boolean from nonboolean quanti

fiers may have higher precedence). It follows that the first 

of the above readings is correct. 

We note once more that if certain variables x 1 , ... ,xk occur 

in a quantified boolean expression B of the above type, and if 

, ... ,xk are all existentially qu~ntified and are not preceded 
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in the sequence of quantifiers occurring within B by any 

universally quantified variables, then after evaluation of the 

ex_pression B, the variables x 1 , ... , xk will take on those first 

values appearing in the iterative search required to evaluate B 

which yield the-value true for B. If no such values exist, then 

x 1 , ... ,xk will all take on the undefined value n. Thus, for 

example, if seq is a sequence of sets of integers, evaluation of 

the expression 

min< 3k < max, ~n e seq(k) I n 9'...!: 0 

will cause k to assume the smallest value, in the indicated range, 

for which all integers in the set seq(k) are strictly positive. 

Similarly, evaluations of the expression 

max~ 3k ~ min, Vn e seq(k) n ~ 0 

will cause k to assume the largest value, in the indicated range, 

for which all integers in the set seq(k) are strictly positive. 

For a third example, note that evaluation of the expression 

max> 3k > min, 3n e set{k) n 9:! 0 

will cause k to assume the largest value, in the indicated range, 

for which there exists a positive integer in the set set(k), and 

will at the same time cause n to assume a p~sitive value belonging 

to this set; n will be the first positive integer found in the 

implementation-defined order of search over the set set(k). (If 

no such n exits, n will .be assigned the value n.) 

2e. Integer Arithmetic Expressions, String Expressions. 

The arithmetic operators *, +, -, /,//are provided, the last 

of these operators denoting the remainder after a division. In 

addition, the built-in arithmetic operators max, min, abs, the 

first two of these being dyadic, the last mon~dic, are provided. 

Integer arithmetic is carried to as many digits of accuracy as 

are required for each operation. 

The expression m exp n designates m to then-th power. If n 

is negative, then the result is real (see the following section) 

All the boolean operations apply on a bit-by-bit basis to 

bit-strings. If two strings of unequal length are combined by 
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these operations, the shorter is extended by leading zeros to 

le length of the longer. Boolean quantities are identified 

with bit-strings of length 1. 

Given two strings sands' of the same type, s+s' designates 

their concatenation. If n is an integer not exceeding the length 

of s, then s(n) denotes then-th bit (or, in the case of a charac

ter string, then-th character) of s. If n is greater than #s, 

s(n) is n. The notation s(m:n) designates that portion of s which 

starts at its m-th bit (or character) position and extends for n 

positions. The notation s(m:) designates that portion of s 

between its m-th position and its last position. The symbols 

nulb and nulc denote null bit and character strings respectively. 

The allowable characters in a character string are all the 

normal members of the SETL character set, plus one additional 

character designated er (end record), which plays a special role 

in connection with input/output (see below). 

If n is an integer ands a string, then n·* s denotes the result 

of Joining together n identical copies of send-to-end. If .n is 

an integer, then dee n denotes the (shortest) character string 

representing n in decimal form, and oct n denotes the (shortest) 

character string representing n in octal form. Ifs is a character 

string representing an integer in decimal (respectively octal) form, 

then dee s (respectively oct s) yields that integer. 

Ifs is a string and fa function, then f[S] designates the 

string whose n-th component is f(S(n)). 

2f. Real Arithmetic Expressions. 

Real arithmetic is provided in SETL, in a manner depending (as 

usual) on machine and implementation. The arithmetic operations 

+, -, *,/,and exp (exponential.) are provided for real numbers. 

The operation real 1 log real 2 , where real 1 is the logarithmic 

base, is also provided, as are cos (x) , sin_ (x) , x min y, x max y, 

and abs y. If xis real, top xis the least integer exceeding x, 

and bot xis the greatest integer not exceeding x. If n is an integer, 

then top n is the real number most closely approximating n from above, 

aiven the limited precision of real numbers.· (Note for example that 

e integer n=2lOO - 1 would be carried preciseiy in SETL; if 

hundred bit real arithmetic were being used top n would be ·the real 
100 number 2 • 
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2g. Label Expressions. 

No operations combining labels, except the equality and 

inequality comparisons, exist; however, labels may be members 

of sets and may therefore appear within ordered pairs, so that 

the result of applying a function to an element may be a label. 

An expression ptoducing a label value may appear in a go to 

statement (see below). This possibility can be used to obtain 

a "computed" go to effect in SETL programs. 

2h. Blank Atoms. 

Blank atoms are provided for use as structural markers in 

complex objects built up in the course of a SETL computation; 

SETL will use blank atoms in many situations in which a pointer

oriented language would use machine addresses or pointers to data 

blocks. 

No operations·combining blank atoms, except the equality and 

inequality comparisons exist; however, blank atoms may be elements 

of sets, just as atoms of any other kind. Blank atoms are 

created by the built-in SETL function newat, which creates a new 

blank atom each time it is called. Note, for example, that such 

an expression as <newat, newat> designates an ordered pair 

consisting of two distinct blank atoms. 

The undefined atom n is a particular blank atom related to 

various SETL operations in somewhat special ways. We do not allow 

n to be a member of any se-t, so that any attempt to form such a 

combination as 

·{n},{n,a} 

will lead to an error return. However, n can be a component of 

a tuple. An attempt to form any of 

3pow(n), n(x), f(n), f{n}, f[n], n, or #n 

will also lead to an error return. The atom n is allowed in the 

combinations x ~ n and x ne n, but of course not in x ~ n 

or in any other arithmetic, string, or boolean operation. 

(Note that any attempt to execute an operation with arguments of 

inappropriate type will also lead to an error return.) An 
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occurrence of neither in a quantifier of the form 

Vx € n, X € n, n < Vk < x, etc. 

in a range restriction 

X € n, n ~ k ~ x, etc., 

or in any iteration control of the form 

(while n) 

will lead to an error return. The value n will be returned as 

the value of 3 nt and as the value of f (a) if a is not in the 

domain of a set f of ordered pairs. We also have hd n =tt n=n. · 

These conventions help to locate bugs in SETL programs, as they 

ensure that many situations, in which the actual form of data · 

differs from its assumed_form will lead rapidly to the occurrence 

of n as a value and very shortly thereafter to an error return. 

2i. Set Formers. 

We now wish to describe an important type of set expression 

having a very great expressive power. This set former expression 

has the following general form 

(1) {e(x 1 , ... ,xn), x 1 e e 1 , x 2 c e 2 (x 1 ), ... , xn e en(x 1 , ... ,xn_ 1 ) 

I C (xl, ... , xn) } 

In this general expression, x 1 , ... ,xn are names; e 1 designates 

a set-expression not containing any occurrence of these names, 

e 2 (x 1 ) a set expression not containing any occurrence of x 2 , ... ,xn 

and containing only free occurrences of x 1 , etc. Moreover, 

C(x 1 , •.. ,xn) designates a boolean expression containing only free 

occurrences of x 1 , ... ,x, and e(x 1 , ... ,x) designates any arbitrary n • n 
expression containing only free occurrences of these same names. 

The notational form (1) is familiar from set theory. Its value is 

the set formed by the following rule: calculate the set e 1 ; for 

each of its elements x 1 calculate the set e 2 (x 1 ); for each o~ 

these elements calculate the set e 3 (x 1 ,x 2 ), etc. For each 

n:-tuple x 1 , ... ,xn obtained in this way and having the property 

at the boolean expression C(x 1 , •.. ,x) has the value "true", . n 
calculate e(x 1 , •.. ,xn); gather all these elements into a set, 
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thus obtaining the value of (1). 

The individual restrictions 

( 2) x . e:: e . ( x
1 

, ... , x . 1 ) 
J J J-

occurring in (1) may be called range re_s trictions; for use in 

cases in which ranges of integers play a role, another kind of 

range restriction, having one of the forms 

( 3) min< x 2_ max, min< x < max , max> x > min, etc. 

is provided. (cf. Section 2d). If a range restriction of the type 

of (3) occurs in the formula (1) in place of one of the range 

restrictions (2), then, for each appropriate x 1 , ... ,xj-l the two 

arithmetic expressions min. (x
1

, ... ,x. 1,) and max. (x
1

, ... ,x. 1 ) 
J J- J J-

will be calculateq, and in the formation of the set (1) x. will 
J 

vary over the numerical range determined by these upper and lower 

limits (in the indicated order). 

If no particular boolean condition C is to be imposed, then the 

expression (1) may be written as 

{e(x1,···,xn)' xl e:: el' x2 e:: e2(xl)' ... , xne::en(x1,···,xn-l)}. 

The special case 

{x, x e:: e I C(x)} 

may be abbreviated as 

{x e:: e I C (x) } 

2j. Conditional Expressions. 

A conditional expression like that of ALGOL is provided; this 

has the form 

if bool 1 then expr 1 else if bool 2 then expr 2 ... else exprn 

and has its customary and evident meaning. Here, bool 1 , ... ,booln-l 

are required to be boolean expressions, while expr
1

, ... ,exprn are 

expressions having arbitrary values. 

A resolving convention is required if the implied scope of the 

concluding else in a conditional expression is not to be ambiguous. 

One may ask, for example, if the expression 
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(1) if x s.:!:_ 0 then y else x + y 

: to have the reading 

(2) if x s.:!:_ 0 then y else (x+y) 

or the reading 

(3) (if x s.:!:_ 0 then y else x) + y. 

We resolve this ambiguity by agreeing that the concluding else in 

a conditional expressions is to be regarded as a monadic operator. 

As such, it will have minim~l scope (except insofar as built-in 

operators producing boolean from nonboolean quantities may have 

higher precedence). It follows that the normal reading of (1) 

is ( 3) . 

2k. The Use of Functions within Expressions; Programmer-Defined 

Operations. 

SETL allows subroutines and functions to be defined in a manner 

to be described in more detail below. Functions may be used as 

parts of expressions; a function invocation occurring within an 

expression will have the form 

name(exprl, ... ,exprn) . 

Here, name is the f~nction name, while exprl, ... ,exprn may be 

arbitrary SETL expressions. These expressions are evaluated 

before the function is invoked, and the values thereby obtained 

define the arguments to be transmitted to the function. A function 

called from within an expression may modify various of the function's 

arguments, and its invocation may in general cause other "side 

effects". Function arguments whose values are to be modified 

should be simple names rather than compound expressions. 

Subroutines and functions may be the values of expressions. 

Subroutines and functions may be compared.for equality and 

inequality. They may also be applied to other elements, either 

in the form f(x), or in the form f[x], or in any of the related, 

more general, forms that have been descriped in section 2c. Note, 

~~,r example, that if x is c3; set, y an integer, and g ( z) a function-

.lued function whose value is F, then g(z){[x] ,y} is a valid 
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expression, having the same value as F{[x] ,y}. That is, its 

value is the set consisting of all- the elements F(u,y), where 

u ex. 

The value of a function f of zero arguments is written as f( ). 

SETL allows programmer-defined functions and subroutines of 

two arguments to be written as infix operators, provided that this 

notational intent is appropriately stated in the definition of 

the function (additional details are given below). Similarly, 

functions of a single argument may be written as prefixed monadic 

operators. The name of a function to be written in such an 

operator form, whether monadic or dyadic, is underlined. Thus, 

for example, if reverse and invert are the names of programmer

defined dyadic operators we may write 

(seta reverse setb) invert setc 

as part of a compound expression. 

The basic SETL expression forms may be nested in arbitrary 

fashion to produce complex expressions. Thus, set-forming 

constructions may be nested within conditional expressions, 

which may in turn be nested within n-tuple forming expressions, 

etc. The order of expression evaluation is inside-out and left

to-right. This observation concerning evaluation order may be 

important if functions producing side effects are invoked during 

the evaluation of an expression. Function evaluation is in 

systematic inner-to-outer, left-to-right order. 

2t. Examples of the Use of the SETL Expression Forms. 

It is not uncommon for operations which would have to be· 

represented by short programs in lower-level languages to reduce 

to simple expression evaluations in SETL. Often search loops are 

replaceable by existential expressions, procedures which build up 

arrays by set-formers, and so forth. Numerous substantial 

programs exemplifying this remark will be given in later portions 

of the present ma·nuscript. Here we give only a few simple 

examples. In this example we use the SETL print statement. 
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This statement will be described in more detail in a later section. 

or the present, it is sufficient to remark .that 

print e; 

prints the value of the expression e using standardized formatting 

conventions. 

Example 1: Print the set of all primes not exceeding n. 

print {l < m < n {not 1 < 3k < m {m / / k) ~ 0) } ; 

Example 2: Print the ·first nonempty string of symbols which occurs 

with an asterisk immediately to its left ~nd right within a strings. 

Print a diagnostic message if there is no such substring. 

print if not 1 ~ 3m ~ #s, m+l < n ~ #sls{m) ~ '*' and s(n) ~ '*' 

then 'no substring of type sought' 

else s{m+l: n-m-1); 

Example 3: Form and print a mapping giving the number of times 

each character appears in a character strings. 

print {<c, #{l ~ n ~ #s I s{n) ~ c}>, 

c e {s{n), 1 < n < #s}}; 

2m. The object-type operator. The special operator 'is'. 

Occasionally one will want to test the type {i.e., set, tuple, 

string, etc.) of a SETL object, or to use this type as the basis 

for a go-to with calculated label. Accordingly, the operator~ 

is provided,~ x being the type of x. The value of~ xis 

a blank atom, more specifically one of the blank atoms designated 

by the special constant symbols. integer, real, cstring, bstring, 

subroutine, function, label, blank, tupl, set. Thus, for example, 

the test for a pair is 

(1) if {~ x) ne tupl then f else {# x) ~ 2 . 

The special binary operator is provides a convenient on-the-fly 

assignment form like that available in APL. The expression 

Xis y 
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has x as its value, but when evaluated makes the value of y 

(which must be a simple variable) equal to that of x. In (2), 

x can be any expression; (2) itself is an expression qnd can 

be used as part of a compound expression. 

The is operator obeys somewhat nonstandard precedence conven

tions. It has minimal left-hand and maximal right-hand precedences. 

Thus, for example, 

(3) x+y is z+w 

has the significance 

( and the value 

( (x+y) is z) 1 + w 

(x+y) +w) ; even 

(4) u+v is f(w) 

has the significance 

(u+v is f) (w) 

and therefore the same value·as 

(u+v) (w) 

(which is of course a functional evaluation or indexing operation).· 

Such combinations as 

u+v is (x+y) 

are illegal. 
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Item 13. DESCRIPTION OF THE SETL LANGUAGE. 

Second Part: Assignment Statements. 

SETL admits various expression forms in addition to those 

described above. Many of these additional expression forms 

have a syntax and semantics which relates them closely to some 

of the statement forms used in SETL. For this reason, we postpone 

the discussion of these expression forms, and proceed now to discuss 

the statement forms of the SETL language, starting with assignment 

statements. 

Note to begin with that single statements of the SETL language 

are punctuated with terminating semicolons. 

Note also that SETL provides for the use of comments, which, 

being entirely ignored by the SETL processor, can be inserted any

where in a SETL text except within a single token. As in PL/1, 

comments are enclosed fore-and-aft by use of the composite marks 

/* (prefixed) and*/ (affixed). Thus, for example, 

/* this is an example of a setl comment. */ 

The simplest kind of assignment statement has the familiar form 

name= expr; 

here name must be any valid variable name, while expr can be any 

valid expression. 

In addition to this simple form of assignment statement, we also 

wish to make use of various assignment forms related to the "indexed" 

assignment operations conventionally used in programming languages. 

The simplestsuch operator would have the form 

(1) name (exprl) .= expr2; 

The semantics of the statement (1) should be such as to force the 

expression name(exprl), when evaluated &ubsequently, to yield 

expr2 as its value. Thus, if the value of name is·a set, then (1) 

will have the same force as 

name ~-{p e namelif ~ p ne tupl then t else p(l) ~(exprl)} 

with <exprl,~xpr2> • 
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Similarly, we will wish to make use of such assignments as 

( 2) hd x = a and ti y = b 

The semantics of (2) must be such as to force the expressions 

hd x and ti y, when subsequently evaluated, to yield a and bas 

their respective values. It is therefore reasonable to interpret 

the first Qf the assignments (2) as being equivalent to 

x =<a>+ ti x; and the second assignment as being equivalent to 

y =<hd y> + b. Thus we see that operators of various kinds can be 

expected to appear on the left-hand side of.SETL assignment state

ments. The power and flexibility of assignment statements in SETL. 

will be greatly increased by allowing operators appearing in this 

"sinister" position (i.e., on the left-hand side of assignment 

statements) to be compounded. This possibility has not been 

regularly exploited in programming languages, for which reason we 

shall explain both the syntax and semantics of our intended con

structions in more detail than would otherwise be necessary. 

The scheme proposed is generally applicable to "procedural~ 

programming languages. It is based upon certain general algebraic 

observations concerning "retrieval and assignment" pairs of functions 

which.will be presented below. The scheme avoids the explicit 

transmission of pointers, and the complications which such trans

mission may lead to. The·mechanisms provided constitute systematic 

generalization to the left-hand sides of assignments of the standard 

subroutine-function linkage concepts applying to the right-hand side 

of an assignment; and are as basic as (though not necessarily as 

generally useful as) these latter concepts. For this reason, we 

shall.call the interprocedural linkages to be suggested "sinister 

calls", and call the conventional call linkages used on the right

hand side of an assignment "dexter calls~•. 

To stress the general nature 9f the considerations involved, 

we shall begin with a few very general .remarks. SETL belongs to 

the class of 11 p·rocedural" languages, that is, to those languages. 

which in one or another manner represent the algebra of transforma

tions on a universe of stored data objects. The semantic operations

most fundamental to such languages are: 
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i - access to a designated portion of a stored object. 

ii - modification of a designated portion of a stored object. 

iii - combination of transformations by successive application. 

iv - choice of transformation to be applied depending on a 

predicate of particular stored data objects. 

v combination of two or more stored objects in some "algebraic" 

fashion, useful generally or for some specifically intended applica

tion area, the outcome of this combination process being some "out

put" object. 

vi - repetitive application of a transformation until a certain 

condition is established. 

With these primary operations various secondary operations may 

be listed; of these possibilities we shall mention only 

vii - application of a given transformation to all the subobjects 

of a given object (iteration-over-parts). 

All the considerations in the next few pages will center around 

operations i and ii. We call these operations retrieval and 

storage operations respectively. 

Let us .now proceed with a more detailed discussion, starting with 

an example, which will serve to fix our overall goal firmly in mind. 

Using the scheme to be suggested in the pages which follow it 

will be possible to program a function called last, which when called 

in the normal dexter way returns the last element of an n-tuple; and 

then to use this function to the left of an equal sign, writing 

last tupl = x 

to change the final (and only the final) component of .tupl. 

for example, by executing 

X = <<1,2,3>,4,5>; 

last hd x =:= 10; 

one will cause x to take on the val ·1e 

<<1,2,10>,4,5>, 

etc. 

Then, 

~. The key to the situation that is to be studied lies in the proper 

Wt!ffinition of storage operators and retrieval operators. Under what 

conditions will we wish to say that an operator has one of. these two 
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characteristics? First consider retrieval; and let op stand for an 

operator. If this is to be a retrieval operator, it must in the 

first place be free of "side effects". That is, if ,QE. a is called 

once, and then again, the same value should be returned both times. 

More generally, if tis a temporary variable not occurring else

where in a program, then execution t = ,QE. a; should have no influenG~ 

on the remainder of the program. 

Next there should exist a storage procedure corresponding to the 

retrieval operator. This will be some procedure, call it 

(1) ops tore (a, x) ; 

suc:ti that after executing (1) we c·an be sure that an immediately 

following call to op a will return the value x. Moreover, two 

successive calls to (1) should have the same effect as a single call; 

and, more precisely, whenever the value of . ..QE. a is already x, l 
opstore(a,x) should be an identity transformation .. The last require 

ment is rather sharp, and pins opstore(a,x) rather closely to 

op a; moreover, it implies that the property "to be a retrieval · 

operator" is not possessed by all operators op. 

Note the following simple retrieval storage operation pairs in 

SETL: (some of these pairs stand in the retrieval-storage relation

ship only in most cases, but not in all possible degenerate cases): 

( 2a) 

(2b) 

(2c) 

(2d) 

retrieval operator: 

storage operator: 

retrieval operator: 

storage operator: 

retrieval operator: 

storage operator: 

retrieval operator: 

storage operator: 

hd a 

a= <x> + ti a; 

ti a 

a= <hd a>+ x; 

a(z) (for a set a containing_n-tuples) 

a= {ye alif (type y) ne tupl then t 

else(g(hd y)~ i)or(#y)le l}with <z,x>; 

a{z} 

a= {y E alif (~ y) ~ tupl then t 

else(g(hd y) ~ z) (#y) le· l} 

+ {<z,w>, w Ex}; 

and among a large family of other more complex examples which might 

be cited 

(2e) retrieval operator: 

storage operator: 

a(i:j) (for a 

a= a(l;i-1) 
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Suppose that~ is a retrieval operator for which some associated 

:orage procedure opstore(a,x) has been selected. We will find it 

heuristically and syntactically convenient to indicate a call on 

this storage procedure by writing 

op a= x; 

That is, we indicate a call on the storage procedure by writing the 

retrieval operator in a syntactically 'sinister' position. 

By defining a formal notation of independent storage operators 

we help ourselves to pin down the intuitive idea that a storage 

operator should change no more than is required by its relation 

to a particular retrieval operator: 

Let op and op' be two retrieval operators; anticipating the 

syntactic style to be developed we shall write calls on their 

associated storage procedures as 

( 3a) op a = x; and ( 3b) op' a = x; 

respectively. We call ~ and ~· inde:eendent retrieval o:eerators 

if in the succession of calls 

( 4) y = £E a; ~· a = x; z = op a; 

the variables y and z necessarily receive the same value; provided 

that the same is true when~• and~ exchange roles. 

The following observation is now crucial: Let two retrieval 

operators 2.E_ and 2.E_', not necessarily independent, be given. 

The composite operator~~ is a retrieval operator; we can 

define its storage routine by the code sequence 

i. t = ~• a; /* where 't' is a 'compiler temporary' */ 

ii. ~ .t = x; 

iii. ~• a= t; 

the effect of this may appropriately be represented by writing 

(5) 

Proof: (which please ponder). (1) In the first place, we must show 

that~~• has no side effects. But if tis a temporary variable 

t occurring elsewhere in a program, then execution oft=~~• a; 

__ e. , of t 1 = ~' a; t = ~- t 1 ; where t 1 is another such temporary 

variable clearly does not influence the remainder of the program. 
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(2) Next we show that the second of two imrnediatively successive 

executions of the storage sequence (i,ii,iii) is equivalent to a 

no-operation. Specifically, suppose that we execute: 

.t = ~· a; 

~ t = x; 

~· a = t; 

tl = ~· a; 

~ tl = x; 

~· a = tl; 

Then the third and fourth operations are clearly equivalent to t 1= 
and thus the sequence as a whole is equivalent to 

tl = ~· a; 

~ tl = x; 

~ tl = x; 

~· a = tl; 

Since the second of two identical successive stor~s is equivalent 

to a no-op, this last code sequence is plainly equivalent to the 

~equence i, ii, iii. 

(3) Next suppose that we perform the stora~e sequence (i,ii,iii) 

and ~en immediately perform the .retrieval u = ~ ~• a; i.e., 

t 1 = ~• a; u = ~ t 1 ; . We must then show that the retrieval can 

be replaced by u = x;. But, because of (iii), t 1 = 92 1 a; is 

~quivalent to t 1 = t; so that because of ii the whole sequence 

is equivalent to (i,ii,iii) followed by u = x; . 

(4) Finally we consider the case in which the storage sequence 

(i,ii,iii) is preceded by the retrieval x = 92. ~• a; . We must 

then show that the storage sequence is equivalent to a no-operation. 

If the retrieval (QE, ~• a) already gives x, then after i 

the retrieval (QE, t) gives x also. Hence the operation ii may 

be omitted. But therefore the retrieval (~' a) gives the value t; 

and hence iii may be omitted. Therefore the whole sequence i,ii,iii 

amounts me.rely to a store in to a compiler-generated temporary; and 

is therefore equivalent to a no-operation. Q.E.D. 

The construction i,ii,iii 

following result. Let~'~•, 

operators. Then their product 

may evidently be iterated, with thA 
(n) 

..• , ~ be a 
I (n) 

~'~, ... ,op 

operator, and the assignment operation: 
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( 6) 
. .(n) 

~ ~
1 ~ •• .QE a= X 

(pands naturally as 

( 7) t(n) = 2E(n) a; 
t(n-1) (n-1) (n) : 

= ~ t ; 

t' = ~I t"; 

~ t' = x; 

2E' t" = t I j 

op(n) a = t (n) ; 

Note that if 
(n) 

x = ~ ... ~ a , then the middle and all 

following lines in (7) are equivalent to no-ops. 

We shall speak of the code sequence (7) implied by the statement 

(6) as unraveling (6). 

It is worth noting one 

Suppose that ~(n) is a 

additional feature of the expansion (7). 

retrieval operator independent of~' 

and that -~ ..-.... (n-1) 
~' ... '~ is any ~equence of retrieval operators. 

Then the products 

........ ........_ ........_ (n-1) ........_ (n) - ,......_ .,,,,....._ (n-1) 
(8) 2E 2E' ... 2E 2E and 2E QE_' ••• 2E · 2E 

are also independent. Indeed, in this case, the only assignment 

to a in (7), that is, the last line in (7), has no effect on the 

Val -ue of ........_op(n) a, d h h 1 f an t us none on t e va ue o 

.-.... ..-....(n) . 
~ ••• ~ a • 

More generally, if ~(j) is independent 

,,.,-.... ..-.. ( j-1) ........_ ( j) ( j + 1) ,..,,.__ (n) and op ... op op op ... op 

of 2E ( j) , then 

~ -- (J'-1) (J') r.. (n) op ... op op ... op . 

are independent. This.conclusion may be proved by "algebraic" 

reasoning from the previous special case, and may also be demon

strated directly. 

Our conclusions up to this point may be. summarized in the 

following 

Statement A: The set of retrieval operators associated with 

the set of stored objects of a procedural programming language 

~~rms a semigroup, associated with the language in•a natural way. 

The f6llowing operations are basic retrievals in SETL: 

f(a), f{a}, hd f, tt f, f(i:j) 
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The storage operators associated with these retrievals have been 

displayed above. Algebraic relationships between these basic 

retrievals and oth~r more compound operators lead in accordance 

with the preceding discussion to other retrieval operators, and 

to significant relations between storage procedures. Note for 

example that 3a is a retrieval oper~tion, the corresponding 

storage procedure being a= {x}; . The expres~ion f(a) is, 

if defined, logically identical with the compound 3f{a}. The 

reader can verify that the basic definition i,ii,iii ~ssociates 

with this compound retrieval precisely the storage procedure (2c). 

The operation f{a,b} has been defined in section 6.2(c) as being 

equivalent to the compound (f{a}){b}. The reader may verify that 

the general rule i,ii,iii associate with this retrieval the 

storage procedure 

f ={ye flif(~ y) ne tupl then~ else if(~ ti y) ne tupl 

then~ else (hd y) ne a or (hd ti y) ne b or (#y) le 2} 

+ {<a,<b,z>>, z ex}; 

which in accordance with our general notatiorial conventions we can 

write as 

f{a,b} = z; 

The same line of argument leads us to define the general assignment 

f{a
1

, ... ,an} = x; 

as having the significance 

f ={ye flif(~ y) ne tupl then t else if(~ ti y) ~ tupl 

then t else if(~ ti ti y) .ne tupl then t else ... else 

or(#y) le n} 

In the same way, we are led to give 

the significance 
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f ={ye: flif ~ y ne tupl then t else if(~ ti y) ne tupl 

then t else if~ ti• ti y ne tupl then t else ... else 

(hd y) ne a 1 or (hd t.i y) ne a 2 or ... } 

In accordance with our general notational conventions, we will 

also write calls on the storage procedure shown in (2e) as 

a(i:j) = x; • 

(Note that (2e) only defines a storage procedure if (#x) ~ y.) 

The range operation f[a] may also be regarded as a retrieval 

operation, though the corresponding storage procedure is highly 

nonunique. Somewhat arbitrarily, we take 

f[a] = x; 

to mean 

f ={ye: fjif hd y ~ Q then t else if (hd y)n e: a then t else f} 

+ {<y,z>, ye: a, z e: x}; 

Similarly, 

will mean 

f ={ye: flif hd y ~ Q then t else if hd y ~ e: a 1 then t 

else if hd ti y ~ Q then t else if hd ti y n e: a 2 then t 

else f}· + {<y 1 ,<y 2 , ... ,<yn,z> •.. >>, 

Y1 e: al, Y2 e: a2, 

We take the special form 

... , y e: a , z e: x}; n n 

f(y)=-Q; 

to have precisely the same significance as 

f{y} = ni; 

More generally, we take 

f(y
1

, ••. ,y) = Q; 
n 

have the same significance as 

f{yl, .•• ,yn} = ni; 



Concluding this digression on various important particular 

storage operators, we return to a more theoretical discussion of 

retrieval and storage operators, and note that we may also 

consider retrieval operators op(p 1 , ... ,Pn,a) depending on 

several parameters, and the storage subroutines 

opstore(p
1

, ... ,pn,a,x) associated with them. We require that 

if the function op(p 1 , ... ,pn,a) has the value x, then the 

subroutine opstore(p 1 , ... ,p ,a,x) acts as an identity operator. n . 
In this case, a call to opstore may be written in the form 

( 9) 

though other syntactic forms (both for the left- and the right

hand sides) might be preferred in particular cases. 

As with simple retrieval operators, so in the case of retrieval 

operators with parameters the composition of two retrieval operators 

is a retrieval operator. The natural interpretation of 

(10) 

is 

(11) 

op(p,op' (q,a)) = x 

i ' . t = .op ' ( q , a) ; 

ii'. op(p,t) = x; 

iii'. op' (q,a) = t; 

cf. i,ii,iii and (7). Note in particular that if 

(12) x = op ( p , op ' ( q , a) ) , 

then after (11.i') is executed op(p,t) has the value x and 

op' (q,a) has the value t; hence (11.ii') and (11.iii') may be 

omitted. This is to say that the whole sequence (11) reduces to 

a no-operation. 

Having come this.far, we may now observe that close examination 

of (11) reveals a fact which permits very extensive generalization 

of the "unraveling" constructions i,ii,iii and i' ,ii' ,iii'. Namely, 

we see that the unraveling (11) of (10) treats all the arguments of 

op and op' on an equal footing, making it unnecessary to distinguish 

between a single "principal argument" and a remaining set of 
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I· 

"parameters". To emphasize this point, it is well to study an 

cample. Consider a hypothetical three-parameter function 

select(f,g,j) which returns the value defined by the expression 
\ 

(13) if j .9!_ 0 then hd f else ti g 

This is a mul tiparameter retrieval operation, possessing an 

associated storage procedure 

(14) if j ~ 0 then hd f = x; else ti g = x;; 

Having made this observation, we may observe that (11) automati

cally assigns a meaning to such a statement as 

( 15) select (f, select(g,h,i), j) = x; 

Indeed, the reader aware that the standard nested (dexter) 

function calls assigns the value 

(16) if j .9!_ 0 then hd f else if i -9:!. 0 then ti hd g else ti ti h 

to the expres.sion 

(1 7) select(£, select(g,h,i), j) 

will verify without difficulty that if (15) is unraveled in 

accordance with the general convention (11) there results a 

procedure equivalent to the conditional statement 

(18) if j _g!_ 0 then hd f = x; 

else if i .9!_ 0 then ~ hd g = x; 

else ti ti h = x;; 

It may also be remarked that the 'unraveling' process discussed 

above may be carried over to more general nests of sinister calls. 

Consider, for example, the .retrieval function select described 

by (13) (and (14)) above. It is heuristically clear that one 

ought to be able to assign .a reasonable meaning to 

(19) select(select(f,g,i) ,select(ff,gg,i) ,j) = x; . 

If the compound form appearing on the left appeared on the right 

instead, it would retrieve 

if j _g!_ 0 then if i _g!_ 0 then hd hd f else hd ti g 

else i'f i ~ 0 then ti hd ff else ti ti gg 
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making it plain what storage operation (19) ought to represent. 

The appropriate way to unravel (19) is as follows: 

(2 0) i. t - select(f,g,i); 

ii. tt = select(ff,gg,i); 

iii. select(t,tt,j) = x; 

iv. select(f,g,i) = t; 

v. select(ff,gg,i) = tt; 

Note now that the sequence (20) is appropriately related to the 

dexter call 

(21) x = select(select(f,g,i), select(ff,gg,i) ,j); 

Indeed, if (21) is executed immediately before (20), then after 

(20.i) and (20.ii) have been executed, we have 

( 22) select(t,tt,j) = x 

so that (20.iii) is equivalent to a no-op, and may be removed. 

But then (20.iv) is a no-op, since preceded by (20.i); and (20.v) 

a no-op, since preceded by (20.ii). The storage-retrieval relation~ 

ship between (20) and (21) is therefore plain. 

The formal argument just given plainly applies to arbitrary 

combinations of retrieval functions by nesting; this remark leads 

to the following substantial generalization of the fundamental 

statement A made above. 

Statement B: The family of multi-parameter retrieval operators 

associated with the set of stored objects of a procedural program

ming language is closed under the operation of substitution. 

Yet another property of our procedure for unraveling a nested 

sinister call is worth noting. If we consider the sinister call 

( 23) select(f,g,select(ff,gg,i)) = x; 

and note from the definition (13) of select that this function doe 9 
not modify its third,argument, it is apparent.that the most appropri- 1 

), 

ate expansion of (25) is 

(2 4) t = select(ff,gg,i); 

select(f,g,t) = x; 
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That is, one would want to regard the inner call to select as 

~ing implicitly dexter. Our normal sinister call expansion, 

~~plied mechanically, would instead give 

(25) i. 

ii. 

iii. 

t = select(ff,gg,i); 

select(f,g,t) = x; 

select(ff,gg,i) = t; 

But (24) and (25) are equivalent! Indeed, since (25.ii) does not 

change t, it follows that (25.i) and (25.iii) remain mutually 

inverse retrieval and storage calls, so that (25.iii) is a no-opera

tion. Aside therefore from implications concerning efficiency, the 

standard sinister expansion (25) is perfectly acceptable. Note also 

that an optimizer capable of detecting the fact that select does not 

vary its left-hand side could automatically exploit this fact to 

suppress (25.iii) as redundant. 

The procedure for expanding sinister calls suggested by (6)-~7) 

and (19)-(20) is thus general and unambiguous. 

The reader will perceive that the conventions we have introduced 

allow wide generalization of the forms which can. appear on the left

hand side of an assignment statement. In a subsequent section we 

will extend this generalization still further, developing mechanisms 

which allow arbitrary programmer-defined functions to appear in 

sinister position. The details of this final generalization will, 

however, be understood best after the syntactic conventions used in 

connection with function definitions and function calls have been 

explained. For this reason, we postpone discussion of the use of 

general programmer defined functions on the left-hand side of 

assignment statements, and confine ourselves at the present time to 

discussing the manner in which forms compounded of SETL primitives 

can be used in sinister position. We have already noted that SETL 

provides. 

(26) f(a 1 )=x; f(a 1 , .... ,an)=x; f{a 1 , ... ,an}=x; and f[a 1 , ... ,an]=x; 

as sinister forms, and provides the forms 

( 2 7) hd f = x; tR. f = x; f(i:j) = x; 

well. We use the same conventions for operation compounding on 

e left as on the right-hand side of an assignment statement. Thus 
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(28) hd ti(f(i:j)) = x; 

are valid also. Note once again that the meaning of compound 

sinister forms like (28) is in each case to be deduced from the 

meaning of the corresponding primitive assignment (26) or (27) 

by using expansion rules like (6)-(7) or (10)-(11). 

Next note that• the tuple,former <a 1 , ... -,an> may be regarded 

as a multi-parameter retrieval operator, its associated storage 

procedure being defined by the sequence of statements 

( 2 9) a 1=x(l); ... , a 1=x(n-1); a =x(n); n- n 

Accordingly, we allow "multiple assignment statements" of the form 

( 30) 

we define the significance of (30) by (29). In accordance with the 

general expansion rules applying to compound forms this basic 

definition also assigns the significance of such compound forms as 

(31) <<a,b>,c,<d,e>> = x; 

Moreover, forms such as 

(32) <f (a) ,g (b) ,h (c) > = x; 

also are valid. Note also that forms like 

(33) <a,f (a)>_= x; 

are handled unambiguously by ·our expansion rules. For_ example, 

{ 3 3) expands as 

( 3 4) i. 

ii. 

iii. 

t = f(a); 

<a,t> = x; 

f(a) = t; 

which since (ii) coropletely reassigns its second argument has 

precisely the same effect as 

(35) a = x(l); f (a) = x(2); 

SETL conditional expressions (cf. section 6.2j) can also be 

used on the left-hand side of assignment statements. Thus, for 

example, we allow 
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if j ~ 0 then hd f else ti g = x; 

___ is has the same force as the conditional· statement 

if j ~ 0 then hd f = x; else ti g = x;; 

(Additional details concerning conditional statement~ in SETL are 

given below). 

Note finally that in offering an abstract definition of the 

storage-retrieval relationship we proceed along a line of thought 

familiar to the hardware designer. At the hardware level, 'storage' 

and 'retrieval' may involve extensive recoding, co~plex transfor

mations and resh'..lfflings, etc. However, since the abstract 

storage-retrieval relationship is always maintained, none of this 

affects the programmer's fixed picture of the basic logic of these 

operations. The sinister call mechanism which has just been out

lined makes a similar facility available at the programming-language 

level. It deserves to be emphasized that the use of this facility 

can decouple a good part of the logic of algprithms from very 

extensive 'behind the scenes' operations set in motion by s~orage 

or retrieval requests; in the same way, the hardware designer 

decouples. the programmer from the details of his 'paging' opera

tior,s. Thus other generalized assignment notions which have been 

presented isolate the problem of memory-milieu definition 

from the remainder of a complex programming task, and keeps 

globally used data objects from propagating complexity in as 

virulent a fashion as would otherwise be the case. 
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Item 14. DESCRIPTION OF THE SETL LANGUAGE. 

Third Part: Additional Statement and Expression Forms. 

Having described the SETL assignment statement in a manner suffi

ciently general for the moment, we now go on to describe various 

other statement forms provided in SETL .. 

1. Labels, Go-to Statements, Iterations, and Compound Operators. 

Control of program flow is provided in several manners; by go to 

statements, by if statements, by flow statements, by a statement form 

specifying iteration over a range of sets, by a statement form 

specifying iteration for as long as a certain boolean condition is 

valid; and by subroutine or function calls. Because they deserve 

separate discussion, the if and flow statements will be discussed 

in Section 3. 

A SETL statement may be labeled by prefixing it with a name, 

which must be followed by a colon, and which for the sake of read

ability may be enclosed in pointed brackets. The affixed colon 

designates the narci.e as a label. Thus 

(1) label: , <label:> , <<label:>> 

are all equiva~ent valid labels. 

A go to statement has the form 

go to expr; 

the expression occurring in such a statement may be per:fectly 

general,· but must have a label as .its value. 

SETL allows iterations to be specified without the explicit use 

of labels. Several statement forms serving this purpose are provided 

The first, which may be called the set-theoretic iteration, has the 

general appearance 

( 2) (Vx1 ee 1 , x.-ee 2 (x 1 ), ... ,x ee (x
1

, ... ,x 1 )ic(x 1 , ... ,x ))block; · ~ . n. n n- n 

In this general expression, x 1 , ... ,xn are nam.es, e 1 designates a 

set-expression not containing any occurrence of these.names, 
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e~(x 1 ) a set expression not containing any occurrence of x 2 , ... ,xn 

td containing only free occurrences of x 1 , etc. Moreover, 

C(x 1 , ... ,x) designates a boolean expression containing only free . n 
occurrences of x 1 , ... ,xn' while block is any sequence S of valid 

SETL statements and may include go to statements. The statement 

(2) is executed according to the following rule: calculate the set 

e 1 ; for each of its elements x 1 calculate the set e 2 (x
1

); for 

each of these elements, calculate the set e 3 (x 1 ,x 2 ), etc. For each 

n-tuple x 1 , ... ,xn obtained in this way and having the property 

that the boolean expression C(x 1 , ..• ,xn) has the expression true, 

perform the statements of the sequence Sin order. (Note that the 

occurrence in Sofa go to statement with a destination label 

outside Swill terminate the iteration implied by the statement (2).) 

The individual restrictions 

( 3) x. e:: e . ( x
1 

, ... , x . 1 ) 
J J J-. 

occurring in (2) may be called range restrictions; for use when 

iteration over a range for integers is desired, a restriction having 

the variant form 

(4A) min.(x 1 , ... ,x. 1 ) < x. < max.(x 1 , ... ,x. 1 ) 
J J- - J - J J-

is provided. If (4A) occurs instead of (3) in an iteration (2), 

then for each appropriate x 1 , ... ,xj-l the two arithmetic expres

sions min. (x
1

, ... ,x. 1 ) and max .··(x
1

, ... ,x. 1 ) will be calculated, 
J J- J J-

and iteration will be extended suitably over all x. in the numerical 
J 

range defined by these upper and lower limits. 

Numerical range restrictions in the variant forms 

(4B) max. (x
1

, ... ,x. 1 ) > x. > min. (x
1

, .•. ,x. 1 ) 
J J- J J J-

(4C) min. (x1,··· ,x, 1 ) < x. < max.(x 1 , .•. ,x. 1 ), etc. 
J J- J J . J-

are also allowed. These variant forms provide for variant orders 

of iteration. Thus, (4A) implies an iteration in which successive 

integers x. are treated in increasing order; (4B) implies an itera-
J 

tion in which successive integers x. are treated in decreasing order. 
J 

Iteration over an empty set is allowed, in which case the block 

statements in the scope of the iteration is not executed. 

-197-



The scope of a set-theoretic iteration of the form (2) may be 

indicated, in the manner shown, by .the presence of a semicolon 

otherwise absent. For readability, however, several alternative 

forms are provided. These are: 

1. The use of the terminator 

end; 

2. The use of the terminator 

end Vt 1 t 2 ••• tk; 

to close the scope of an iteration which begins 

Here, t 1 ,t 2 , ... ,tk designate the first k tokens following the 

iteration-opening symbol V. 

A second type of iteration, which may be called the while

iteration, is provided in two related forms, of which the simpler is 

( 5) (while C) block; 

Here C is any boolean expression, while block designates any 
' , 

sequ~nce S of statements. This statement performs block iteratively 

as long as Chas the value true, but terminates as soon a~ C is 

found to have the value false. 

The outer extent of a while-iteration's scope may be indicated, 

as in (5), by the presence of a' semicolon otherwise absent. For 

readability, however, several alternative forms are provided. 

These are the more visible terminators 

end; or end while; 

The latter terminator may optionally be made more explicit by·extendin 

it to include a number of tokens following the keyword while which 

opens the iteration. This possibility is illustrated in the follow

ing example. 

(while x € s) k = k+g(x) j x = f(x); ehd while x; 

A rather more general form of ·while-iteration is .as follows: 

(while C doing blocka) blockb; 
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Here C is any boolean expression, while blocka and blockb are 

~bitrary sequences of statements. This iteration has precisely 

~ne same significance as does the following simple while-iteration: 

( 6) (while C) blockb blocka; 

This alternative form 

of the while iteration-header is provided to improve readability 

by making it possible to attach loop-associated bookkeeping instruc

tions directly to the header, rather than requiring these instructions 

to be placed remotely. 

The instruction 

( 7) quit; 

occurring either within a set-theoretical.iteration or within a 

while-iteration is equivalent to 

( 8) go to L; 

where Lis a unique generated label occurring at a position immedi-

ately outside the scope of" the iteration. 

We also allow this statement in several more explicit forms. The form 

quit 'dx; 

is equivalent to (8) where Lis a unique generated label occurring 

at a position immediately outside · the sc~pe 

of the set-theoretical iteration whose header begins either with 

('tJx C ••• ) 

or with 

(min~ Vx ~ min, ... ) 

or with some other allowed form of range restriction in which "Vx" 
appears. Note that this generalized quit statement may .cause 

control to be transferred out of several nested iteration scopes 

all at once. For example, 

(Vx ca) y = x; (while #y ~ 2) (Vz e y) n = n with z; 

if #n ~ 10 then quit "Ix; ; end V z; end while; end 'r/.x; 

equivalent to 

(Vx C a) y = x; (while #y g_! 2) (Vz Cy) n = n with z; 

if #n ~ 10 then go to L;; end V z;; ; <L:> 
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We also permit the forms 

quit while; 

and 

( 9) quit while t 1 ... tn; etc., 

where t 1 , ... ,tn are the tokens which follow the keyword while in 

the header of the iteration from which exi:t:.is to be made. 

The first of the above statements is equivalent to a transfer 

to a label occurring at a position immediately 

outside the scope of the innermost while-iteration containing, 

the quit statement. The second, more explicit, quit statement has 

a significance which may be defined as follows. Let W be the inner

most while-iterating header whose scope contains the quit statement 

and which begins with the sequence 

of symbols. Let L be a unique label occurring at a position 

immediately ou1;:side the scope of w. Then (9) is equivalent 

to the explicit go-to statement t-11e explicit go-to statement go 

The instruction 

( 10) continue; 

is used in a very similar way. If this instruqtion occurs 

either within a set-theoretical or a simple while iteration, it 

is equivalent to the go-to statement (8), where Lis· a unique 

generated label occurring within, but at the very end of, the 

scope of the iteration. Thus, for example, 

(while x.9.! 0) X = X - f (x) ; if g(x) lt 0 then continue; 

else y = y + g (x) ; ; end while; 

is equivalent to 

(while x~ 0) X = X - f (x) ; if g(x) lt 0 then go to L; 

else y = y + g(x) ;; <L:> end while; 

Suppose next that a simple continue statement (10) occurs within 

a while-iteration whose header is of the more complex form 

(while C .doing blocka) . 
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Then, by definition, (10) causes a transfer to a unique generated 

tbel located immediately before the various statements of the block 

blocka, which (cf. (6)) form a group terminating the scope of the 

while-iteration. For example, 

(while x es doing x = f(x) ;) if g(x) lt O then continue; 

else y = y + g(x);; end while; 

is equivalent to 

(while x es) if g(x) lt O then go to L; 

else y = y + g(x) ;; <L:> x = f(x); end while; 

We also allow more general continue statements having such forms 

as 

(11) 

(12) 

(13) 

continue Vx; 

continue while; 

continue while token; 

This is how we define the significance of the statement (11). Let W 

be the innermost iteration header whose scope contains the continue 

statement (11) and which begins either with the sequence 

(Vx e ... ) 

or with some such sequence as 

(min < Vx < max, ... ) 

Let L be a unique label occurring within the scope of this iteration, 

but at the very end of this scope. Then (11) is equivalent to 

go to L; 

The significance of the statements (12) and (13) may be defined in 

similar fashion, and we leave it to the reader to supply the neces

sary details. Observe, however, that if the while-iteration header 

to which (12) or (13) refers contains a doing block, then (12) or 

(13) will cause a transfer to a label located immediately before 

the first statement in this block; note (cf. (6)) that this block 

~~ statements occurs at the very end of the scope of the while 

;e·ration. 
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We now describe a type of compound operator provided in SETL 

and related to the set-theoretic iterations with which we h~ve 

just been concerned~ If op is any binary operator or function of 

two variables, or more generally any expressio·n having such an 

operator or function as its value, then 

(14} [op; x 1 e:: e 1 , x 2 e:: e 2 {x
1

}, ... , xn e:: en {x
1

, ... ,xn_
1

} 

I C{x 1 , ... ,xn}] S{x 1 ,x
2

, ••• ,xn} 

denotes the value v which would result from the foi1owing 

iteration calc4lation 

{15} v = n; times= 0; {Vx1 e::e1 ,x 2 e::e2 {x1 } , ... ,xne::en{x 1 , ... ,xn-l} 

lc(x 1 , ••. ,xn}} if times~ O then times=l; 

v = S {x 1 , ... , xn} ; else v = v op S {x 1 , x 2 , ... , xn} ; ; 

The "operator" appearing with brackets in {14} is called a compound 

operator. The construction {14} is subject to the same conditions 

concerning free occurrences of variables, etc., as is the iteration 

{2}. In particular, numerical range restrictions of any of the 

forms· (4A}, {4B}, (4C} are allowed. The construction (14} will 

often be used when the operator~ is commutative and.associative, 

in which case the value of (14} is independent of the order in 

which the set-theoretic iteration (15} is carried out. Note, for 

example, that the availability of the construction (14} allows us 

to write the ordinary mathematical formula 

as 

[+: x
1

e::a
1

] [max: x
2

e::a2 ] #[~: x
3

e::a3 ] S{x
1

,x
2

,x
3

) . 

A resolving convention is required if the implied scope of a 

compound operator is not to be ambiguous. One may ask, for example, 

if the expression 

[+: x e:: a
1

] f{x). + b 

is to have the reading 

or the reading 
{[°+: x e:: a

1
] f{x))+ b 

[+: x e:: a
1

] {f {x) + b) . 
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We adopt the convention that a compound operator is to be treated 

a monadic operator; as such, it will have minimal scope (except 

insofar as built~in operators producing boolean from nonboolean 

quantities may have higher precedence). Thus, the first of the two 

possible readings noted above is correct. 

We also permit while iterators to be used within compound opera

tors, in much the same way that set-theoretic iteration headers are 

used. Thus, if C is a boolean-valued.expression and block a block 

of_statements, we may use 

( 16) [2.E_: while C doing block] expr 

to denote the value v which would result from the following itera

tive calculation 

(17) v = Q; times= O; (while C doing block) if times~ O 

then times= l; v = if times~ 0 then expr 

else v 2.E expr; end while; 

We also permit while-iterators and set-theoretic iterators to 

be intermixed in a compound operator, so that, for example, 

(18) [2.E: x 1ee 1 , while C doing block, x 2ee 2 (x 1 )jo(x 1 ,x 2 )] expr 

is a legitimate expression whose value the reader will readily deduce. 

2. Iterators over Tuples, Character Strings, and Bit Strings. 

One will frequently wish to extend an iteration over all the 

components of a tuple, character string, or bit string. For this 

purpose, the iteration form 

(1) (1 ~ Vn ~ #tuple) x = tuple(n); block end V; 

could be used. Since iterations like (1) would be used frequently, 

however, we provide the abbreviated form 

(2) (~x(n) e tuple) block end V; 

Iterators of the form (2) may also be intermixed with groups of 

other iterators, used in compound operators, existential and 

Lversal quantifiers, set-formers, and with quit and continue 

~~dtements; in general the conventions explained in the preceding 
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paragraph apply mutis mutandis to iterators of the form (2). 

Note the following simple applications. To form the set of 

components of a tuple (with no undefined co~ponents) 

( 3) set= {x, x(n) e tuple}; 

To find the position of the first blank character in a string, 

if any: 

(4) pos = if 3c(n) e stringlc ~-' ' then n else n; 

3. If-statements, Flow Statements. 

SETL provides an ALGOL-like conditional statement which may have 

the form 

if bool 1 then block 1 else if bool 2 then block 2 •.. else blockn; 

or may have the slightly simpler form 

if bool 1 then block 1 else if bool 2 then block 2 ... 

else if bool 1 .then block 1 ; n- n-

Here bool 1 , ... ,booln are required to be boolean expressions; 

each of block 1 , .•. ,blockn is an arbitrary sequence of valid SETL 

statements, which may include go to statements and additional if 

statements. 

Each statement block forming part of an if-statement, with the 

exception of the last such statement block, is terminated by the 

occurrence of the next following keyword else or then. The last 

block is terminated by the occurrence of the ?emicolon explicitly 

shown as terminating the if-statement displayed above. Of course, 

since the final statement of this final block is itself terminated 

by a semicolon, the visible sign of an if-statement termination 

will be a double semicolon. For example, we might have 

if x ~ 0 then set= set with x; else n = n+l;; 

This style is acceptable for short blocks, but when long blocks of 

statements are encompassed within if-statements scopes delimited 

in this way would become.confusing. For this reason, we permit a 

variety of alternative conventions. These are: 
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1. The use of parentheses. Any block of statements may be 

closed in parentheses, and remains a block of statements. Thus, 

vvc might write 

if x ~ 0 then set= set with x; else (n = n+l; k = k*n;); 

2. The use of either 

end; or end if; 

or more explicitly still 

end if t 1 t 2 t 3 ... 

where t 1 t 2 t 3 is the string of tokens following the keyword if 

in the statement being terminated. Thus, for example, one may write 

either 

if x ,S!.!:_ 0 then set= set with x; else n=n+l; k=k*n; end if; 

or 

if x ,S!.!:_ 0 then set= set with x; else n=n+l; k=k*n; end if x; 

If-statements may be nested, that is, an if-statement may occur 

as part of·a block within another if-statement. 

The conventional form of if-s_tatement which we have j-ust 

described is adequate in many situations, and by allowing if

statements to be nested within one another we .significantly 

enhance the expressive power of this statement form. However, when 

complex sets of interlocking conditions must be dealt with, the 

nested if-statement becomes inadequate. The difficulty lies in the 

fact that the if-statement intermixes the controlling conditions of 

a subcasing operation with the transformations to be performed 

in the various subcases; such intermixture violates the fundamental 

design principle of grouping by logical relation. For this reason, 

SETL pr6Vides, in addition to the ALGOL-like if statement form 

defined above, yet another linguistic form, designed for the 

description of complex sets of conditional· actions, and having the 

interesting property of exploiting the two-dimensional nature of 

paper. This statement form is introduced by the keyword flow, and 

will therefore be called a "flow-statement". 
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A flow statement consists of a header and ij trailer, The 

header consists of the keyword flow, followed by a series of. 

header elements, a~p terminated by a semicolqn. 

In the simplest form of flaw-statement, only test nodes and 

exit-action nodes will appear, and each test node will consist 

simply of q name followed by the sign "?",.while an exit-action 

node will consist merely of a name followed by the sign '',". 

(The comma immediately preceding the semicolon which terminates 

a flow-header is by convention omitted.) The following is an 

example of the somewhat unfamiliar construc~ion we have in mind: 

( 1) flow· node term? 

arelexalts? islockey? 

findalt, maynext, keypres? 

aresecalts? maynext, 

findalt, maynext; 

arealts? 

findalt, maynext, 

The semqntic intent of such a header may be explained as follows. 

Each test node N names a boolean expression to be evaluated. (The 

evaluation of this expression may be preceded by the execution of a 

block of statements, cf. below.) If this expression has the value 

true, then the left-hand descendant of N, i.e. , the node immediately 

below and to the left of N, is evaluated (or in the case of an 

action node, performed; see below) . If this expression has the value 

false, then control passes to the right-hand descendant of N. An 

action node names either a block of statements to be performed, or 

names a test node occurring elsewhere in the flow header, or names 

a label external to the whole flow statement text. In the first 

case the designated block of statements is performed, and control 

passes, in normal fashion, either to the next statement following 

the flow statement, or, in the presence of explicit go to commands, 

to some other statement. In the second case, control "loops back" 

to a prior test node; in the third case, control passe~ out of the 

flow statement to some other labeled statement. Note that the two 

dimensional "display" form of a flow header like (1) serves to make 

vivid the flow of control within a sequence of tests; in 

particulqf, it is easy to read off the collection of tests, and 

their outcomes, which precede any particular test or action in tne 

tree. 
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Having made these heuristic comments, we continue with a formal 

scription of the structure of a flow statement, going on to 

describe its second or trailer portion. This part of a flow state

ment, which follows immediately after the header portion of the 

statement, serves to define the details of the tests and actions 

mentioned in the header portion of the statement. 

The trailer part of a flow statement, as well as the flow 

statement itself, is terminated by the token sequence 

( 2) end flow; 

A flow statement trailer consists of a sequence of definitions, 

each of which is prefixed by a label identical with one of the 

names in the flow statement header. A label identical with one of 

the names occurring in the header will be called an active label. 

Each definition extends from the active label with which it begins 

up to either the next following active label or to the end of the 

entire flow statement, whichever is nearer. 

The definition corresponding to each action node is a block of 

ordinary SETL statements. When control passes to the action node, 

this block of statements is executed, and control passes on in the 

manner described above. 

The definition corresponding to a test node is a block of 

ordinary statements, to which a Boolean expression terminated by 

a semicolon and prefixed by the sign"=" is prefixed, this whole 

context therefore appearing as 

( 3) = expn; 

When the test node is invoked, all statements in the definition 

corresponding to the test node are executed, following which the 

terminal Boolean expression (3) is evaluated. If this yields the 

value true, then control passes to the left-hand descendant of 

the test node; the value false transfers control to the right~hand 

descendant of the test node. 

Action nodes not defined in the trailer of a flow statement may 

be called exit nodes; for clarity we allow $UCh a node to_be preceded 

hv the word "to" in the case of an exit node. Consider, for 

Linple, the following flow statement. 
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sl: 

s2: 

flow 

actl, 

tl:= x lt 0; 

actl: x=x+y; 

... , . 

• • • I 

tl? 

to s2; 

end flow; 

When this flow statement is encountered, the expression x lt 0 

will be evaluated. If it has the value true, then the statement 

x = x+y will be performed, and control will pass to the statement 

labeled sl. On the other hand, if x lt O has the valµe false, 

then control will pass at once to the statement labeled s2. 

The special name quit may be used in an action node; if, within 

a flow statement, a node so named is executed, control will pass to 

the first statement following the flow statement terminator. 

The labels occur~ing in the trailer portion of a flow statement 

are assumed to be known only within the statement. That is, one 

cannot enter the tree in a nonstandard way by executing a go-to 

statement. Moreover, a go-to statement occurring within a definition 

in the trailer part of a flow statement must either reference a 

label (necessarily inactive), which is either part of the same 

definition or which lies entirely outside the flow statement. This 

rule serves to exclude "hidden" control flow, that is, control flow 

between the nodes of a flow statement which is not shown explicitly 

in the header part of the flow statement. 

We now describe certain syntactic variations allowed within flow 

statements which improve the flexibility of this type of statement. 

(a) In addition to test nodes. and exit-action nodes, we allow 

intermediate-action nodes. Such a node consists of a name followed 

by the sign"+". The node name must be identical with a label 

appearing in the trailer part of the same flow statement; the 

definition following this label must be a block of ordinary SETL 

statements. The node will have precisely one descendant, which 

may be either a test node or ~nether action node. When, in execut

ing a flow statement, control passes to an intermediate action 

node, the code block defining this node is executed, 

following which control passes to the descendant node of 

the intermediate action node. (Of course, any explicit go to 
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encountered may modify this code flow.) Consider, as an illustration 

the construction just explained, the following flow statement 

flow tl? 

actl: • • • I tl:= 

end flow; 

actl + t2? 

act3·, 

• • • I 

actl, act2; 

t2:=·••i act2: ... ; act3: ... 

If tl has the value true, we perform actl, and then perform act3; 

if tl is not true we test t2 and then perform either actl or act2. 

(b) Any action node in a flow header.may be preceded by an 

iteration-header. If such a prefix is attached to an action node, 

it is meant that the code in the node definition is to be executed 

iteratively in the manner defined by: the iteration header. An 

iteration prefix used in this way does not call for a terminating 

semicolon. When the iteration termin. :tes, the next action to be 

performed (which may simply involve passage of control to a 

successor node) is determined in the usual manner. For example, 

we may write 

flow setnonnull? 

(Vs e items(cls)) doelem, 

doelem: ... ; 

printnullcase: 

end flow; 

• • • I 

printnullcase; 

In this case, the code block labeled by doelem will be executed 

iteratively, once for each element of the set item(cls), following 

which control will pass out of the flow statement shown above. 

(c) A node in a flow statement header may be replaced by the 

text which would otherwise appear in the definition corresponding 

to the node. In this case, the text of the definition must appear 

within parentheses. For example, we may write 

flow (x ~ 0) ? 

(y = x+l;), (y ~ 0)? 

on, ( z = x+y;) ; 

on: subr(x,y); end flow; 

(d) Any code block contained in a definition in the trailer part 

of a flow statement A may contain further flow-statements B, c, etc., 
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but the exit transfers of these embedded flow statements must, in 

accordance with the rule for go to-statements stated above, refeI e 

labels which are either part of the labelled definition or which 

lie entirely outside the (largest) developing flow statement A. 

A greater flexibility is provided by an explicit subflow option. 

To use this option, we interpolate one or more header extensions 

between the header of a flow statement and the trailer which follows 

it. Each such header extension consists of an extension label 

corresponding to some node named either in the preceding header or 

in some preceding header extension, followed by the keyword 

subflow, followed by a list of distinct exit designators separated 

by commas and appearing within parentheses, followed by text 

describing a flow structure and having precisely the structure of 

the text which appears within an ordinary flow statement header. 

An example of a flow statement header with extension is as follows: 

flow howcompare? 

seenbefore? skip, 

skip, process; 

howcompare:subflow(bigout,smallout) firstdefined? 

seconddefined? 

firstbigger? definesecond+ 

bigout, smallout, firstbigger; 

definefirst+ 

seconddefined, 

This example illustrates the following syntactic and semantic 

points. Each header extension represents some sequence of tests 

and actions whose details one chooses not to show in the main header 

or preceding header extension within which this test/action sequence 

is first named. The header extension H labeled with a name NN 

appearing in a preceding test (or multi-test cf. below) node N is 

said to give detail con~erning N. When control passes to N and 

the test-action sequence labeled NN is performed, the consequence 

(for control) will either be that exit is made from the entire 

enveloping flow statement, or that control passes to the subflow 

node labeled with a particular exit designator. If H gives detail 

concerning the node N, then the k-th exit designator in the sequ, 

of designators which follows the keyword subflow is understood 
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refer to the k-th descendant of N. That is, if control passes to N, 

td if after the series of tests and actions which ensues control 

leaves H through its k-th exit designator, then it is understood 

that the next node to be executed is the k-th descendant of N. 

Note in this connection that we allow a header extension to 

contain any number of exit designators, and accordingly allow the 

test of any header or header extension to contain test nodes having 

a number of descendants larger than 2. Such test nodes are called 

multi-test nodes, and their presence is indicated by writing 

name? k, 

where k is the number of descendants possessed by the multi-test 

node name. This number must of course be equal to.the number of 

exit designators in the header extension labeled with the name name. 

This type of construction is illustrated by the following example. 

flow 

toosmall?. 

inwhatrange? 3 

biggerunity? 

skip, biggerunity; multiply, divide, 

inwhatrange: subflow(lessa,middle,greaterb) 

toolarge? 

skip, multiply; 

isgreaterb? 

greaterb, islessa? 

lessa, middle; 

When control reaches the above flow header, the condition 

isgreaterb is first evaluated. If this has the value true, then 

the condition toolarge is evaluated. On the other hand if 

isgreaterb has the value false, then the condition isZessa is 

ev.aluated. If islessa has the value true, then toosmaii is evalu

ated; in the contrary case, the condition biggerunity is evaluated,. 

etc. 

The reader is invited to transpose the flow header shown above 

into some collection of nested if statements expressing the same 

logic, and to comp_are the clarity of text which results to that of 

the text shown above. 
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4. Subroutine and Function Definitions. Initialization. 

SETL provides various features intended for the definition of 

subroutines and functions. A subroutine definition has the form 

define name (argl, arg2, ... , argn} ; _body end name; 

Here name_, arg 1, ... , argn are all valid names, while body is 

any valid sequence of SETL statements. The final statement 

end name; 

in the above definition locates its end. A subroutine defined in 

this conventional way is called via a statement 

name(exprl, ... ,exprn}; 

in which exprl, ... ,exprn are expressions defining the actual 

subroutine arguments to be used at the moment of call. Return from 

a called subroutine is accomplished using a return statement having 

the familiar form 

return; 

Subroutines are always recursive, as are functions (see below}. 

Note ~~at when a subroutine A is called recursively only the_ 

subroutine arguments and the variables owned by the subroutine 

are stacked; variables owned by other subroutines, but known 

within A (cf. the discussion of name scoping and the own declara

tion which follows} are not stacked. Thus, for example, a 

subroutine may be used recursively to add elements to a single 

particular external set. 

Functions rather than simple subroutines are defined by 

writing 

definef name(argl,arg2, •.. ,argn}; body end name; 

Return statements occurring within the body of a .function definition 

must have the slightly expanded form 

return expr; 

here expr is an expression which, evaluated immediately before a 

return from the function, defines the function value. 

In addition to these conventional forms of function and 

subroutine definition, SETL allows one definition of functions a .. u 
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subroutines called in a manner more closely resembling the normal 

rL use of infix and prefix operators. The definition of a 

runction to be called as an infix operator is written as follows: 

definef argl name arg2; body end name; 

Aside from the fact that it is written in a different syntactic 

form, and that ~he function name is underlined, the above .infix 

function has exactly·the same semantic significance as any two 

argument function name(argl,arg2). 

A programmer-defined prefix or monadic operator will have .only 

a single argument; its definition will have the form 

definef name arg; body end name; 

Infix and prefix operators, as well as functions written in ordinary 

parenthetical style, may freely be used as parts of expressions. 

Monadic operators always have a precedence superior to that of 

any infix operators, except that built-in comparison and test 

operators such as ~' E, etc. have higher p!:'ecedence. 

Subroutines of 1 and 2 arguments may also be written in infix 

and prefix form respectively, having in this case definitions of 

the form 

define argl name arg2; body end name; 

and 

define name arg; body end name; 

respectively. Subroutines defined in one of these forms should be 

called in the corresponding form. 

We allow subroutines and functions to be called in a variety of 

weys generalizing the conventional (1). 

The call 

will return the set 

. . . , X € a } 
n n 

This is consistent with earlier usage in case f is a set of 

ordered n+l-tuples. Still more generally, a call of the form 

f ( a 1 , ••. , [ aj ] , aj + 1 , ..• , [ ak, ak+ 1 , ... , a JI,] , ••• ) 

will return the value 

-213-



For monadic operators we can write in very similar fashion and 

with similar meaning 

~[a]; 

For binary _infix operators we can write 

[a] ~ b, a ~ [b], [a] -~ [b] , etc. 

We alfow similar forms for subroutine calls. If f is a subroutine, 

then the call 

f [ a
1 

, ... , a ] ; . n 

is equivalent to the iteration 

the call 

f(a 1 , ... ,[aj] ,aj+l'··· ,[ak,ak+l'··· ,a 1 ] ... ); 

is equivalent to the iteration 

Subroutines and functi_ons are legitimate atom-types within SETL, 

in particular, they may validly be elements of sets, components of 

ordered pairs, arguments of other subroutines, etc. This fact 

allows various powerful programming devices to be used; we may, 

for example, tag a set with certain functions of access and .combina

tion which are associated with it, etc. 

Aside from the operation of application that naturally belongs 

to subroutines and functions, the only built-in operations which 

apply to atoms of these types are the boolean tests~ and ne of 

equality and inequality. 

We regard a subroutine definition as initializing a variable with 

name identical to the subroutine name. The general conventions 

applying to initializations are as follows. 

Each statement in a block of statements occurring in the form 

(1) initially block; 
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will be executed the first time the subroutine containing (1) is 

1tered, but not subsequently. If any such statements occur 

within a subroutine (or function), they must precede all other 

statements of the subr0utine (with the exception of declarations 

associated with name-scoping; see below). This gives us a general 

method for the initialization of variables. 

A few extra words defining the semantics of initialization 

blocks (1) somewhat more precisely are in order; precise conven

tions are especially needed when (1) occurs within a recursive 

subroutine. We take the initialization (1) to be precisely 

equivalent to the statement 

(2) if flag~ 0 then flag= l; block; 

where flag is a generated variable uniquely associated with the 

initialization statement (1). The variable flag occurring in (2) 

is taken to be external to the subroutine A in which (1) occurs 

i.e., this variable is not stacked if A is entered recurisvely. 

Thus the statements of block will be executed orily when A is 

invoked for the first time, even if A is entered recursively. 

On the other hand, perfectly arbitrary statements, and even 

recursive subroutine calls, may be contained in block. 

In addition to the effects of explicit initializations of the 

form (1), the values of variables will be initialized in the 

usage-defined situation described below; such implicit initializa

tions will be made before any explicit initializations of the form 

(1) are made. Implicit initialization is performed: 

i. if a name labname is. used as a label within a SETL routine, 

then the variable of the same name will be initialized to have a 

value equal to the unique label atom corresponding to the label 

labname. This initialization is useful in that it allows us to 

write such expressions as 

go to {<constl,labl>,<const2,lab2>,<const3,lab3>}(expr); 

and thus to make use of "calculated go-to's" in flexible and 

convenient form. 

ii. certain very important initializations ·are connected with 

~ use of names as procedure names (i.e., as the names of subrou

tines or functions). These will be explained in more detail below. 
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However, before taking up these points, we must explain the 

general SETL namescoping rules which form their background. 

5. Additional examples of the use of SETL. 

Various important features of the SETL language, notably 

its namescoping rules, still r~main to be explaine~. However, 

since specifications of language features are dry and ultimately 

confusing if the actual use of the language is not illustrated 

by examples, we pause in our systematic account of SETL to give 

a few examples. 

A. Elementary examples: 

We begin by giving a few elementary definitions of functions 

to be used later, thereby illustrating, among other things, the 

definitional facilities of SETL. The functions defined in the 

following section will be used in later discussion. 

The following insertion and selection-removal operators are 

useful. 

define a in b; b = b with a; return; end in; 

define x from s; x = 3s; s = s less x; return; end from; 

This last subroutine chooses an arbitrary element from a set, 

removing the element from the set at the same time. 

The following useful function, which we write in infix form, 

assigns a specified value to a quantity if the qu~ntity happens 

to be undefined: 

definef ·val orm val2; return if val ne n then val else val2; 

end orm; 

The very general sinister call conventions described earlier 

in the present section can be used to define various functions 

useful in the presentation of pushdown stacks as tuples: 

definef top tup; return tup(#tup); end top; 
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definef newtop tup; 

(load) x = tup(#tup); tup=tup(l: #tup-1); return x;; 

(store x) tup(#tup+l)=x; return;; 

end newtop; 

The following function reverses a tuple: 

definef rev(tupl); return[+: #tuple~j~l]<tupl(j)>; end rev; 

If a function f is defined by a set of ordered pairs, the simple 

expression rev[f] gives the inverse function. 

B. Sorting. 

Occasionally, given a set sand a numerical function f defined 

on s, one wishes to sort the elements of s according to increasing 

values off. The following procedure assig-ns an element of sits 

position place(s} in sorte~ order" 

place= nl; 

(Vx E s) 

place(x) = #{y E slf(y) lt f(x) or 

(f(y) ~ f(x) ~ place(y) ne n)} + l; 

end V; 

More plausible sorting algorithms may also be represented in SETL. 

Here is the slightly better insertion sort, which sorts a sequence 

of n elements, in place, in a number of steps proportional to n 2 

(1 < V j 2_ #seq) 

(j > Vk ~ 1) 

if seq(k+l) lt seq(k) then 

<seq(k) ,seq(k+l)> = <seq(k+l) ,seq(k)>; 

else 

quit Vk; 

end if; 

end Vk; 

end Vj; 

The following algorithm defines the bubble sort, whi.ch is 

,,,h0ut as efficient as the sorting method jus't described. 
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n = l; 

flow at top? 

/quit, reversed? 

inter+ 

atbot? 

(n=n+l;) + 

· at top, 

(n=n+l;) + 

attop, 

(n=n-1;) + 

attop; 

attop := n ~ #seq; 

reversed := seq (n+l) 1 t seq·(n) ; 

inter: <seq(n+l) ,seq(n)> = <seq(n) ,seq(n+l)>; 

atbot := n ~ l; 

end.flow; 

The simple insertion sort algorithm described above will operate 

most efficiently if presented with data actually in order. The 

sliding insertion sort or shell sort exploits this fac~ incorporating 

a device which causes an array being sorted to converge rapidly 

to approximate order. The algorithm is as follows. A descending 

sequence Mn,Mn_ 1 , ... ,M1 of integers is chosen, with M1 = 1. 

Successively, for each j from n to 1, the array {ak} to be sorted 

is divided into M. subsequences 
J 

a2, aM.+2' -a2M.+2' 
J J . 

Each of th~se arrays is sorted using the ordinary insertion sort 

algorithm. Note that when j = 1 we have M1 = 1, so that the 

ordinary insertion sort algorithm is eventually applied to the 

whole array, guaranteeing that complete order is -eventually obtained. 

Experience shows that it is advantageous to define the sequence 

M ,M 1 , ... ,M1 as follows: put M = 2k-l, where 2k is the largest n n- n 
power of 2 not exceeding the number of elements to be sorted, and 

then put M, 1 = M./2. In SETL, all this may be written as follows: 
J- J 

m=l; (while m le #seq) m = 2*m;; m = m-1; 

(while mg_!:_ 0 doing m = m/2;) 

(1 ~ 'r/j ~ #seq) k = j-m; 

(while kg_!:_ 0 and seq(k+m) lt seq(k) doing k = k-m;) 

<seq(k),seq(k+m)>=<seq(k+m) ,seq(k)>;; 

end 'r/ j ; en_d while m; 
-218-



Next we describe ~1e so-called tree insertion sort. In this method 

binary tree, to whose nodes the elements to be sorted are attached, 

~~ built up by attaching successive branches. The tree is built in 

such a way as to ensure that if an element xis attached to a 

particular node N, then x exceeds all the elements attached to 

the left-hand sub-tree of N, and is exceeded by all the elements 

of the right-hand sub-tree of N. The rule for attachment of a new 

element xis as follows. Examine successive nodes y, beginning 

at the tree root. If x exceeds y, move down the tree to the right; 

or if y has no right descendant, make x the right descendant of y. 

If y exceeds x, move down the tree to the left, or if y has no left 

descendant make x the left descendant of y. When all the elements 

of the array to be sorted have been attached to the nodes, 

'linearize' the tree to an array by the following recursive rule: 

first linearize the left-hand sub-tree; the~ take the element 

attached to the tree root; then linearize the right-hand sub-tree 

to get the top part of the sorted array. This procedure will on 

the average sort an array of n elements in a time proportional to 

n log n. In S_ETL, it appears as follows: 

r = ni; i = ni; elt = ni; 

(1 < Yj ~ #seq) x = seq(j); 

ntop = newat; 

top= ntop; 

flow xbigr? 

isright? isleft? 

elt(ntop) = seq(l); 

down+ hangright, 

xbigr, 

down+ hangleft, 

xbigr; 

xbigr .- x 9:! elt(top); 

isright := (r(top) is desc) ne n; 
isleft := (i(top) is desc) ne Q; 

down: top= desc; 

hangright: r(top) = newat; 

hangleft: i(top) = newat; 

end Vj; 

seq= ni; traverse ntop; 

define traverse top; 

elt(r(top)) = x; 

elt(i(top)) = x; end flow; 

/* seq, elt, i, and rare all global and owned by a procedure 

external to this routine*/ 

[continued] 
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if top g n then return;; 

traverse 1 (top); seq(#seq+l) = elt(top); traverse r(top); 

return; end traverse; 

The simple selection sort is as follows: survey then elements 

of a set to be sorted to find the minimum element; remove it from 

the array; and iterate. In SETL: 

sorted=n1; (while set ne n1) 

sorted(#sorted+l)=[min:xe::set) xis minelt; set=set less minelt; 

end while; 

A variant of this basic idea yields the much faster tree selec

tion sort, which may be described as follows. First, attach the 

elements of the array to be sorted as the twigs of a binary tree 

of appropriate size. Next, propagate values up to the tree root, 

attaching to each node the minimum of the values attached to its 

immediate descendants, and causing each node to point to that 

immediate descendant node to which this minimum value is attached. 

When this structure is built, it becomes trivial to locate the 

original array minimum, detach it from the tree, and move it to 

a workspace in which sorted array elements are accumulated. After 

this removal operation, the tree is repaired by redetermining a 

minimum-of-descendants value for all nodes above the node just 

removed; after which the selection, removal, and repair process 

iterates until completion. 

Adopting the convention that the minimum-of-descendants is 

always found down_ the left-hand branch, the following shows a way 

that the above algorithm may be written in SETL. 

/* first build the tree*/ 

1 = n1; r = n1; v = n1; par= n1; trees= n1; 

(1 ~ ~j < #seq) newat is node in trees; v(node) = seq(j) ;; 

(while (#trees) ~ 1 doing trees= newtrees;) newtrees = n1; 

(while (#trees) _g!, ·1) ln from trees; rn from trees; 

newat is nd in newtrees; par(ln) = nd; par(rn) = nd; 

if v(ln) _g!, v(rn) then <1n,rn> = <rn,ln>;; 

<1(nd), r(nd), v(nd)> = <ln, rn, v(ln)>; 

end while; 

if trees ne n1 then 3trees in newtrees; 

end while; 
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/* now tree is built; begin main selection and repair process*/ 

top = 3 newtrees; seq = n.R.; 

"7hile .R. (top) ne Q) node = top; 

(while .R.(node) ne Q) node·= .R.(node);; 

seq(#seq+l) = v(node); .R.(par(node)) = Q; 

(while par(node) ne Q) node= par(node); 

flow isldesc? 

isrdesc? 

is.R.b igr? fixv, 

switch+ fixv; 

fixv; 

:= .R.(node) is .R.desc 

:= r(node) is rdesc 

ne Q; 

he Q; 
is.R.desc 

isrdesc 

is,.R,bigr 

switch 

maker 

fixv 

:= v (.R,desc) ~ v (rdesc) ; 

<.R. (node) , 

<.R. (node) , 

v (node) 

end while par; 

end while .R.(top); 

= 

r(node)> = 

r(node)> = 

v ( .R. (node) ) ; 

maker+ 

fixv, 

<r(node) ,.R.(node)>; 

<r (node), Q>; 

end flow; 

The still more remarkable heapsort remedies certain of the 

deficiencies of the tree selection sort, and· provides a method 

for sorting an array in place and in a number of steps bounded 

by n log n. It is in essence a binary tree selection sort in 

which the tree pointers are implicit, the descendants of the element 

at array location j being the elements at locations 2j and 2j+l. 

The algorithm is as follows. 

(1 < \fn ~ #seq) m = n; 

(while if m le 1 then t else seq(m/2) lt seq(m)) 

<seq(m) ,. seq(m/2) ,m> = <seq(m/2) ,seq(m) ,m/2>; 

end while; end Vn;· 

(#seq~ Vtop > 1) <seq(l) ,seq(top)> = <seq(top) ,seq(l)>; m = l; 

(while 2 * m lt top doing m = targ;) 

targ = if seq(2*m) lt seq(2*m+l) and 2*m+l lt top 

then 2*m+l else 2*m; 

if seq(m) ~t seq(targ) then 

<seq(m) ,seq(targ)>=<seq(targ) ,seq(m)>; 

else quit; 
end if; 

end while; 
end \ftop; 
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Quicksort is a high-speed descendant of the simple bubble sort 

It operates as follows: take the first element x of an array a 

and, as in the bubble sort, compare it to its suc~essor y, inter

changing x and y whenever x exceeds y. However, if y exceeds x, 

interchange y with the element z having the largest possible index 

consistent with the assumption that x exceeds z. As this process 

proceeds, an increasing region R of elements known to be less 

than x will build up above x, and an increasing region of elements 

R+ known to exceed x will build up below x. Eventually x will 

come into its proper place. Then, if either R_ or R+ contains just 

two elements, they may be placed in order by a single interchange; 

in the contrary case, the procedure just described may be used 

recursively to sort R_ and R+· 

In SETL, quicksort appears as follows: 

define quicksort(a,i,j}; /* sorts part of array a between a(i} 

and a(j} */ 
flow (i ~ j}? 

(return;} , (i~(j-1}}? 

interchange2+ 

(return;} , 

(lowinx = i; hyinx=j;} + 

lowinxlesshy? 

nextsmaller? sortparts+ 

(return;}, interchange+ pushup+ 

lowinxlesshy,. lowinxlesshy; 

interchange2 : if a(i} 9.i a(j} then <a(i} ,a(j}>=<a(j},a(i}>;; 

lowinxlesshy := lowinx lt hyinx; 

nextsmaller := a(lowinx} 9.1 a(lowinx+l}; 

interchange 

pushup 

sort parts 

end quiqksort; 

<a(lowinx}, a(lowinx+l} ,lowinx> 

= <a.(lowinx+l} ,a(lowinx} ,lowinx+l>; 

<a(hyinx} ,a(lowinx+l} ,hyinx> 

= <a(lowinx+l} ,a(hyinx} ,hyinx-1>; 

quicksort(a,i,lowinx-1}; quicksort(a,lowinx+l,j}; 

end flow; 

·Merging procedures of various kinds play a central role in many 

of the most important methods for sorting large arrays by using ,e 

Fast internal sorts can also be built using merge techniques. We 

shall describe :one such sort,, the so-called natural two-way merge. 
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It works as follows: given an array of elements to be sorted; use 

a workspace of equal size, and merge elements from the top and bottom 

the array into the bottom of the workspace as long as these 

~~cments may be used to form an increasing sequence or run. 

Naturally, if both the top and b".ie bottom element can be used to 

continue a run, we first use whichever is smaller. When a run 

cannot be continued, we start a new run, placing it in reverse 

sequence of positions at the top of the workspace, until once more 

the run can no longer be continued. At this point, start a new run, 

storing it at the bottom of the remaining workspace area, etc. When 

the whole of the original array has in this way been transformed to 

the workspace, interchange the array and workspace, and repeat. 

During this process, the number of separate runs into which the total 

array is divided will be cut in half each time the whole array is 

combed through, and eventually complete order will result. 

In SETL, this procedure appears as follows. 

start: bot= l; top=#elt; xbot=l; xp=top; flag=-1; extra=nult; 

onward: if flag eq -1 then xtop=xp; xp=xbot; 

else xbot=xp; xp=xtop; end if; 

flag= -flag; 

if elt(bot) le elt(top) then 

extra(xp) = elt(bot); bot= bot+l; 

else 

extra(xp) = elt(top); top= top-1; 

end if; 

(while top ~ bot doing xp=xp+flag;) 

flow topbest? 

usetop, botok? 

usebot, endrun; 

topbest := elt(top) ~ extra(xp) and elt(top) le elt(bot); 

botok := elt(bot) ~ extra(xp); 

usetop extra(xp+flag) = elt(top); top=top-1; 

usebot extra(xp+flag) = elt(bot); bot=bot+l; 

end flow; 

end while; 

endrun if top~ bot then go to onward;; 

elt = extra; if xtop lt #elt then go to start;; 

Distribution or pocket sorts are, in a certain sense, dual to 

merging sorts. The simple pocket sort is the method used to sort 

punched cards on electromechanical.equipment. The algorithm is 
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as follows. A given collection of keys is to be sorted~ One 

regards these keys as integers to some base p, i.e. as sequences 

d 1 ... dk of base p digits. The items to be sorted are then 

distributed into p piles or pockets, according to the ieast signi

ficant digit dk. Then the piles are gathered up into a single 

sequence, being taken in the order 0,1,· ... ,p-l, and the distribu

tion process repeated, first for the digit dk-l , then, after 

regathering, for the digit dk_ 2 , etc .. The relative positions 

assigned in this method to two items during the j-th distribution 

pass will not subsequently change except as required upon examina

tion of more significant key digits during a later pass; and thus 

fully sorted order must emerge when all the digits of the keys 

have been processed. 

We may represent this algorithm in SETL as follows. 

multi= t; q=l; pocket=nult; 

(while multi doing q = q * p;) 

seq=I+:x(n) E dist(seq,p,q,multi)]x; 

end while; 

definef dist(seq,p,q,multi); multi= f; 

(0 ::· Vn < p) pocket(n+l) = nult;; 

(\fs(k) E seq) key= ((s/q) is keyhead) //p+l; 

pocket(key) = pocket(key) + 

if keyhead 2:_ p then multi= 

end V; 

return pocket; end dist; 

s ; 

t .. 
_1 I 

The radix exchange sort is another fast key sort. It works as 

follows. Regard each item of the array to be sorted as a boolean 

string. On a first pass through the array, and by performing 

appropriate exchanges, place all elements whose lead bit is zero 

at the bottom of the array, and all elements whose lead bit is 

one to the top of the array. Then, recursively, apply the same 

procedure to the top and bottom of the array and to the second 

through last bit of each item. 

In SETL, letting b be the number of bits in a key, this procedure 
appears as follows (notethat in this example test conditions are 
directly embedded in the flow tree; cf. section 3 above): 

/* to sort seq , use the following call: */ 

radsort(seq,1,#seq,b); 

define radsort(seq,bot,top,bp) ;if bot~ top then return;; 

i = bot; j = top; 



(while i lt j) flow (seq (i) (bp))? 

(seq (j) (bp) ) ? (i=i+l;), 

(j=j-1;), interchange; 

interchange: <-seq(i) ,seq(j)> = <seq(j) ,seq(i}>;<i,j>=<i+l,j-1>; 

end flow; 

end while; mid=if seq(i) (bp)then i-1 else i; 

radsort(seq,bot,mid,bp-1); radsort(seq,mid+l,top,bp-1); return; 

end radsort; 

The Ford-Johnson Tournament sort reduces, to a level very close 

to a known lower level, the number of comparisons required to 

sort n elements. However, the numb~r of moves required will on the 

average be proportional to n
2

. This method is therefore of interest 

only in the unlikely but conceivable special case in which the cost 
of comparing items is so high relative to the cost of moving them 
that attention really does focus exclusively on comparisons. 
The algorithm is as follows. Divide the items to be 

sorted into n/2 pairs, arranging each pair so that its first 

element exceeds its second. Then sort the pairs according to 

their first elements, using the tournament sort procedure (recursive

ly). This produces a pair of arrays a 1 , .. ~,am and b 1 , ... ,bm' where 

m = n/2, where the a's are in increasing order, and where a. > b. 
J - J 

for all j. Finding the proper position of one new element among p 

already ordered others involves q comparisons, where q is the 

smallest integer such that 2q-l ~ p; and such a location process 

is at its most efficient when pis precisely of the form 2q-l. So 

then 

b
1

,a
1

,a 2 form an ordered sequence of 3. elements, into which b 3 
may be inserted using two comparisons; 

The set of elements b 1 , a 1 and b 3 in proper position are then 

3 in number, and b 2 may be inserted among them using 

two comparisons; 

The set of b 1 ,a 1 ,a 2 ,a 3 ,a 4_, together with h 2 and b 3 in proper· 

position, are then seven in number, so that first b 5 , 

and then b 4 may be inserted into position using 3 

comparisons. 

, ... ,b 5 , together with a 1 ..• a 10 , are then 15 elements, and thus 

b 11 , arid then b 10 , .•. b 6 may be inserted into position 

using 4 comparisons, 

and so forth. -225-



This rather complex sorting algorithm may be written in SETL as 

follows; we assume a sequence items is given for sorting, on whic 

a user-supplied function le (x,y) is defined, which is "true" if x5:;1. 

definef fordj(items); 

if(#items) ~ 1 then return items;; 

au = n.R.; bu = n.R.; i_ = 1; /* unsorted a and b sequences. * / 

(while i lt #items doing i = i+2;} 

x = items(i); y = items(i+l); 

if le (x,y) then <x,y> = <y,x>;; 

au(#au+l)=x; bu(#bu+l)=y; end while;" 

oddone = items(i); /* only exists if #items is odd. */ 

a= fordj(au); /* sort the half-length sequence.*/ 

(1 ~ Vj ~ #a) /* rearrange bu in the same way that au was */ 

dummy = 1 < 3 n ~ #alau(n) ~ a(j); . /* rearranged. */ 

au{n) = SG; 

b.(n) = bu(j); end Vj; 

b(#b+l) = oddone; 

/* now merge the components of 'b' into 'a' using a binary search. 

sequence 'a' will grow on the left, with its lowest index (li.a) 

becoming negative*/ 

lia=l; jbot=l; jtop=l; length=l; 

(while jbot le #b) 

(jtop ~ Vj ~ jbot) 

/* merge b(j) into the sequence a(lfa:j-1) */ 

low= lia-1; high= j; 

(while(high-low) gt 1) 

mid= high+low /2; 

if le (b (j) , a (mid) ) then high=rnid; else · 1ow=rnid;; 

end while; 

/* b(j) goes between low and high (even in the cases 

where it goes on an end, as in the case of b ( 1). * / 

(lia <Vi< iow) a(i-1) = a(i);; 

a(low) = b(j); lia = lia-1; end Vj; 

jbot = jtop+l; length= 2*length+l; jtop=(lia+length)min #b; 

end while; 

return.{<p{l) - lia+l, p(2)>, ·p Ea}; /* make it 1-origin */ 

end fordj; 
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6. Namescoping, Variation of references caused by recursive sub

routine calls and returns. Initialization rules applying to 

subroutine names. 

SETL provides a family of namescoping mechanisms, which it is 

hoped are sufficiently general and powerful to be convenient in 

the development of very large systems of programs. Of course, only 

experience not presently available can testify to the success (or 

failure) of the scheme proposed. It is hoped also that the 

proposed conventions will support user languages with a useful 

variety of user-level namescoping conventions. Here also, more 

experience is required. 

We regard a namescoping system as a set of conventions which 

assign a unique 'resolved name' y to each 'source name' x appearing 

in a mass of text. The particular y to be assigned to each 

occurrence of x depends on the location of y within a nested, 

tree-like family of scopes. 

The purpose of a namescoping system is of course to balance 

the conflicting pressures toward globality and protection of names. 

Unrestrictedly global use of names is unacceptable, since it creates 

a situation of 'name crowding' in which names once used become, in 

effect, reserved words for other· program sections. ·aard-to-diagnose 

'name overlap' bugs tend to abound in such situations. 'Globalization' 

of any subcategory of names can recreate this problem. For example, 

in large families of subroutines it may become difficult to avoid 

conflicts between subroutine names. In sufficiently large program 

packages, it will be desirable to give even major scope names a 

degree of protection. 

On the other hand, a system in which names tend very strongly to 

be local unless explicitly declared global can tend to force one to 

incorporate large amounts of repetitive declaratory boilerplate into 

almost every protected bottom level narnesc~pe or subroutine. In a 

language like SETL, which aims at the compressed and natural state

ment of algorithms, this burden is particularly irritating. 

What we therefore require is a system capable of dividing a 

nn+-.entially very large collection of programs into a rationally 

anized system of 'sublibraries', between which coherent cross

referencing i~ possible in a manner not requiring clumsy or elabor

ate locutions. 

-227-



·More specifically, a namescoping scheme for SETL must address 

the following problems: 

i. All function and subroutine calls in SETL are recursive. 

If a routine is called before returns from all previous invocations 

have been executed, we must know which ·variables should be stacked 

prior to entry. 

by the routine. 

of variables are 

to names used as 

to names used as 

These are the variables which are said to be owned 

Conventions unambiguously determining ownership 

required. These conventions must apply not only 

ordinary variables within procedures, but also 

procedure arguments, store-block arguments, and 

as labels. Similar issues arise in connection with names used as 

macros. 

ii. A procedure p 1 will ·occasionally wish to access variables 

owned by a second procedure p 2 . Our namescoping system will there

fore have to include rules specifying when an occurrence of a name 

x in p 1 references the same quantity as an occurrence of x in p 2 . 

Moreover, p 1 will occasionally wish to reference the x of p 2 using 

a local name y distinct from x. For example, this will be neces

sary if distinct variables,both initially called x, but occurring 

in t~o distinct procedures p 2 and p 3 , are to be accessed from 

within p 1 . Thus our namescoping scheme will not only allow inter

procedure references, but will also support some degree of 'name 

aliasing' in connection with these references. 

iii. Procedure names will normally be used in a more global 

·manner than names designating variables used within procedures. 

_ Rules defining the situations in which distinct names r·eference 

a single procedure, or in which identical names occurring in differ

ent scopes. reference distinct procedures, are required. Similar 

remarks may be made concerning scope names themselves. 

iv. Since in SETL variables may have procedures as values, and 

since a single variable may at different moments have different 

procedµres as its value, we regard each procedure definition as 

a type of initialization. Our namescoping scheme must define the 

initial value of each variable occurring as a procedure name. 

v. In the absence of appropriate restrictions, the degree of 

freedom in referencing implied by i-iv above would make all 
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too easy the introduction difficult-to-find bugs connected with 

mote references. To prevent this, our namescoping scheme must 

involve restrictions which make unlikely the inadvertent use of 

patterns of remote reference which substantially change the 

meaning of a given section of code. That meaning which a code 

passage seems to have should be the meaning which it does have, 

even in the presence of remote references. We shall call any 

violation of a restriction forming part of the SETL namescoping 

scheme a scoping error~ Various types of scoping error will be 

pointed out as the details of restrictions are given. 

It is hoped that the namescoping scheme which will now be 

presented addresses these complex issues adequately. At any rate, 

since in the present section quite a number of basic semantic 

matters must be treated all at once, careful exposition, and 

patient attention on the reader's part, are both in order. 

Certain important characteristics of the SETL name resolution 

conventions are noted in the following remarks, intended as 

introduction to the detailed namescoping specifications given 

below. 

a. We deliberately break the conventionally very close connec

tion between subroutine boundaries and name scopes. Thus name 

scopes enclosing several subroutines are allowed; at the same time, 

a single subroutine may contain several independent name scopes. 

b. We regard scope boundaries as logical 'brackets' possessing 

a certain power to protect names within them from identification 

with names of the same spelling. located outside. For flexibility, 

distinct numbered levels of bracketing are provided. We stipulate 

tha 4 within a scope, two variables with different names are differ

ent unless an explicit declaration is made. 

c. We provide mechanisms for identifying variables which appear 

in the same scope and have different names, or appear i_n different 

scopes. The mechanisms for identificatiorr act recursively. Two 

methods are provided for the identification of variables appearing 

in different scopes. Variables can be identified either by being 

made global within a scopes, in which case they are transmitted to 
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scopes included withins, or by using explicit remote refer~nces 

(see the include declaration discussed below). 

d. An item i occurring in a narnescope ns can only be identified 

with an item j occurring in a different namescope ms if i becomes 

'known' in ms (or, conversely, if j becomes known inns). In the 

namescoping scheme to be presented, it is actually this notion, 

that of an item occurring in one namescope becoming known in 

another, that is fundamental; given this notion, the rules for 

identification may be defined in a somewhat corotlary way. 

e. Each SETL subroutine or function is taken ipso facto to be 

a namescope, of level O. Note that such a scope, like any other 

scope, can both contain embedded scopes and be contained in a 

larger scope. 

We now begin to present the SETL narnescoping scheme in detail. 

The text of a SETL program consists of a linear sequence of 

tokens, grouped into a nested family of namescopes (which for 

brevity we may refer to simply as scopes). A scope is opened by 

a header line having the form 

(1) scope <(optional) level indicator> <scopename>; 

for example 

scope 3 optimizer; 

Here, <scopenarne> designates a simple or compound name, which 

names the scope. The optional <level indicator>, if it occurs, 

has simply the form 

<integer> or - <integer> 

The nonoccurrence of a level indicator is logically equivalent to 

the occurrence of a level indicator with a value of 1. A scope 

opened by the header line (1) is closed by the occurrence of a 

matching trailer line 

( 2) end <scopenarne>; 

for example 

end optimizer; 

All the text included between (1) and the next following matchina 

line (2) constitutes the body of the scope headed by (1). A lir 
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(2) matching each line (1) is required; the absence of a matching 

~iler constitutes a scoping error. Several other forms of 

scoping error will be described in the following paragraphs; a 

text is acceptable to the namescope processor only if it contains 

no scoping errors. 

The text comprising a scope ns falls naturally into several 

portions: 

(a) imbedded subscopes; 

(b) scope-associated declaratory text (to be described in more 

detail shortly); 

(c) other text, which we call the proper text of the namescope ns. 

This proper text is of course SETL code defining various SETL 

subroutines, functions, etc. 

The beginning of a scope ms imbedded within another namescope 

ns is marked by the occurrence of a header line of the fonn (1); 

if such a header lirie occurs inns, we require that a matching 

trailer line (2) be present in the body of ns (condition of well

formed nesting). In such a case, we call ms a subscope of ns. 

We say that ms is directly imbedded within ns if ms is a subscope 

of ns, but is not a subscope of any (proper) subscope of ns. In 

this case we call ns the parent scope of ms, and call ms an 

immediate descendant of ns. If several scopes have the same parent 

scope, they are said to be siblings of one another. 

We require that scopes have names differing from the names of 

their parents and the names of each of their siblings. This allows 

us to refer to each scope in a unique manner by using a sufficiently 

long name string formed by concatenating the scope's immediate 

name with the name of its parent, its parent's parent, and so forth. 

Thus, for example, in a sufficiently large program library the 

following configuration of scopes might occur: 

(3) scope linearprogramming; 

scope optimizer; 

X = 
end optimizer; 

end linearprogramming; 

[continued] 
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( 3) [continued] scope fortrancompiler; 

scope optimizer; 

X = 
end optimizer; 

end fortrancompiler; 

In the discussion which follows we shall, in order to refer 

unambiguously to one of the two different scopes called optimizer 

use "hyperqualified" riames of the form 'optimizer.fortrancompiler' 

and 'optimizer. linearprogramming'. Note, in connection with 

the above example, that this allows us to refer unambiguously 

to two different scopes,. both called 'optimizer'. 

Similarly, two distinct variables named x, occurring within 

these distinct scopes, can be distinguished by using the hyper

qualified names 'x.optimizer.fortrancompiler' and 

'x. optimizer.linearprogramming' . 

Within the total mass of proper text (cf. (c) above) associated 

with a namescope ns, various tokens will occur. For the ·purposes 

of the following discussion, it will be convenient to designate 

each such occurrence of a token t by a symbol showing explicitly 

the nest of scopes.in which t appears. For definiteness, we will 

write this symbol as 

( 4) 

where ns 1 , ... ,nsk is the nest of scopes containing t, ns 1 being 

the smallest such scope; ns 2 , the parent of ns 1 ; ns 3 , the parent 

of ns 2 ; etc. The final scope nsk is an 'outermost' scope, and 

hence a scope possessing no parent. A symbol (4) will be called 

an item. 

The item propagation rules to be described in the following 

paragraphs will make items occurring in one scope known in other 

scopes. (This is the immediate effect of the include and global 
\ 

declarations to be described shortly.) Any item known in a 

namescope ns is known there under some local alias. (The rules 

determining the local aliases within ns of items known there but 

not occurring there will be explained below.) Identical items (, 

always reference the same object; beyond this, the central problem 
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of any namescoping scheme is to decide when two token occurrences, 

t de~ignated by the same item symbol, reference the same object. 

The present namescoping scheme uses the following fundamental rule 

to make this decision: if within ns there occurs an item (4), and 

if an_item i' not occurring within ns becomes known within ns under 

the local alias t', then (4) and i' designate the same object if 

either the t of (4) is an initial part of the compound token t', 

or vice versa. 

In the rule just stated we meet the important notion of 'compound 

token' for the fir~t time; of cours~, a definition of this notion 

is required immediately. A simple token is an item recognized as 

integral by the lexical scanner for SETL; this may be either a 

special symbol, constant, simple name, underlined name, etc. A 

compound token is a sequence of simple tokens connected by occur~ 

rences of the 'underbar' symbol. Thus 

xl 

is a simple token, while 

xl_scopel_chapter3 

is a qualified token. Similarly, 

+ and maxop 

are simple tokens; 

+_scopel_chapter3 

and 

maxop _scopel_chapter3 

are compound tokens. The successive simple tokens making up a 

compound token are its parts. The lexical type of a compound 

token is the lexical type of its first part. With the possible 

exception of its first part, every part of a qualified token must 

be a simple name. 

Both simple and compound tokens are allowed to_ designate 

variables, procedures,. etc. in SETL programs. However, compound 

tokens play a specific role in connection with the SETL namescop

ing scheme. More precisely, the local alias under which an item 

becomes known in a name scope ns distinct from the scope ms in 
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which it occurs will ·always be a compound token. In the mannAr 

defined by the fundamentai rule stated above, the structure of 

this compound token will then govern the identification of the 

item (4) with an item occurring in the narciescope ns. 

For example, under the rules·to be explained below an item i 

may become knowri in a namescope ns under the local alias 

(5) x~optimizer_linear. 

Then a reference within ns having either the form 

( 5 I ) 

or 

( 5 II) 

or simply 

( 5 11 I ) 

x_optimizer 

x_optimizer_linear 

X 

will reference the same object as i. 

It deserves to be mentioned that we use '.' to separate scope 

names (as in (4)) only in the present "meta-discussion" of name

scopes. The SETL user will employ compound names involving under

bars only_. In the present meta-discussion, the use for different 

but related purposes of the two different punctuation marks '.' 

and' 'prevents ambiguities of reference that could otherwise 

arise. Suppose, for example, that we wished to discuss text 

containing the following lines: 

( 6) scope programming; 

scope optimizer_linear; 

X = 
end optimizer_linear; 

end programming; 

scope linear_programming; 

scope optimizer; 

X = • • • ' 
end optimizer; 

end linear_programming; 
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The first x in (6) is referenced in the present meta-discussion as 

x.optimizer_linear.programming , 

and the second x in (6) as 

( 7 I ) x.optimizer.linear_programming. 

If two separate punctuation marks were not available, these 

references would be identical. 

· Two principal declaratory forms, a global· declaration and an 

include declaration, are provided in the SETL namescoping scheme. 

The global declaration allows items to be propagated from one 

namescope ns to other namescopes physically included within ns. 

It thus achieves effects similar to those achieved by the name

scoping schemes used in ALGOL-60 and PL/1; however, globality is 

less 'automatic' in the SETL scheme than in the scheme provided 

by either of these two languages. The include declaration allows 

items to be propagated very selectively between namescopes standing 

in no particular relationship of physical proximity. In this 

regard it resembles FORTRAN 'COMMON'; however, our include conven

tions are considerably more systematic and general than those 

used by FORTRAN. 

The syntax of a global declaration is 

(8) <global declaration>= global <token>, ... ,<token>; 

!global <token>; 

!global <signed integer><token>, ... ,<token>; 

!global ~signed integer><token>; 

<signed integer> = <integer> I - <integer> 

Examples are : 

global addroutine,xl,x2,addroutine_y; 

global 3 optflag; 

global -1 case_flag; 

A name nm available in a given scope ns and declared global in that 

scope possesses a globality level,,defined as follows: if the global 

declaration in which nm appears begins with a <signed integer> k , 

~h= value of k determines the globality level of nm. If such a 

gned integer> is absent from the global declaration in which nm 
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appears, then the globality level of nm is (by default) equal to 

the level of the scope ns. 

Suppose, for example, that the three global declarations shown 

above appear in the context 

scope 2 library!; 

global addroutine,xl,x2,addroutine_y; 

global 3 optflag; 

global -1 case_flag; 

Then addroutine, xl, x2 and addroutine_Jf have globality level 2; 

optflag has globality level 3, and case_flag has globality level -1. 

An item nm designated by a name available within a scope ns 

and having a given globality level n becomes known within every 

scope ms directly imbedded within ns, provided that the 

level of the scope ms does not exceed n. Moreover, if nm 

'penetrates' into ms (i.e., becomes available via globality 

within ms), it has default globality level n within ms~ and will 

therefore become known within all imbedded subscopes of ms, 

provided that the level of these subscopes does not exceed n. 

This global propagation of name availability will continue through 

a series of mutually imbedded scopes until either a scope of level 

exceeding nor a scope containing no subscopes is enco~ntered. 

An item nm known within a namescope ns by the alias xl is known 

under the same alias xl within all scopes ms to which it is 

propagated through global declarations. 

As ~lready noted, each SETL variable will be owned by a particular 

procedure; when this procedure is entered, the current value of 

the variable will be stacked; the value will be unstacked on return 

from the procedure. The SETL conventions .determining vari•able 

ownership are as follows. If a variable is known only within 

a single procedure (i.e., within the namescope which is coextensive 

with the procedure, or within several namescopes, all embedded with 

the procedure) it is owned by:,.the. procedure. If it .is known in a 

body of text more extensive than a single procedure, it is owned 

·by a nominal 'global system procedure' (and hence not stacked on 

entry to any procedure) unless this general default rule is over-
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ridden by the presence of an owns declaration. Such declarations 

Ll have the following syntax: 

(9) owns routname 1 (varname 1 , varname 2 , ... ), 

routname 2 (varnamek+l'varnamek+ 2 , ... ), ... , 

Here routname 1, routname 2 , and so forth are tokens, possibly compound, 

which must designate items i which are subroutines or functions 

(that is,·i must appear following either the keyword 

define or the keyword definef.) Moreover, varname 1, varname 2 , etc. 

are tokens, possibly compound, which must designate variables. 

Here is an example: 

(10) scope treerouts; global nodes, i, r; 

owns walk(nodes); 

define walk(tree); nodes= ni;·walkfrom(tree); 

return nodes; end walk; 

define walkfrom(top); /* a recursive routine*/ 

top in nodes; 

if i(top) is newt ne n then walkfrom (newt) ; 

if r(top) is newt ne n then walkf rom (newt) ; -
return; 

end walkfrom; 

end treerouts; 

In this example, the set nodes is stacked on entry to the routine 

waZk, but not on entry to the (recursive) routine waZkfrom. This 

allows waZkfrom to collect items in a set external to itself. 

The items Zand rare not stacked on entry to either routine. The 

variable newt is stacked on each entry to waZkfrom (though, as a 

matter of fact, this is not essential to the logic of the above 

programs). 

Note as an exception to the above that -label items, i.e., items 

designating labels (see below for details) are always owned by the 

nominal global 'default' procedure and hence never stacked. 

We now turn to describe the SETL include declaration. This 

:laration can be used when a scope item ms (more precisely, a 

··---le designating a scope i tern) is known within a scope ns ( for 
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example, ms may denote a sibling scope of ns); use of this 

declaration identifies one or more items known within ms with 

items known within ns. 

In preparation for a discussion of the semantics of include 

statements, we discuss their syntax. An include statement has 

the form 

(11) include <list>, <list~, .. ·., <list>; 

or, if only one <list> occurs, the simpler form 

include <list>; 

the syntax of <list> is as follows: 

(12) <list>= <aliased name>l<aliased name>(-<token>, ... ,<token>) 

!<aliased name>(<list>, ... ,<list>) I 
<aliased name>= <token> I <token> [<token>] 

<aliased name>* 

Suppose that an include declaration of the syntax (11)-(12) 

occurs within a namescope ns. As will be indicated in more 

detail below, '-' is used to indicate that all items except 

those designated by a list of tokens are to become known within 

ns; a parenthesized list without a '-' indicates that precisely 

the items listed become available within ns; while '*' is used 

to indicate that every item known within some other scope also 

becomes available within ns. Finally, square brackets are used 

to achieve user con~rol over the local alias under which items 

become available. 

The use of the include statement will be grasped most readily 

through examples. First consider the following include statement. 

(13) include optimizer(routs3(output(xl))); 

The semantic force of this declaration may be described as follows. 

We assume that the declaration appears in a namescope ns in which 

a scope item i
1 

with alias optimizer is known. Within i 1 , a scope 

item i 2 is assumed known under the name routs3. Similarly, within 

i 3 an item i 4 with alias output is known and is a scope it.em. 

Finally within i 4 an item is is known with alias xl. Under thes 

assumptions, the declaration (13) causes the item is to be made 

available within ns under the alias xl_output_routs3_optimizer. 
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Next consider the example (14) which uses more of the power of 

= include declaration.· 

(14) include optimizer(routsl*,routs2(-flowtrace), 

routs3(input*,output)); 

include output(xl,x2); 

Suppose that these include statements occur within a scope ns. 

Suppose also that the name optimizer is the alias of a scope item 

known inns. An item i 1 known in optimizer as routsl is made 

available inns under the alias routsl_optimizer. In addition, the 

'*' appearing in (12) signifies that all i terns k.nown in routs 1 

are to be included inns. If xis the alias of an item in routsl, 

its alias inns is x_routsl_optimizer. All of the items in routs2, 

less the item known therein as flowtrace, are propagated into ns; 

this is the semantic force of the '-' appearing in (12). Input 

denotes a scope item available in routs3. As indicated by the 

second '*' in (12), all of the items known in input including the 

scope item itself are propagated into ns. If y is the alias of 

an item in input, its alias in ns is y_input_routs3_optimizer. 

Next, an item with alias output_routs3_optimizer is included. 

This last item, which in. accordance with our general conventions 

may be referenced simply as output, is in fact referenced in the 

second include statement contained in ( l~- This makes available 

items i 1 and i 2 which are referenced inns by the aliases 

xl_output and x2_output. 

The reader can verify that the effect of the two declarations 

(14) is the same as that of the following more complicated single 

statement. 

(15) include optimizer(routsl,routs2(-flowtrace), 

routs3(input*,output(xl,x2))); 

We can supply an additional example con_cerning the use of the 

sign '*' in an include declaration by making reference to the 

earlier example (10). The names known in the scope treerouts 

of (10) are nodes, l, r, walk, and walkfrom. By writing 

include treerouts*; 
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in a scope ns we make all these quantities available under local 

aliases nodes_treerouts, t_treerouts, r_treerouts, walk_treerout 

etc. This allows the use of walk and walkfrom as routine names 

and will normally be used to identify the l of tree routs with a 

similarly named variable occurring inns, etc. 

The above examples do not illustrate the alias-modification 

feature provided by the syntax (and semantics) of the include 

statement. The use of this feature is shown in the following 

example: 

(16) include graphops(transitivity_routines 

lconnectedness[cr] (flagl), 

strong_connectedness[ ] (flagl[scflag] ,flag2))); 

Suppose that (16) occurs within a namescope ns, and that the scope 

name graphops (more precisely, the scope item designated by this 

name) is available within ns. Then the include statement shown 

above makes available within ns items the identities of which 

are determined as if the brackets (' []')were not present. 

The brackets determine the alias under which each item is known 

inns. Specifically the item i whose alias is flagl in the scope 

designated as connectedness_transitivity_routines in (16) is aliased 

inns as 

flagl_cr_transitivity_routines_graphops; 

this is because 'er' appears in the brackets following 'connected

ness' and is substituted for 'connectedness' when the alias of~ 

is calculated. For much the same reason the items aliased as 

flagl and flag2 in the scope strong_connectedness are aliased in 

ns as 

.scflag_transitivity_routines_graphops 

and 

flag2_transitivity_routines_graphops 

The null string appearing in the brackets following 'strong_connect

edness' in (16) is substituted for 'strong_connectedness'; 

two underbars coalesce to one. As above, these compound tokens. 

can be abbreviated inns as ~cfl,;ag and flag2 so long as no ambi~ y 

results. 
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The above remarks concerning the include and global features 

ovided in our name-scoping scheme should make the general use 

and action of these features reasonably plain. Additional details 

will be given below; the conventions which apply in logically 

marginal cases can be deduced from an examination of the name-scope 

routiTies themselves, SETL code for which is given_ later in the 

present manuscript. 

Various additional semantic rules and restrictions govern the 

manner in which our namescoping rules apply.to procedures, procedure 

arguments, store block arguments; labels in procedures, and to 

macros. Some of these rules are deliberately restrictive, and 

intended to avoid errors which might easily arid inadvertently 

creep in if over-free use of our very general declarations, 

especially the include declaration, were allowed. We shall now 

present these rules, ther0by bringing our account of the SETL 

namescoping conventions to a certain level of completeness. 

1. By making items i 1 ,i 2 , etc. occurring within the proper text 

of one namescope ns known within another namescope ms, the SETL 

namescoping scheme allows these items to be identified with 

items j 1 ,j 2 occurring within ms, and then recursively with items 

k 1 ,k 2 occurring within a third namescope ms', etc. A first restric

tion on the use of the SETL namescoping conventions may be stated 

as follows. _We require that no identification made in consequence 

of the transmission of items between namescopes lead to the 

identification of two distinct items both occurring wiLhin a 

single scope. (The explicit alias declaration described in a 

later section allows this restriction to be relaxed.) 

As an example of this rule, note that the following text is 

illegal: 

(17) scope routl; 

u = 0; v = l; ... 

end routl; 

scope rout; global y, routl; 

scope rout2; 

include u_routl[y]; 

end rout2; 

[continued] 
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scope rout3 

include v_routl[y]; 

end rout3; 

end rout; 

Indeed, the declarations occurring in (17) would imply that 

u.routl and v.routl were identical, and the rule just stat~d 

excludes such identifications. 

2. An item 

(18) 

(cf. (4)) occurring in a scope statement of the form (1) is called 

a scope item. Similarly, 

2'. An item (18) occurring as a procedure ~ame in a define or 

definef statement is called a procedure item; 

2". An item (18) occurring as a subroutine argument in a define or 

definef statement is called an argument item. 

2"'. An item (18) occurring in the context 

(19) (store t) 

within an explicit store block (cf. the section Supplementary 

Discussion of Generalized Assignments below) is called a store 

block argument item. 

2iv_ An item (18) occurring as a label, i.e., occurring in a 

context subh as 

. . . , t: ... 

is called a label item. 

2v. An item (18) occurring as a macro name in a macro defini

tion (see the f6llowing section for a discussion of the conventions 

applying to macros) is called a macro-name item. 

3. An item (18) which is either a scope item, a procedure 

item, an argument item, a store block argument .item,· or a macro 

name item is said to be of definite initial designation. Other items 

in a total SETL text are said to be of indefinite initial 

designation. 

A second restriction on the use of the SETL namescoping 

conventions may be stated as follows. We require that no identi 

cation made in consequence of the transmission of items between 
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namescopes identify two distinct items of definite initial 

signation. On the other hand, our rules do allow an item of 

definite initial designation to be identified with an item of 

indefinite designation, and do allow two items i 1 and i 2 of 

indefinite initial designation to be identified (provided, 

however, that these two items do not occur in the same namescope; 

cf. remark 1, above). 

The rule just stated makes it impossible to identify an item 

designating a subroutine label with an item designating a 

subroutine or namescope, etc. Thus, for example, the following 

usage is illegal. 

( 2 0) scope all; 

scope ab; 

scope a; 

end a; 

scope b; 

end b; 

end ab; 

scope a; 

end a; 

end all, 

Indeed, the text (20) would lead to the identification (within scope 

ab) of the items a.ab.all and a.all, which are distinct items both 

having definite initial designation (since both are scope items) . 

. Note however that the following usage is legal: 

(21) define f (x) ; ... 
X = O; 

labela: y = 0; 

end f; 

define g (x) ; include labela f [y] ; -
end g; 
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Note that in the cont$xt (21) the variable y.g references 

precisely the same item as does labela.f. This rather artificia 

but nevertheless legal text makes the label-atom i designated by 

labela.f available within the subroutine g (which is also a name

scope). Note however that SETL does not allow direct transfer 

from g to this label. However, some other label atom might 

conceivably be tested withing for identity with i; other ways 

of using this sort of construction will appear in examples 

given below. 

4. A procedure item (18) is also a valid SETL variable, whose 

value is initialized (at compile time) to the procedure atom p 

created by compiling the unique define (or definef) statement in 

the namescope nest ns 1 .ns 2 ..... nsk within the compound token t 

appears as procedure name.· Similarly, a label item (18) is also a 

valid SETL variable,whose value is initialized to the label atom whic 

corresponds to the unique use oft as a label within the namescope 

nest ns 1 . ns 2 .. . . . . nsk. 

This rule validates the normal SETL use of procedures and labels. 

The following examples will illustrate other usages governed by 

this rule. First consider 

(22) scope routs; global forg; 

definef f (x) ; ... , end f; 

definef g(x); ... , end g; 

define switch(x); forg = if x _g_:!:_ 0 then f else g; 

return; 

end switch; 

end routs; 

Suppose that in the presence of (22) we also have 

( 2 3) scope more; include routs*~ ... ; end more; 

Then forg and switch are available within more. Before a first 

call to switch, forg will have the value n. After calling 

switch(-1), forg(x) will return the same value as g(x); after a 

call to switch(+l), forg(x) will return the same value as f(x). 

We give a similar example of the use of label-valued variablf

Consider 
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(24) scope example2; global lab, labzero, labone; 

definef ff(x); go to lab; 

labzero: return 0; 

labone: return l; 

end ff; 

define switch2(x); 

lab= if x 9-1::. 0 then labzero else labone; 

return; 

end switch2; 

end example2; 

In this example, ff will return O immediately after a call to 

switch2(-l), and 1 immediately after a call to switch2(1). 

5. Items (18) which are either scope jtems or macro-name 

items will be called passive items. We impose the restriction 

that no passive item, and no item which comes to have the same 

reference as a passive item, can be used as a SETL variable. 

Note for example that this rule makes the following usage illegal. 

(25) scope yy; global yy; 

define f(x); 

yy = 0; 

end f; 

end yy; 

Note on the other hand that the usage 

(2 6) scope yy; global yy; 

scope inner; ... 

scope moreinner; 

end moreinner; 

end inner; 

end yy; 

is legal. This usage makes the scope yy known within the scope 

moreinner; the same effect would be obtained if the declaration 

(27) include yy_inner; 

~ present.in moreinner. 
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6. As has been noted, each procedure body is at the same time 

a names cope (of level zero) . Ea.ch procedure i tern is therefore 

also a scope item. However, we deliberately forbid either a 

procedure item or an item which comes to have the same reference 

as a procedure item to appear in include declarations, except in 

terminal position. That is, such an item may not be followed in 

an include declaration either by a parenthesized list of <token>s, 

by a parenthesized list of <token>s preceded by the sign '-', or 

by an asterisk. Note for example that this rule makes the follow

ing usage illegal: 

( 2 8) definef f(x); 

y = y+l; 

end f; 

definef g(x); include f(y); ... 

end g (x) ; 

The referencing effect that (28) would attain (were it not illegal) 

can be achieved by writing the somewhat clumsier 

(29) scope auxil; global y; owns f(y); 

definef f(x); 

y = y+l; 

end f; 

end auxil; 

definef g(x); include auxil(y); 

end g (x) ; 

The restriction which has just been stated is imposed so as to 

ensure that no variable used in a procedure can be referenced 

remotely unless a visible declaration of intent to do so appears 

in some relationship of physical proximity to the body of the 

procedure. This restriction is mild; to abandon it would be to 

invite trouble. 

The SETL concept of ownership of variables, which determines 

the manner in which variable-value references will be changed by 

recursive subroutine.calls and returns, was mentioned occasionally 

in the preceding pages. We shall now give additional detail 

concerning the semantic conventions relevant to this notion. 
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Every variable in a SETL program is 'owned' by some procedure, 

e., is treated at SETL's basic level of semantic interpretation 

as the k-th variable of some j-th subroutine. It is possible that 

j should be zero; j = 0 corresponds to a·nominal 'default' procedure, 

which owns certain classes of variables (such as those corresponding 

to labels and procedure names) which are never either stacked or 

unstacked. In. regard to stacking and unstacking, subroutine argu

ments are treated in much the same way as other variables: if the 

j-th subroutine has m arguments, these will be its lst,2nd, ... ,mth 

variables. That additional argument,often hidden, parameter of 

functions which may become explicit as a store block parameter 

if the subroutine is called in sinister mode (cf. the section 

Supplementary ·Discussion of Generalized Assignments below) is 

't 1st . bl 1 s m+ · varia e. 

When a procedure is entered, values are established for its 

arguments, following which one begins to interpret the code 

constituting the subroutine body. If the procedure is re-entered 
,. 

recursively, then the value of each variable which it owns is 

stacked before new values are established for its arguments. At 

this same time, the value n is established for each non-argument 

variable .owned by the procedure. When return is made from the 

procedure, an unstacking action returns all variables owned by 

the procedure to their previous condition. 

Significantly different rules apply to 'base-level' and to 

'recursive' entry to a procedure. An invocation counter, initially 

set to O, is maintained for each procedure; this counter is 

incremented by 1 each time the procedure is entered, and decre

mented by 1 each time return is made from the procedure. A base

level entry to the procedure is one which moves its invocation 

counter from Oto l; other entries are said to be recursive. When 

base-level entry is made to a procedure, values are established 

for its arguments, but all other variables· owned by the procedure, 

rather than being set ton, retain their pre-entry values. These 

will generally be the values which they had at the last prior 

return from the same procedure. Note also that, at the end of 

npilation, but immediately before execution begins, the value 

or each subroutine item will be initialized to an appropriate 
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subroutine atom, and the value of each label item will be 

initialized to an appropriate label atom. The initial value n 
will be established for all other· variables. 

Suppose that an item i in a procedure f has the same reference 

as an item j in a procedure g. Suppose also that i is owned by g, 

so that the value which it designates changes as recursive entries 

to and returns from fare made. Then j always references the 

current value of i; so that the value designated by j also changes 

as calls to and returns from fare made. The following example, 

which the reader is asked to ponder, illustrates this pointi 

(30) global y,z; owns procl(y); 

define procl; 

proc2; y = l; proc2; 

if z ~ n then z = 1, y = y+l; procl; 

else ~eturn; end if; 

y = y+l; proc2; return; 

end procl; 

define proc2; print y; 

end proc2; 

proc2; procl; 

The code (30) will cause proc2 to be entered six times; thus six 

values of y will be printed. On the first entry to proc2, y will 

have its immediate post-compilation value n; thus_ n will be printed. 

This value will be printed again when proc2 is entered immediately 

after a base level call to procl. When proc2 is next called, y 

will have been changed to 1, and 1 will be printed. Next, procl 

will call itself recursively. On the recursive entry to procl, 

the value n will be established for y, and n will be printed. 

Following this, 1 will be printed. Recursive return from procl 

will then restore y to its previous value of 2, which will be 

incremented once more before proc2 is again entered, causing 3 

to be printed. All in all, the output sequence produced by the 

code (30) is 

n, n, 1, n, 1, 3-_ 
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7_ Macros 

No language is ideally adapted to all possible application areas, 

and for this reason it is desirable for languages to be modifiable 

and extensible. To specify maximally powerful extension mechanisms 

is a complex task. We shall evade this task at the present point, 

and shall in fact confine ourselves to describing a relatively 

simple SETL macro-processor feature. Note that macroprocessors are 

relatively straightforward mechanisms allowing a programming 

language to be modestly 'perturbed' in ways which a user can find 

quite convenient. While generally not permitting the extensive 

linguistic variation made possible by more elaborate syntax modi

fication schemes, they are generally easier to use than full-fledged 

extensibility schemes: a relatively light tool well adapted to 

light usage. 

The SETL macro-system to be described will basically be conven

tional and straightforward. However, some complications will arise 

because of our desire to have the macroprocessor conform to the 

namescoping conventions that have just been described. Note in this 

connection that many of the general remarks concerning names and 

namescoping made at the beginning of the preceding section also 

apply to the use of n·ames as the names of macros. In dealing with 

large masses of text, it is important that the scope within which 

a name has macro-name status be limited. If this is not the case, 

macro names will steadily accumulate, and, given a sufficiently 

large mass of program text containing macros, will become difficult 

to manage. · The scopes within which one desires to use a given 

library of macro definitions will not always be physically contiguous, 

thus a way of transmitting macros by something akin to an include 

declaration is desirable. Finally, since program clarity should be 

the exclusive factor controlling the order in which one arranges the 

parts of a total text, it is best to avoid restrictions which force 

macro definitions to appear in some fixed physical relationship to 

invocations of the macros which they define. 

The SETL macro-scheme which we now begin to describe satisfies 

~~, first two of these desiderata, but not the third. This scheme 

.ows names to be used as macro names within specified namescopes, 
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and to be transmitted between scopes, in the same fashion as 

other names, by global and by include declarations. However, 

in order to-avoid the problems of definition and of implementation 

which would otherwise result, we require that macro-definitions 

physically precede invocations of the macros they define. The 

precise conventions which apply will be stated below .. 

Before entering into a detailed discussion of these 

name-scope related issues, we describe the more basic rules which 

apply to macros and macro-invocations within a single namescope. 

A macro-definition has one of the following forms 

(la) macro name; text endm name; 

(lb) macro name(arg 1 , ... ,argk); text endm name; 

(le) macro name(arg 1 , ... ,argk;genarg 1 , ... ,genargm); text endm name; 

(ld) macro name(;genarg 1 , ... ,genarg); text endm name, 
m --

In each of the definitions (la)-(ld), name is a (possibly 

compound) token, which the definition designates as a macro name; 

text is any string of tokens, constituting the so-called body 

of the macro. Note however that in (la)~(ld) text cannot contain 

the token 

( 2) name 

except under restrictions to be stated shortly. 

A definition of the form (lb) involves user-supplied macro 

arguments; (le) involves both macro arguments and generated 

macroarguments. Definitions of the form (la) involve neither 

arguments nor generated arguments, and are consequently simplesti 

we shall explain the argumentless macros of this form before going 

on to discuss the somewhat more complicated cases (lb)-(ld). 

The definition (la) causes each following occurrence of name 

(other than those preceded by one of the keywords macro or.end) 

to be replaced by the text which appears in (la). In the presence 

of several macrodefinitions, repeated substitution will be carried 

out. Thus, for example, every occurrence of a following the 

definitions 
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( 3) macro a; b c; endm a; 

macro b; d e; endm b; 

macro c; f g; endm c; 

is replaced by an instance of the four-token sequence 

(4) d e f g . 

The body one one macro can contain the definition of another. 

In this case, the imbedded macro-definition becomes active when 

the macro containing it is invoked. For example, following the 

definition 

( 5) macro a; macro b; c d; endm b; endm a, 

the token sequence b ab is replaced by the sequence b c d. Note 

that bis only replaced by c dafter the definition (5) is invoked 

(by an occurrence of a). 

Note in connection with all of this that a macro definition is 

not allowed to cross a namescope boundary, except when propagated 

in the manner explained below. 

Macros with arguments, having definitions of the form (lb), 

allow additional flexibility. If name is a macro-name with the 

de£inition (lb), then it is invoked by the occurrence of any token 

sequence of the form 

( 6) 

In (6), text. denotes any sequence of tokens not containing a comma 
J 

which is not included within parentheses. An invocation (6) of the 

macro (lb) is replaced by an occurrence of the text body of (lb), 

but within this text each occurrence of the j-th argument token 

. 1 d b f th d" · th l arg
1 

is rep ace y an occurrence o e correspon 1ng J actua 

argument textj appearing in the invocation (6). The text of a macro 

with arguments may contain imbedded macro-definitions; these defini

tions become active when the macro is invoked. Macro expansion is 

recursive, and outside-in. 

A macro (le) with generated arguments is invoked in precisely 

the same way as the corresponding macro (lb), i~e., has the invoca-· 

tion (6). The effect of the generated macroarguments appearing in 

~)maybe described as follows. Immediately prior to the expansion 
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of the macro-invocation (6), a set of m unique names n 1 , ... ,nm of 

a reserved form. are generated by the macroprocessor. These are tr. 

treated during macro-expansion as additional macro arguments; that 

is, each occurrence of the j-th generated macroargument token 

gendrg. is replaced during macro-expansion by an occurrence of 
J . ' 

the freshly generated name n .. As is well known, this feature is 
J 

convenient for generating text require~ to contain unique variable 

names, labels, etc. 

Formula _(ld) shows the manner in which a macro with several 

generated macroarguments but with no user-supplied arguments is 

defined. 

Note that the second of two definitions of a macro with a given 

name replaces the first. That is, expansion will be made according 

to the first definition only until the second definition occurs, 

after which expansion will be made according to the second defini

tion. 

A name may be dropped from macro-status by writing the degenerate 

definition 

( 7) .macro name endrn; 

In many cases tuples of fixed length will be used to store some 

group of object attributes; in such cases the particular order of 

components is irrelevant, though of course some order must be imposed 

since each component has a significance distinct from all the 

others. In such situations, it is desirable to avoid numerical 

reference to particular components, since the use of numerical 

references infests a text with semantically meaningless encodings, 

always a thing best avoided for clarity and for modifiability. Of 

course, the use of macros can alleviate this situation. If, e.g., 

we deal with objects represented by triples whose successive 

components represent size, weight, and price, then,instead of 

systematically writing obj(l), obj(2), and obj(3) for these three 

attributes we can introduce the following three macros and write 

size(obj), weight(obj), and price(obj): 

' ( 8) macro size(x); x(l) endm size; 

macro weight(x); x(2) endm weight; 

macro price(x); x(3) endm price; 
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However, since situations of this kind are quite conunon, and since 

e avoidance of numerical references is much to be encouraged, 

we provide an easy-to-use ·special macro form replacing patterns 

such as (8). This is the definition form 

( 9) 

The form (9) has precisely the same force as 

(10) macro name 1 (x); x(l) endm name 1 ; 

macro name 2 (x); x(2) endm name 2 ; 

macro namek(x); x(k) endm namek; 

We now turn to describe the conventions which relate macros to 

namescopes and govern the transmission of macros between·scopes. 

Macro names may be declared global and may appear within include 

statements. (However, a macro-name may appear in an include 

statement only in terminal position (cf. the preceding section, 

paragraph immediately preceding formula (28)). That is, such 

an item may not be followed in an include declaration either by 

a parenthesized list of <token>s, a parenthesized list of <token.>s 

preceded by the sign '-', or by an asterisk.) Macro-definitions 

are processed and macro-expansion performed during an initial, 

advancing pass over SETL source text; in this pass, scope 

boundaries are established~ the items forming part of the proper 

text of each namescope collected, and the processing of global 

and include statements begins. 

If a macro-name is declared global within- a namescope ns, it 

is propagated into every scope physically included within ns, and 

is then treateq as a macro from the point at which its macro

definition occurs, and thereafter either to the end of the scope 

ns or to the next following macro-redefinition of the macro name. 

The comments in the following example show some of the implica

tions of this statement. 

(11) scope withamacro; global mname; 

mname=mname+l; /* this is legal, since 

mname has not yet been defined to be 

a macro. no expansion yet*/ 

[continued] 
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macro ~name(x); x=x+l endm mncµne; 

mname(t); /~ expands as t=t+!; */ 

scope in~er; 

mname(n); /* expands as n=n+l; ~/ 

macro mname(x); x=x-1 endm mname; 

mname(v); /* expands as v=v~l */ 

macro mname endm; /* dropping mname 

from macro status*/ 

mname = mname+l; /* this is again legal, 

since mname has been dropped from macro 

status, and is not expanded*/ 

end inner; 

mname = mname+l; /* still legal; 

mname is still not a macro*/ 

end ·wi thamacro; 

If a macro-name mn appears in an include statement within a 

namescope ns, it is propagated into ns, and is treated as a macro 

from the point at which the include statement occurs, and there

after either throughout the proper text of ns, or to the next 

follo~ing macro-redefinition of the macro name inns. Note however 

that for mn to become known as a macro name the first line of the 

namescope ns' from which the include statement propagates mn into ns 

must physically precede the end of ns, and mn must be known as a 

macro name within ns'; its macro-definition must also precede the end 

of ns physically. Comments in the following extended example 
illustrate this rule. 
(12) scope early; include next(mname); 

mname=mname+l; /* this is legc:!,l, si,nce the 

scope next within ~hich mname is known as 

a macro has not yet been encountered*/ 

end early; 

scope next; 

macro i;nname (x) ; x = x+l endm mname.; 

mname(t); /* expands as t = t+l; */ 

end next; 

scope later; include next(mname); 

mname(n); /* expands as n=n+l */ 

[ continued] 
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/* now we redefine mname */ 

macro mname(x); x=x-1 endm mname; 

mname(v); /* expands as v=v-1 */ 

end later; 

scope latest; include next(mname), 

later(mname[newn]); 

mname(w); /* expands as w=w+l; */ 

newm(z); /* expands as z=z-1; */ 

end latest; 

end early; 

The last few lines of the preceding example illustrate the 

following rules. The final macro-status within a namescope ns 

of a name mn is that macro-definition (if any) which applies 

at the moment that th~.scope-closing end statement is encountered. 

If mn is transmitted from ns via an include statement to another 

names cope ns 11 (which follows ns physically) then within ns 11
, mn 

will have what was its final macro-status within ns. As is shown 

by the last few lines of the preceding example, this rule applies 

uniformly. 

Input and output. 

Input/output conventions sufficiently substantial to allow SETL 

to make use of externally stored files will be described later. 

Here, however, we shall describe only a rather rudimentary set of 

input/output facilities, beginning with a basic method for handling 

cnaracter strings in an essentially 'unformatted' way. 

The allowable characters in a character string are all the 

normal members of a standard character set, plus one additional 

character designated~ (end record). Ifs is an ordered pair 

<st,n> consisting of a character string st and an integer n refer

encing one of its characters, the system function record may be 

called from within any expression, in the form 

(1) records . 

~ value v of this function is the segment of the string st, begin

&&~~g at its n-th character, and including all characters of sup to 

but not including the first occurrence of the character er; when 
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record is called, it increments the secon~ component, n, of its 

argument by # v + 1. 

If then-th character of sis er, then record returns the value 

nulc ~nd increments n by 1. If n exceeds the length of the string 

s, then record returns the value n, and does not increment its 

argument n; this fact can be used to perform the SETL analog of 

the normal 'end-of-file' .test. 

All this describes an action appropriate for an ~nput reader. 

Note in connection with the above that the ordinary analog in SETL 

of a .'file' is a pair s = <st,n> consisting of a character string 

and an integer referencing one of its characters. That is, the 

basic SETL file system is provided simply by allowing very long 

character strings to reside on an external medium, and by ensuring 

that both the function (1), and the primitive which appends one 

character string to another, are supported in a reasonably efficient 

manner. 

The function 

( 2) open str 

is used.to link·SETL to an operating sysfem for input/output 

purposes. It acts as follows: 'str' is a charact~r string, giving 

the name under which some possibly very long character strings 

is known to the operating system. The operation (2) requests this 

string from the operating system; morever, t.he value of the 

expression (2) is the strings itself. Thus, by writing 

( 3) 

or perhaps 

( 4) 

x = open str; 

y = <open str,l>; 

we make the strings available within SETL as the value of the vari

able x (or as the body of the 'file valued' variable y). 

The body of a file is returned to the operating system by writing 

(5) close (x, str) ; 

Here, xis a SETL variable whose value is the body s of the file 

to be returned, and str is a character string, giving the name 

under which s is to be known to the operating system. 
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If a character string is returned to the operating system as 

.nt output, the following conventions will apply. Each occur-

I 

· rence in the output stream of the character er will terminate the 

current print line with a period, followed by as many blanks as 

are nece$sary to fill out the line. Lines not containing an 

occurrence of the character er will always be terminated with a 

blank, followed by a period. This convention allows character 

strings of arbitr~ry length to be transmitted to the output 

medium, and to be represented there unambiguou_sly. 

Next, we describe two SETL statements giving a rudimentary 

formatted input/output facility for use in connection with standard 

form input and output files .. These have the form 

( 6) 

and 

( 7) 

respectively, where f is an expression having as value an ordered 

pair <st,n> consisting of a character string and an integer. If in 

(6) or (7) the prefix f is omitted, the variable name input is 

understood in case (7), and the variable name output is understood 

in case (6). 

The form in which a set will be printed is determined by the 

following recursive conventions. An i.nteger will appear in decimal 

form, possibly preceded by a minus sign. 

A character string will appear enclosed within quote marks in 

its normal external form, quote marks themselves being represented 

by double quotes .. Bit strings will appear either in "binary" forms 

such as 0ll00i0l ... 0lB, iri octal form 0770070, or in a combined 

"binary-octal" form, in which a binary prefix precedes the letter B 

and an octal suffix follows it, the total bit-string being the 

concatenation of these two separately represented parts. Note for 

example that the strings 10111000B and 10B70 are identicaly; and 

that either form may be used in a SETL program to represent a 

bit-string constant. Real numbers will appear either in a decimal 

form such as 90., 0.9, or .99, or in an exponential form such as 

- -5. 

[f al, ... ,an are the elements of a sets, and rl, ... ,rn are 

the printed representatives of al, ... ,an respectively, then the set 
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{al, ... , an} 

will generally appear printed as the character string 

{rl, ... ,rn} 

a similar convention applying to n-tuples. These simple recursiv·e 

rules will be used as long as the length of the character strings 

it produces does not exceed two printed lines, and the level of 

parenthesis nesting needed within these character strings does not 

exceed 4. When these limits are exceede~ subsets or tuples of a 

composite structure which is to be printed will be assigned 

abbreviating designators consisting of an integer followed by a 

colonp and the significance of such abbreviations will be indicated 

on separate printed lines, indentation being used appropriately 

to improve the readability of the resulting text. Thus, for 

example, a set that might have been printed as 

(8) {{{{S,10,15,<20,[21,22,23,{{~4,<25,8>},9}]>,3}}}} 

will actually appear as 

( 9) {{{{S,10,15,1:,3}}}} 

1: <20, [21,22,23,{{24,2:},9]> 

2: <25,8> 

The whole external representation of a set will be terminated 

by a slash, i.e., by the sign/. This is a symbol 

that is not allowed, unquoted, in a file to be read, and is used 

during reads to check for possible misparenthesization or other 

malformation of read input. The SETL read statement (7) will accept, 

from a specified file, sets represented ·in the manner illustrated by 

( 8), and convert them into the abstract structures which they represent, 

assigning the set thereby obtained as the value of the variable 

name occurring in (7). The number of characters of the input 

string digested during such a read operation is determined by 

the following rule: blank characters, up to a first non-blank 

character, will be ignored .. If the first nonblank character is 
either<, or { a 'balanced parenthesis' section of input, never 

including an occurrence of the sign/, will be digested. If 
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the first nonblank character is/, it will be ignored. If the 

rst nonblank character is anything else (but not a comma, >, 

or}) it will be read, and returned as the result of the read 

operation. Blanks (exdept quoted blanks) will be ignored, and 

single characters er (b_ut not double characters er) will be 

ignored also. 

-259-



Item 15. A LIBRARY OF EXAMPLES SHOWING THE USE OF SETL 

1. Algorithms for lists and trees. 

A unilateral list may be regarded as a set of items, supplemented 

by a function next(item) such that next(item) = n 'for the last item. 

In addition, a pointer first locating the first item in the list must 

be given. The basic list operations are insertion after a given 

position and deletion of the next item after a given position. 

Note that the set of items in the list is the union of the domain 

and range of next, so that the list is completely specified once 

next is given. The following insertion and deletion routines insert 

or delete the first element if called with n as parameter; 

otherwise they insert or delete after whatever list position their 

parameter specifies. 

define item insafter prev; /* next and first are assumed to be global* 

if prev ne ~ then 

<next(item) ,next(prev)> = <next(prev) ,item>, 

else 

<next(item) ,first>= <first,item>; 

end if; 

return; 

end insafter; 

define delafter item;/* next and first are assumed to be global*/ 

if item ne n then 

nx = next(item); if nx ~ n then return;; 

next(item) = next(nx); next(nx) = n; 
else 

oldfirst=first; first=next(first); next(oldfirst)= n; 
end if; 

return; 

end delafter; 

A bilateral, circularly linked list may be regarded as a set 

of items with functions next(item), prev(item) defining the 

successor and predecessor of a given item; the last item is 

considered to be the predecessor of the first item, and the first 
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the successor of the last. The first item on the list is designa-

i by first. Note that the three objects next, prev, and first 

together specify the list. The basic operations are insertion of 

an item after a g~ven position and deletion of a given item. These 

procedures may be written as follows. 

/* in the two following routines next, prev, and first 

are assumed to be global*/ 

define item insbilat prec; 

pre= prec; /* to avoid changing argument*/ 

if pre~ Q then/* empty list or insertion at head of list*/ 

if first~ Q then/* initialize empty list*/ 

<next(item),prev(item) ,first>=<item,item,item>;_ return; 

else <pre,first> = <prev(first);item>;; /* insertion at head*/ 

end if pre;/* now pre indicates the point of insertion*/ 

<next(item), next(pre), prev(item), prev(next(pre))> = 

<next(pre), item, pre, item>; 

return; 

end insbilat; 

define delbilat item; 

<next(prev(item)), prev(next(item))> = 

<next(item), prev(item)>; 

if item~ first then 

first= if next(item) is x ne item then x else Q; 

end if; 

next(item) = Q; prev(item) = Q; 

return; 

end delbilat; 

A binary tree is a set of nodes and two descendant functions 

rand£ (right and left descendants); a given top node ntop must 

also be specified. The tree is then entirely defined by these 

two functions and the specified top node. It is often necessary 

to traverse a tree in some standard order. We take as an example 

left-top-right traversal order, and generate the sequence 

or nodes in the order traversed. Note that seq must be owned by 

some routine other than traverse. 
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/* in the following seq, l, and rare assumed to be global*/ 

seq=nult; traverse ntop; 

define traverse top; 

if top~ Q then return;; 

traverse £(top); seq(#seq+l) = top; traverse r(top); 

return; 

end traverse; 

An ordered tree is a set of nodes with a descendant function 

desc(node,j) defined for j in some finite (possibly null) range. 

Ordered and binary trees stand in an interesting·l-1-relationship. 

Given an ordered tree, it may be converted to a binary tree by 

designating the first descendant of a node N as N's left descendant; 

and by d~signating desc(n,j+l) as the right descendant of desc(n,j). 

In SETL: 

£ = {<n,desc(n,l)>, n E tree I desc(n,1) ne Q}; 

r = {<desc(n,j) ,desc(n,j+l)>, n E tree, 1 < j < #desc{n}}; 

To invert the above transformation, one takes a binary tree and 

makes (n) and the successive right descendants of (n) in a binary 

tree as the successive descendants of n in the corresponding ordered 

tree. In SETL we have: 

desc = n£; 

(\fn E tree) 

k. = 1; d = £ (n) ; 

(whiled ne Q doing k = k+l; d = r(d) ;) 

des c ( n , k) = d ; ; 

end \fn; 

To form an isomorphic copy of a binary tree, the following procedure 

may be used. Note that a similar procedure will serve to form an 

i somorphic c~py of any structured object: 

copy= {<n, newat>, n E tree} 

£ = £ + {<copy(n),copy(£(n))>, n E tree £(n)neQ}; 

r = r + {<copy(n) ,copy(r(n))>, n E tree r(n) ne Q}; 
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A threaded tree is represented by a set tree on which two 

nctions r(node) and l(node) are defined, each for all but 

one node. The values of each of these functions are ordered 

pairs. We have r(node) = <node' ,flag>, where node' is either 

the right descendant of node or its successor in left-top-right 

traversal order, depending on whether flag~~ or flag~ f· 
Similarly, l(node) = <node' ,flag>, where node' is either the 

left descendant or the traversal-order predecessor of node. 

The following example, showing flagged pointers as dotted 

arrows, illustrates the notion of a threaded tree. 
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Fig .. l. A threaded tree 

To traverse a threaded tree in left-top-right order we may use 

the f~llowing code: 

seq=nult; node= top; 

flow 

islflag? 

down+ add+ 

isldef? 

is ldef, is done, 

[continued]. 
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isldef := 1(node) is desc ne Q; 

islflag :=desc(2) ~ t; 

down: node= hd desc; 

add: seq(#seq+l) = node; 

isdone := r(node) is desc ~ Q; 

isrflag := desc(2) ~ t; end flow; 

The following code inserts an element into a threaded tree, as 

the right descendant of a node nod: 

define elt putright nod; 

/* l and r are. assume.d to be global * / 

<r(elt) ,1(elt), i(nod)> = <r(nod) ,<nod,f>,<elt,!>>; 

if r(elt) (2) /* so that elt has an actual right descendant*/ then 

desc = r(elt) (1); /* now descend· to the left to repair 

the thread*/ 

(while 1(desc)(2)) desc = 1(desc);; 

1(desc) = <elt,f>; /* elt is the traversal-order 

predecessor of desc */ 

end if; 

return; 

end putright; 

These processes are illustrated by the following figure, which 

shows the changes necessary to insert a node x as the right 

descendant of the fourth node in the threaded tree of Fig. 1. 

Only changed 'thread pointers' are shown. 

Fig. 2. Adding a left descendant in a threaded tree. 
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To thread an unthreaded tree, we first let seq be its nodes in 

ft-node-right traversal order, as defined by a previous algorithm. 

Then we use the following straightforward code, in which tree 

denotes the set of all nodes in the tree: 

suc={<seq(n) ,seq(n+l)>, 1 < n < #seq}; 

pred = {<x(2) ,x(l)>, x E sue}; 

(VnE tree) t(n) = if t(n) ne Q then <l(n),!> 

~lse if pred(n) ne Q then <pred(n) ,i> else Q; 

r(n) = if ·r(n) ne Q then <r(n) ,1> 

else if suc(n) ne Q then <suc(n) ,i> .else Q; 

end \fn; 

It is simpler to convert a threaded tree to an unthreaded one, 

as follows: 

(\fn E tree) t (n) = if (if t (n) is thdesc ~ Q then f else thdesc (2 )) 

then thdesc(l) else Q; 

end \fn; 

r(n) = if(if r(n) is thdesc ~ Q then f else thdesc(2)) 

then thdesc(l) else Q; 

SETL cannot be used to express machine level optimizations. 

However, it can be used to express optimizations at an "abstract" 

or "algorithmic" level. Here, for example, is a parsimonious 

method, due to Schorr and Waite, for traversing a binary tree; 

in distinction to the methods given earlier, it avoids the use 

of a recursion stack. The idea is this: as one descends down a 

chain of branches to traverse the tree, one reverses the pointers, 

to get a chain of pointers allowing subsequent ascent. During 

ascent, the pointers are repaired. We mark those nodes n such 

that r(n) is the parent of n; in a machine-level implementation, 

at most one bit is needed for this·mark. 
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seq= nult; mark= n£; node= top; par= Q; 

flow isldesc? 

dleft+ not en ode+ 

isldesc, isrdesc? 

dright+ hasparent? 
isldesc, done, ismarked? 

upright+ upleft+ 

hasparent, notenode+ 

isldesc: =£(node)~ Q; 

dleft: <£(node) ,node,par> = <par,l{node) ,node>; 

notenode: seq(#seq+l) = node; 

isrdesc: = r(node) ~ Q; 

dright: <r(node) ,node,par> = <par,r(node) ,node>; 

mark (par) = !_; 

hasparent := par ne Q; 

ismarked := mark(par) ne Q; 

upright: <node,r(par) ,par>= <par,node,r(par)>; 

upleft: <node,£(par) ,par>= <par,node,£(par)>; 

end flow; 

<done:> 
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2. A lexical scanner algorithm. 

In the following pages we will use SETL to describe a number 

of algorithmic processes basic to the compilation of programming 

languages. We begin by describing a class of ZexicaZ scanners. 

These are programs, normally belonging to the very first stages 

of a compilation process, which accept an input string and break 

it up into separate tokens, i.e., strings of one or more characters 

representing words of a language. As it is calculated, each 

token is classified according to type (e.g., name, integer, 

character constant, boolean constant, etc.). Basic input 

conversions, as for example the conversion of a character string 

representing an integer to the internal form of the integer, may 

also be performed during lexical scan. 

Because of its significant influence on the overall efficiency 

of the first stages of processing, one normally desires a lexical 

scanner to be quite fast. For this reason, lexical scanning is 

customarily performed by a programmed finite-state automaton which, 
. 

driven by an incoming sequence of characters, undergoes a sequence 

of state transitions until a 'token end' state is reached; then 

any necessary conversions are performed and a token is emitted. 

We shall describe a lexical analyzer of this kind. The following 

background facts should be borne in mind. 

i. The states of the automaton correspond to states of 

uncertainty concerning the nature of the token being constructed. 

When a new token is started, the scanner is in a state of complete 

uncertainty; this state is called nxt in the formal algorithm 

below. As characters are received, the state of uncertainty will 

change, always diminishing; when a token-end state is reached, 

the type of the token is entirely known, and is determined by the 

final condition _of the automaton. 

ii. The whole alphabet of characters belonging to a language 

may for the purposes of lexical scanning be regarded as consisting 

of a relatively small number of character classes (e.g. alphabetics, 

numerics, separators, alphabetics having special significance, etc). 

A function type(character) is therefore employed by the lexical 

nner, which uses the value of this function and its own state 
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to find an ~ction tabZQ entry which describes the actidn to be 

taken next. In the following algorithm, allowed standard actionE 

are as fallows : 

a. end end the present token without adding any additional 

characters to it, and return a triple defining the token itself 

and its lexical type. 

b. cont (continue) add the current character to the token 

under construction, and advance to the next input character; 

c. skip advance to next input character; 

d. go (change state) change to a specified state and 

then continue as in (b); 

e. do (perform auxiliary process) perform a specified 

sequence of operations including the execution of auxiliary code 

blocks supplied by the programmer. This code may examine and 

modify the token under construction, the state of the finite state 

automaton, the action parameter (see below) which the lexical 

scanner uses, any of its pointers, etc. If this code is some sort 

of ·conversion routine, it may supply token-associated data to 

the lexical scanner. In the algorithm which follows, auxiliary 

routines to be executed are all taken to be part of a common 

programmer-supplied auxiliary process package called rpak. 

The lexical scanner routine which follows is called nextoken. 

It is written as a function which when called will break one 

additional token·out of a given character string, returning as 

function value this token and its lexical type. 

The forms assumed for the action table ·entries used in 

nextoken are as follows. 

An entry may be: 

aa. one of the keywords end, skip, and cont; or 

bb. an ordered pair <go,statename>, where statename is the 

name of a lexical analyzer state; or 

cc. an n-tuple <do,routname, ... >, where routname is the name 

of an ~uxiliary routine, and where subsequent components are 

either end, cont, go followed by statename, or do followed by 

routname. 

The detailed form of our lexical analyzer is as follows. 
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definef nextoken; 

/* the tables 'type' and 'table', and the code block 'rpak' 

are produced by the routine 'setup' given later in 

this section*/ 

initially tokbegin = 1, 

<nxt, end, go, skip, cont, do>= <'nxt' ,'end' ,'go' ,'skip', 

'cont' ,'do'>; 

/* we assume for simplicity (but somewhat unrealistically) 

that the entire input string is read in before lexical 

scan begins. Note that the input string is broken into 

successive records, and terminated by a double end record*/ 

/* we assume that the file inp~t has been opened for reading 

by a prior instruction*/ 

/* do read-in operation until double end record*/ 

this= n; cstring = nulc; 

(while this ne nulc) 

this= record(input); 

cstring = cstring +this+ er; 

end while; 

end initially; 

state= nxt; curpointer = tokbegin-1; data= n; token= nulc; 

loop: curpointer=curpointer+l; 

action= table(state, type(cstring(curpointer))); 

switch: go to {<end,endc>,<go,goc>,<skip,loop>,<cont,contc>, 

goc: 

contc: 

endc: 

doc: 

<do,doc>} (if(~ action)~ tupl then 

hd action else action); 

state= action(2); 

token= token+ cstring(curpointer); go to loop; 

tokbegin = curpointer; return<state,token>; . 
rout= action{2); action= act~on(3:); rpak(rout); 

go to if action~ n then loop else switch; 

end nextoken; 

This routine is simple enough; as we shall soon see, the routine 

;up which supplies the tables needed by nextoken is rather more 

complex. Coneerning setup, we have made the following assumptions. 
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i. It finds the information needed to define the character 

type function type, the action table table, and the comprehensive 

package rpak of auxiliary processes at the head of the string 

input, all represented in a form which can be read using the SETL 

read statement. This information is read, checked for accuracy, 

and converted appropriately to produce the required tables. 

ii-. In more_ detail, the information supplied to setup is as 

follows. First, a string including every valid character other 

than er is given. For SETL,this would be 

'abcdefghijktmnopqrstuvwxyz0123456789 () [] {}, *+-/=?" <>~2:f;1#\f3: 1-' 
Note that a double quote within quote marks represents a quoted 

single quote. 

After this string, there follows a tuple 

<ctypel, ... ,ctypen> 

in external form (i.e., in a form suitable for ingestion by a 

read statement), defining the full collection of character types 

with which the lexical scanner will be concerned. 

Suppose, for example, that we consider a hypothetical language 

lexically somewhat like FORTRAN,in .which the allowed lexical 

types are as follows. 

a. Integer: any sequence of digits, embedded blanks allowed. 

b. Real number: an integer, followed by a decimal point, 

and optionally followed by a second integer. 

c. Name: any string of nonspecial characters beginning with 

an alphabetic; no embedded blanks allowed. 

d. Special character: any character other than blank or period. 

e. Period delimited operator: any string of nonspecial 

characters, beginning with an alphabetic, containing no blanks, 

and delimited fore-and-aft with a period. Examples would be: 

. ge. , . shift. • 

f. Hollerith constant: any number of digits, followed by the 

letter h~ followed by an arbitrary character string of the length 

specified by those digits. An example would be: Shhoch.a. We 

suppose for simplicity that er functions as an end-of-statement 

signal, no continuation-card feature being provided. 
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For such a language, the relevant charactar types could be 

:lared to setup in the following form 

( 1) <a,h,'l' ,+,. ,b.R.,er> 

Here 'a' is used to designate the type of the typical alphabetic 

(which is to say alphabetics not.equal to h, since h plays a 

special role in hollerith constants); 1 to designate the type 

of a numeric;+ to designate the type of a special symbol other 

than '.', etc. We use 'er' to designate the type of an end record 

symbol, 'b.R.' to designate the type of a blank. 

iii. Next there follows a set of tuples, which together define 

the lexical type of every possible character. These n-tuples 

have the form 

<type,cstring 1 ,cstring 2 , ... > 

where type is a previously declared lexical type, and cstring. 
J 

is a string of characters, all of which are declared to have this 

type. The special character string 'er' is however reserved to 

repres~nt the SETL end record character er. 

In the case of our hypothetical FORTRAN-like language (which 

however is assumed to include the full SETL character set) we 

would have 

(2) {<a, abcdefgijklmnopqrstuvwxyz>,<'l' ,'0123456789'>, 

<+,.'?() [] {}*+-/=<>~~S1$#\f3: I" ,E'>, 

<. ,'. '>,<h,h>,<er,'er'>,<b.R.,' '>} 

iv. Next there must follow a set of ordered pairs serving to 

define the action table of the lexical processor. Each of· these 

pairs has the form 

<state, <aent 1 ,aent 2 , ... ,aentk>> 

Here, sta.te is a state of the lexical scanner, while .. each aent 

is an action table entry, having one of the allowed forms described 

above. The number of aent terms shown in the sequence displayed 

above must equal the number of character types declared; the j-th 

:t tenn will be consulted when a character of the j-th type is 

encountered ··and the lexical scanner is in the specified state. 
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In the case of our hypothetical FORTRAN.:.like language, we might: 

employ the following lexical states (which, as have already bee 

noted, correspond to the various states of ~ncertainty ~hich could 

arise as we progressively scanned a token from left to right): 

nxt a new token is just starting; 

nm a name is being scanned; 

irh an integer, a real number, or a hollerith constant 

is being scanned, but we are still not sure which; 

ir having encountered a blank in a st~irtg of digits~ 

we are sure that an integer or a reai is being scanned; 

dip having encountered a period, we are scanning either 

a real or an integer followed by a period delimited 

r 

pd 

operator; 

definitely 

definitely 

scanning 

scanning 

a real number; 

a period-delimited operator. 

In the case under consideration, our action table would be described 

as follows, recalling that corresponding character types are 

<a,h, 'l' ,+,. ,b.R.,er>); 

(3) {<nxt,<<go,nm>,<go,nm>,<go,irh>,<do,spend,end>, 

<go,pd>, skip, <do,erend,end>> , 

<nm,<cont,cont,cont,end,end,end,end>>, 

<irh,<end,<do,holcon,end>,cont,end,<go,dip>,<go,ir>,end>>, 

<ir,<end,end,cont,end,<go,dip>, skip,end>>, 

<dip,<<do,back,end>,<do,back,end>,<go,r>,end,end,<go,r>,end>>, 

<r,<end,end,cont,end,end,skip,end>>, 

<pd,<cont,cont,cont,end,end,end,end>>} 

v. Next must follow text defining every auxiliary process 

mentioned in the state table. This text is supplied as a set of 

ordered pairs, each having the form 

<rname, text> , 

where rname is the process name, and text is its. body. This 

collection of pairs is converted to a complete body of code having 

the form 
rname 1 : text 1 return; 

rname 2 : text 2 return; 
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together with a calculated go-to statement which, supplied with 

identifier, invokes an appropriate auxiliary process. 

The auxiliary routines may refer to the lexical ana·lyzer' s 

'beginning of present token' pointer tokbegin, to its 'current 

symbol' pointer curpointer; to token, the token being formed; 

and to the scar state state. Note that nextoken returns state, 

and token to the .main program upon encountering an end 

commanc 

The value of state when the lexical action end is executed 

therefore defines the lexical type of token to the main program. 

In certain cases where an end is to be executed forthwith, our 

auxiliary -routines may therefore set state to values not appearing 

in the action table. This is merely to inform the main program 

that some very special situation, such as an end-of-record, has 

been detected. When nextoken is called again, state will always 

be set to nxt. Note as an example of this that in the package 

of auxiliary procedures which follows, the state 'er' indicates 

end of current record reached, and 'ef' indicates end-of-file. 

Considering our hypothetical FORTRAN-like language once more, 

and noting the occurrences of auxiliary process names in the 

action table description given above, we would supply the following 

auxiliary processes. 

( 4) 

. . 

{<spend,'token=cstring(curpointer) curpointer=curpointer+l;'>, 

_<erend, 'if cstring(curpointer+l) ~ er then 

curpointer = curpointer+2; state= "ef"; 

else state = "er"; end if;'>, 

token=er+er; 

<back, 'curpointer = curpointer-1;'>, 

<holcon, 'n=dec token; curpointer=curpointer+l; 

if O ~ 3j < njcstring(curpointer+j). ~ er then 

--

token= cstring(curpointer:j); curpointer=curpointer+j; 

else token= ·cstring(curpointer:n); curpointer=curpointer+n; 

end if;:'>} 
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Note that (1)., (2), (3), and (4) together constitute a completP 

description of a FORTRAN-like lexical scan. Of course, from anot 

point of view, the text of nextoken and of the associated routine 

setup must also be reckoned as part of this description. 

After all these preliminaries, we shall now give the SETL code 

for the lexical setup routine. This code has, in a miniature way, 

many of the features associated with larger compilers. It is in 

fact a compiler of sorts·, transforming tables like those shown above 

into tables directly interpretable by the rather simple nextoken 

algorithm. Typically enough for programs of this kind, much of 

setup is concerned with verification of the correctness of the data 

presented to it, and with the printing of diagnostics where required. 

Aside from this and from some rather straightforward transfo mation 

of table form, the principal responsibility of setup is to build 

up text for the routine rpak. The assumed form for the rpak text 

is as follows. 

define rpak(numrout); 

go to { <l, rout
1

>, <2, rout 2 >, ••• } · (numrout); 

rout 1 : text 1 return; 

rout 2 : text 2 return; 

end rpak; 

Here, rout. is the j-th auxiliary procedure name supplied by the 
J 

programmer, and text. is the text defining this procedure. 
J 

The detailed setup code i~ as follows: 

/* we begin with some simple auxiliary macros*/ 

macro readcheck(x); /* check that read ok */ 

if x ~ n then print 'run terminated by illformed input'; 

exit;; endm readcheck; 

macro setype(c); /* adds additional type specification for 

character*/ 

typef{c} = typef {c} with type; return; endm setype; 
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macro e; /* error procedure*/ errors=errors+l; endm e; 

finef htt x; return x(2); end htt; 

definef pair x; return if~ x ~ tupl then f 

else (#x) ~ 2; _end pair; 

define setup(typ,table,rpak,cstring); /* main setup routine*/ 

nxt = 'nxt'; errors=O; read allch; readcheck(allch); 

allc = {allch(n), 1 ~ n ~ #allch} with er; 

read ctypes; readcheck(ctypes); typef = nt; 

(Vtup E ctypes) <type,cstring> = tup; 

if cstring = 'er' then setype(er); 

else (1 < Vj < #cstring) setype(cstring(j)) ;; 

end if; 
end lftup; 
read seqtypes; readcheck(seqtypes); 

types= {t, t(n) E seqtypes}; types2 = htt[typef]; 

/* check that types· and types2 agree*/ 

if types - types2 is ers ne nt then 

print 'types specified but not used are:', ers; e;; 

if types2 - types _is~ ne nt then 

/* 
if 

print 'unspecified type~ are 

check that all characters have 

{c E allc I typef{c} ~ nt} is 

used; these are:', ers; e;; 

unique type specif.ied */ 

ers ne nt then 

print 'type unspecified for following characters:', ers; e;; 

if {c E allc I (#typef{c}) _g!:, l} is ers ne nt then 

print 'type multiply specified for following characters:', 

ers; e;; 

typ = typef; read rawtable; readcheck(rawtable); 

statesused = hd[rawtable]; 

/* check that 'nxt' belongs to statesused, and that there are 

no repetitions*/ 

if n('nxt' E statesused)then 

print 'required state 'nxt' omitted f~om table'; e;; 

if {st E statesused I (#rawtable{st}) -9:,:!:, l} is ers ne nt then 

print 'multiply defined states:', ers; e; 

/* force to single value~ function*/ 

(\fx· E ers) rawtable (x) = 3rawtable{x};; 

if; 
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/* check that right number of terms in all sequences*/ 

if{stEstatesusedJ (#rawtable(x)) ne #seqtypes} is ers ne ni then 

print 'states defined with wrong number of type entries:' ,ers,~,, 

/* convert to two dimensional table*/ 

table= {<state, stp(j), rawtable(state) (j)>, 

state E statesused,stp(j) E seqtype}; 

/* check that all non-tuple entries are either end, skip, or cont*/ 

·if{<x,y,table(x,y)>, x E statesused, y E types 

~ table (x,y) is tent ne tupl and n tent E { i end' , 'skip',' cont'}] 

or(~ tent ~ tupl and (!!_ (hd table (x,y)) E{ igo', 'do'}} 

or ((hd tent)~ 'go' and (#tent) ne 2)))}is ers ne ni 

then print 'illegal entries in following positions of table:', 

ers; . e;; 

/* check that all go-to entries are well-formed*/ 

if {<x,y, table(x,y)>, x E statesused, y E types I 
(hd table(x,y)) ~ 'go' and(~ table(x,y)) ~ tuple and 

!!. hti table(x,y) E statesused}) is ers rte ni then 

print 'illformed go-to entries in following positions of table:' ,ers; 

/* now prepare to check wellformedness of all call-type entries*/ 

re.ad routs et; readcheck (routset) ; routs = hd [routset] ; 

routscalled = ni; 

/* check that all routines are uniquely defined*/ 

if {rt E routs I (#routset{rt}) ne 1} is ers ~ nt then 

print 'illdefined or multiply defined routines:', ers; e;; 

/* the routine 'callok' used in the next statement is given below. 

it builds up the set 'routscalled' */ 

if {<x,y,tabl~(x,y)>, x E statesused, y E types 

pair table(x,y) and (hd table(x,y)) ~ 'do' 

and !!_ callok table (x,y) }, is ers ne ni 

then print 'illegal ~all-type entries in following positions:' ,ers;e; 

/* check that all routines called are defined*/ 

if {rt E routscalled I n rt E routs} is ers ne ni then 

print 'routines used but not defined:', ers; e;; 

/*·give warning diagnostic on superfluous definitions*/ 

if {rt E routs I!!. rte routscalled} is ers ne ni then 

print 'warning *-*""."*- routines defined but not used:', ers;; 

/* number routines*/ 

rnums = ni; (Vr E routs) rnums(r) = #rnums+l;; 
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/*setup rpak */ 

.ktext = 'define rpak (numrout) ; '+ 

'go to{'+ [+: rout E routs] ('<'+ dee rnums(rout)+ 1
,

1 +rout+'>' 

+if rnums(rout) ne #rnums then ' ' else'} (numrout) ;') 

+[+: rout E routs] (rout+':'+ routset(rout)+'return;') 

+ 'end rpak; ' ; 

/* now replace rout names in action table by corresponding index 

in rpak */ 

(\fx E statesused, y E types I (hd table (x,y)) ~ 'do') 

(\fop(j) E table(x,y)) 

if op~ 'do' then 

table(x,y) (j+l) = rnums(table(x,y) (j+l)); 

end if; 

end \fop; 

end Vx; 

/* now rpak has been constructed, typef supplied and table constructed*/ 

return; 

end setup; 

/* here follows the auxiliary routine callok, used above. 

this routine checks for illformed 'go'- and 'call'-type 

entries in the lexical scan action table, and builds up 

the set routscalled */ 

definef callok entry; ok=!; 

(\fword(n) E entry) flow 

( entry(n-1) ~ 'do')? 

putin, ( entry(n-1) ~ 'go')? 

(, word E statsused)? 

cont, notok, 

putin: wo_rd in routs called; 

shortkeyword := word E {'end' ,'skip' ,'cont'}; 

longkeyword :=· word E {'go', 'call'}; 

tooshort := (#entry)~ n; 

it: continue; 
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er: return !_; 

notok: ok = !_; end fl9w; 

end Vword; return ok; 

end callok; 

3. Miscellaneous combinatorial algorithms. 

In the next few paragraphs~ we will write out various algorithms· 

of a rather mathematical flavor, diversely related to combinatorial 

stiuations of theoretical interest. These algorithms are intended 

to demonstrate the ease with which SETL adapts itself to a variety 

of combinatorial structures and situations. Our first example is 

simple but famous: Cantor's 'diagonalizer', which, given a sets 

and a multivalued map f: s ~ s, produces a set which is not of the 

form f{s}. It is 

diagset.= {x Es nxEf{x}}; 

the reader may supply the proof. 

Next we present some useful "closure·" algorithms. If as and bs 

are subsets of a sets, and f is a (possibly multivalued) map on s , 

the following sets are often of interest. The set close(f,as) 

consists of ·all points obtained by repeated applications off to as; 

the set closure(f,as,bs), consists of all points obtained by 

repeate_d application of f to as, taking only images in bs. The 

corresponding SETL algorithms are as follows. 

definef close(f,as); 

im = f[as]; n = O; 
(whiie n lt #im) n = #im; im= im+f[im] ;; 

return im; 

end close; 

definef closure(f,as,bs); 

im = f[as] * bs; 

fp= {gEf I (g(l) E bs and g (2)Ebs)}; 

n = 0; 

(while n 1 t #im) n = .#im; im=im +. fp [im] ; ; 

return im; end closure; 
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Given a map f, the following algorithm returns f' such that 

(x) = close(f,{x}): 

definef closef(f,set) 

fp = f; 

(Vx E set) n = O; 

(while n lt #fp{x}) 

n = #fp{x}; fp{x}= fp{x}+ fp [fp{x}]; 

end while; 

end Vx; 

return fp; 

end closef; 

It should be noted that the above algorithms are deliberately 

given.in simple short forms, even though considerably more 

efficient though more complex forms are available for some of them. 

Next we give an algorithm related to the P.roblem of maximum 

network flow, which turns out to be central to an interesting grou~ 

of combinatorial algorithms, some of which at first sight seem to 

have no contact with this problem. By a 'network we mean a collec

tion N of points p, such that for each pair <p,q> of distinct 

points in Na non-negative capacity c(p,q) is defined. We may 

think of c(p,q) as representing the maximum 'fluid carrying 

capacity' of a 'pipe' connecting p and q, and oriented from p to q. 

A 'pipe' from p to q is 'absent' whenever c(p,q) = O. Note that 

the values c(p,q) and c(q,p) are independent; in effect, therefore, 

networks are oriented. A flow in the network is a function f(p,q) 

which assigns to each pair of distinct points a value satisfying 

0 ~ f(p,q) ~ c(p,q). If merely f(p,q) > 0, but the condition 

c(p,q) ~ f(p,q) can be violated for some p,q, then we call fan 

overflow. The net £-outflow from a point.p is the sum over all 

q ~ p of f(p,q) - f (q,p); the £-inflow to p is the negative of 

this quantity. Given two distinct points x,y of N, we say that 

is a flow from X to y if the net f-outflow from each point other 

f 

than x and y is zero and the net f-outflow from xis nonnegative. 

We define the motion of .an over flow from x to y similarly. It is 

: hard to see that in a flow (or overflow) from x toy the net 

__ nflow to y must equal the net f-outfiow from x. This. common 

.-279-



value is called the value (or transport value) of the flow f. 

The maximum flow problem is the problem of finding a flow of 

maximum transport value from x toy in a network, given the 

capacities c{p,q). 

We attack this problem as follows. ·Let f be a flow from x 

toy. If both f{p,q) and f(q,p) are positive, let m be their minimum; 

and put f{p,q) = f{p,q) - m, f{q,p) = f{q,p) - m. It is clear that 

f is still a flow from x toy; we call f the reduction off, and 

observe that f and f have the same transport value. Next, let 

p 0 ,p 1 , ... ,Pn be a sequence of points of N, the first element p 0 
of the sequence being identical with x, the last p being identical n 
with y. We call such a sequence an x,y-path. Designating such 

n-1 
a path by TI, we put f {p,q) = l f{p p ) {p,q), where 

TI j=l j' j+l 

(1) f {u,v) {p,q) = 1 if <u,v> = <p,q>, f{u,v) {p,q) = 0 otherwise. 

It is clear that f is an overflow from x toy, and .~hat its 
TI 

value is 1. Let a flow f from x toy be given, and let its value 

be V. If there exists a positive constant y su~h that the reduc

tion g of the sum f + yf is a flow {necessarily from x toy), 
TI 

then it is clear that the value of g is V + y ; g is therefore 

a flow from x to y having value larger than that off. The 

condition that such a path TI and number y > 0 should exist may 

clearly be formulated as follows: there must exist an x,y-path 

p 0 ,p 1 , ... ,pn such that for each O < i < n we have either 

f{pi+l'pi) > 0 or f{pi,Pi+l) < c{pi,Pi+l). Call such a path an. 

!-augmenting path from x toy; we restate the observation just 

made, as follows: given an £-augmenting x,y-path we can at once 

produce a flow from x toy having value larger than that off.· 

Conversely, suppose that no augmenting path from x toy exists. 

Then let X be the set of all points which can be reached along 

an £-augmenting path starting at x. Let X be the complement of X. 
-Clearly y EX, and clearly f{p,q) = c{p,q) and f{q,p) = 0 if 

p EX and q Ex. It is easy to see from this that the value 

V of f is equal to the sum 

<2> I _ c<p,q) • 
pEX,qEX 
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Since, as easily established, no flow from x toy can have a value 

rger than (2), it follows that f is a flow of maximum value. 

The above remarks prove the following theorem. 

Max-Flow Min-Cut Theorem. Given a network defined by a set 

of capacities c(p,q), and given two points x,y in the network, 

the maximum value which any flow f from x toy can have is at 

the same time the minimum value of the expression (2), where in 

(2) X ranges over all sets containing x but not y. 

Our argument also gives us the following algorithm for construct

ing a flow of maximum value, at least in case the capacities c(p,q) 

are all integral. We start with the 'trivial' flow f, for which 

f(p,q) is identically zero. If there exits an f-augmenting 

x,y-path TT, we replace f by the reduction g off+ yfTT, taking y to 

be as large as possible subject to the requirement that g be a flow. 

Note that since all the capacities c(p,q) are assumed to be integral, 

y will be an integer, and g will have a value exceeding that off by 

at least 1. Hence, iterating our construction a finite nulilber of 

times, we will eventually obtain a flow from x to y having maximum 

value. 

We shall now give a SETL code representing the procedure just 

outlined. The following remarks will aid the reader in following 

this code. The main routine which appears is maxfZow, which takes 

as arguments a set of pairs called graph and an integer-valued 

capacity function c(p,q) defined for <p,q>- E graph and p-, q. 

The set nodes is the set of all points appearing in a pair 

belonging to graph; since in practical situations c(p,q) will be 

zero except for a relatively small set of pairs <p,q>, we prefer . 
to work from graph rather than from nodes. 

The routine path, given two points x,y and a flow f, constructs 

and returns an f-augmenting path from x toy if possible. If this 

is impossible, path returns the value n. 
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Note also that the binary function a orm b returns a 

unless a is n, in which case it returns b. 

define£ r(e); /* reversed edge*/ return <e(2),e(l)>; end r; 

definef maxflow(x,y,graph,c); /* main routine*/ 

gr= graph+ r[graph]_; 

nodes= {e(l), e E gr}; 

f = {<e,O>, e E gr}; 

(while path(x,y) is p ne n) 

auxflowv = [min: e E p] cap(e,f;c); 

(Ve E p) 

f(e) = f(e) + auxflowv; 

redund = f(e) min f(r(e)); 

f(e) = f(e) - redund; f(r(e))=f(r(e))-redund; 

end Ve; 

end while; 

return f; 

end maxflow; 

define£ cap(e,f,c); 

return f(r(e)) max (c(e)orm O - f(e)); 

·end cap; 

definef path(x,y); /* constructs £-augmenting path if possible*/ 

/* we assume in this routine that gr, f, and care global*/ 

new ={y}; set= new; 

next= nt; /* next will point along the nodes of a path*/ 

(while new ne nt doing new= newer;) 

newer= nt; 

(Vv E new) 

prior~{uEgr{v}lu n E set and cap(<u,v>,f,c) il O}; 

(~u E prior)<u,v> in next; 

if u ~ x then go to done;; 

u in set; u in newer; 

end 'tu; 
,· 

end Vv; 

end while; 
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1* loop fallout means path is impossible*/ return n; 
de pth = ni; pt= x; /* now loop to build up path*/ 

(while next(pt) ne n doing pt= next(pt) ;) 

<pt, next(pt")> in pth; 

end while; 

return pth; 

end path; 

Next we consider the so-called combinatorial "matching" or 

"marriage" problem, and an algorithm solving it. The problem is 

this: given a multivalued map from a sets to a disjoint sett, 

when can we find a one-to-one map g defined on s such that g(x)Eh{x}? 

The necessary and sufficient condition is that #h[t] ~ #t for 

each subset t of s. More generally, we may ask: what is the 

maximum number of points in a subsets of son which there exists 

a one-to-one g such that g(x) E h{x}? Answer: #s equals the total 

number of points ins, minus the maximum m of#;- #h(;], ~ ranging 

over all subsets of s. This is the so-call·ed matching theorem. 

To prove it, note that a single valued g with g(x) E h{x} must fail 

to be defined on at least#~ - #h[~] points of s, and hence on at 

least m points of s. To prove conversely that g may be defined 

on all but m points of s, we make use of the m_ax-flow min-cut 

theorem, in the following way. Introduce two points x and y 

distinct from all the points p of the union of sand t. Now define 

capacities as follows: c(x,p) = 1, for p Es; c(p,q) = 1 if p Es 

and q E h{p}; c(q,y) = 1 if q Et; c(p,q) = 0 in all other cases. 

Using these capacities, let f be a flow from x toy having 

maximum value; by what has been proved in preceding pages, we 

may take all the values off to be integral. Clearly then, each 

value off is either O or 1. Put g(p) = q if f(p,q) = l; since 

the total 'outflow capacity' from q is c(q,y), i.e., is 1, the 

function g is one-to-one. Our definition ·of c makes it plain 

that g(p) E h{p} for all p. The value of the x,y-flow f is 

clearly not more than the number of points in the domain of the 

1-l function g. By the max-flow min-cut theorem, this value equals 

minimum sum l _ c(p,q), where Xis the complement of X and 
pEX,qEX 

where the set X includes the point x but not the pointy. 
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----------------------

This minimum is clearly ~lso the minimum 9+ 
( 3) #(s-u) + #(h[u]-v) + #v, 

where u ranges over all subsets of s anq v over all subsets oft. 

But for fixed u the minimum of (3) as v varies is clearly 

( 4) # (s-u) + #h [u] . 

Thus at least #s - max (#u - #h[u]) = #s = m points belong to 
u 

the domain of g, proving the matching theorem. 

The proof just given clearly reduces the construction of the 

1-1 function g to a maximum flow construction and gives us the 

algorithm for 'maximµrn match' expressed in the follo~ing SETL code: 

definef maxrnatch(h); 

/*his a possibly multi-valued function. 

we seek a 1-1 g such that g(x) E h{x} */ 

x = newat; y = newat; 

graph= h + {<x, z(l)>, z Eh}+ {<z(2) ,y>, z Eh}; 

c ={< e,l>, e E graph}; 

mf = maxflow(x,y,graph,c); 

return {p Eh I mf(p) ~ O}; 

end maxrnatch; 

/ 

This construction has a wide variety of interesting ~xtensions. 

Suppose, to give just one example, that nm(x) is a numerically 

valued function defined on t~e domains of h, and that we are 

required to construct a multi-valued function g such that g{x} 

is always a subset of h{x}, such that g{x} always cqntains nm(x) 

elements, and such that all- the sets g{x} are disjoint. (For 

nm(x) = 1, this reduces to the case that has been considered.) 

The necessary condition is clearly #h[t] > L nm(x) for all 
xEt 

subsets t of s. We may easily see that this condition is also 

sufficient as follows: replicate each point x Es, nm(x) times; 
-put h x = h{x} for each replica x of x. Solve the m~tching problem 

with nm_ 1 for hon this larger domain. This ?l~ar+~ gives a 

solution to our generalized matching problem. In. SETL, this 

construction may be written as 
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nPfinef genmatch(f,nm); nf = n£; 

?licas = {<x,x,k>, x E hd[f], 1 < k ~ nm(x)}; 

(~x E hd[f], y E replicas{x}) nf{y} = f{x};; 

return maxmatch(nf) .£replicas;/* the binary function f cg 

'compounds' the maps f and g */ 

end genmatch; 

Here we have employed the generally useful functional composition 

operation defined as follows. 

define f .£ g; return {<x,y>, x E hd[g], y E f [g{x}]}; end c; 

We continue our sequence of combinatorial algorithms by 

discussing the so-called Menger curve theorem, which we state 

in a form applying to unordered graphs. An unordered graph is 

a set of nodes, together with a symmetric relationship between 

pairs of nodes, which tells us when a pair of nodes is connected 

by an edge, i.e., are neighboring. We may also think of this as 

a multi-valued function naybs, defined on s, which gives us the 

set of neighbors of each node, and which has the property that 

x E naybs{y} implies y E naybs{x}. If this property does not 

hold, we call our graph ordered. 

A pair <y,x> such that x E naybs{y} is called an edge of the 

graph. Given two sets a and bin a graph, we say that they can 

be connected if there exists a sequence of nodes, the first in a, 

the last in b, the second member y of every successive pair x,y 

of nodes. belonging to naybs{x}; such a sequence is called a pa~h 

from a to b'" We say that a and bare n-connected in the graph if, 

whenever n-1 nodes are removed from the graph, the parts of a and 

b which remain are still connected. Menger's theorem asserts 

that if a and bare n-connected in the graph, there exist at least 

n paths connecting a and band having no points in common. 

Instead ·of proving this result directly, we will find it 

useful to relate it to a similar result concerning ordered graphs 

and disjoint paths. Given two sets a and bin an ordered graph, 

we say that a is n-path-connected to b if, .however n-1 edges 

removed from the graph, there still exists a path from a to b. 
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A result on ordereq graphs related closely _to Mengers' theorem 

on unordered graphs states that if a is n-path-connected to b 

then there exist at least n paths from a to c having no edges 

in common. 

This last assertion may be derived in the following way from 

the max-flow min-cut theorem. Use the graph g containing a and b 

to define a network N as follows: The points of N are the points 

of g, plus two'additional points x and y. 

for the edges of N as follows: c(p,q) = 
Capacities are defin~d 

l·if q E naybs{p}; 

c (p ,q) = 0 ·otherwise, c (x ,p) = L for p E a and c (q ,y) =: L for qEb, 

where Lis a large integer (how large L must be will appear below). 

Then find a flow f from x toy having maximum value Vf. By the 

min-cut max-flow theorem, Vis equal to the minimum of 

m = L * (#(a - cr) + #b * cr) + #(naybs[cr] - cr) cr 

cr ranging over all subsets of s. For L large this minimum is 

clearly attained for a cr which includes a and is disjoint from b~ 

Now, by removing from cr all edges going from cr to a point outside cr 

no path from a to b remains. Hence since a is n-path connected 

to bin the graph g, it follows that m > n, so that there exists cr -
a flow fin N having value Vf at least n. 

Call a path n1 from x toy in the network N f-dominated if 

f(p,q) = 1 whenever p,q are successive points of n
1

. Given that 

Vf ~ 1, there must exist an f-dominated path from x toy. 

Indeed, suppose the contrary, and let X denote the set of all points 

which can be reached by proceeding from x along an f-dominated path. 
-Then y belongs to the complement X of x,and no edge <p,q> of the 

graph g with initial point p EX and terminal point q EX satisfies 

f(p,q) > O. Using the general formula 

we deduce at once that Vf must be zero, a contradiction which 

proves the existence of an f-dominated path n
1

. Then letting 

f be defined as in formula (1) above, and putting f' = f - f 
Til TI. 
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we see that if Vf = n the above construction can be repeated 

times, to given distinct f-dominated paths TI1 y••· ,Tin from x toy, 

no two of these paths hav~ng an edge in common. The paths 

TI1 , ... ,Tin clearly include narc-disjoint paths connecting the 

set a to the set b. 

The construction just described is summarized in the following 

SETL algorithm, which, given an oriented graph g defj_ned by a set 

nodes and a function naybs, and given two subsets a,b of the 

set nodes, finds the largest possible number of edge-disjoint 

paths between a and b. Two principal auxiliary routines are used. 

The first, fpath, constructs an f-dominated path between two 

designated points; the second, dimin, performs the operation 

f = f - fTI , TI being some specified path. 

definef disjpaths(nodes,naybs,a,b); 

x = newat; y = newat; 

net= naybs + {<x,z>, z Ea}+ {<z,y>, z Eb}; 

large= #nodes; 

/* it is easily seen that this quantity is sufficiently large 

to play the role of the quantity Lin the preceding discussion*/ 

/* r is the 'edge-reversing' function used also in the 'maxflow' 

algorithm*/ 

rnet ~ r[net]; 

c = {<e,l>, e E naybs} + {<<x,z>, large>, z Ea} 

+ {<<z,y>, large>, z Eb>}; 

mf = maxflow(x,y,net,c); 

pset = nt; 

(while fpath(x,y,mf) is path ne Q doing dimin(mf,path) ;) 

path(2:#path-2) in pset; 

/* thus dropping the auxiliary links to x and y */ 

end while; 

return pset; 

end disjpaths; 

define dimin(mf,path); 

(~x E path) mf(x} = mf(x)-1;; 

;urn; 

end dimin; 
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definef fpath(x,y,mf); /* rnet is assumed to be global*/ 

new= {y~; set= new; 

next= nt; /* next will point along the nodes of a path·*/ 

(while new ne nt doing new= newer;) 

newer= nt; 

( 'rJv E new) 

prior={uE rnet{v} I~ u_ E set an_d mf(<u·,v>) .9!:_ .O}; 

('r/u E prior)<u,v> in next; 

if u ~ x then go to done;; 

u in set; u in newer; 

end Vu; 

end Vv; 

end while; 

/* loop fallout means path is impossible*/ return n; 
done: pth = nt; pt= x; 

(while next(pt) ne n doing pt= next(pt);) 

<pt, next(pt)> in pth; 

'end while; 

return pth; 

end fpath; 

Now we return to Menger's theorem in its original form, i.e., 

to the problem of constructing n disjoint paths between two sets 

a and b n-connected to each other in an unordered graph g. 

We proceed by introducing an ordered graph gas follows. For each 
- in node p of g, g contains two nodes, which we designate asp and 

out · 1 h d f - · f · p respective y. Tee ges o g consist o the pairs 
in out . out ·in 

<p ,p >, together with all pairs <q ,p >, where <q,p> is an 

edge of g. Note then that if a path p 1 ,p 2 ,:·· ;pn in g is given, 
in out in out in out. -it defines a path p 1 ,p 1 ,p 2 ,p 2 , ... , Pn ,Pn in g. 

Conversely, since in g there exists an edge going from pin to qout 

if and only if p = q, it follows that every path 1T connecting 
in 

to 
• out 

must have ·.the form in out in out in out 
P1 Pn ' P1 ' P1 ,.P2' P2 ' • • • , Pn ,Pn 

-i.e. , that 7T must correspond to a path 7T connecting P1 to Pn in a. 

It is clear that if n1 and 1r 2 are two such paths in g, and if 
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TT, and TT2 are the two paths in g which correspond to TT1 and TT2 
spect~vely, then TT1 and TT2 are point-disjoint if and only if 

TT1 and TT2 have no edges in common. Thus the problem of 

constructing .n disjoint paths between two sets a and bing 

is reduced to that of constructing .n edge-disjoint paths between 

two corresponding sets in g. 

The following SETL algorithm makes use of the abstract construc

tion described in thepreceding paragraph. 

definef menger(nodes,naybs,a,b); 

nodesbar = {<n,O>, n E nodes}+ {<n,l>, n E nodes}; 

naybsbar = {<<n,l>,<n,0> , n E nodes} 

+ {<<n,O>,<m,l>>, n E nodes, rn E naybs{n}}; 

p = disjpaths(nodesbar,naybsbar,{<n,l>, n E a},{<m,O>, m Eb}); 

return altpts[p]; 

end menger; 

definef altpts(pibar); 

return [+: x(n) E pibar I n//2 ~ O] <hd x>; 

end altpts; 

The preceding algorithms are intended to illustrate the fact 

that set-theoretic constructions of the type conventional in many 

mathematical discussions can very readily be written out in SETL. 

Another interesting example of this point is furnished by Dilworth's 

Theorem, which states that ifs is a partially ordered set, i.e., 

a set on which a transitive relationship xRy is defined, then the 

minimum · number n of completely ordered subsets or chains by 

which scan be covered is equal to the maximum number m of elements 

which can be found ins, no two of which are related by the 

relation R. Here we call a subset t of s completely ordered, 

or a chain, if given any x and yin t, we have either xRy or yRx. 

We suppose for simplicity that if xRy and yRx, then x = y. It is 

plain that n > m, thus only m ~ n need be proved. The foilowing 

observation of D.R. Fulkerson, pointed out to me by A. Hoffman, 

reduces Dilworth's theorem to the matching theorem. Write 

x if yRx and y ~ x. Let f map each element y of s onto the 
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set of ally such that yR'x, and use the matching theorem to fin~ 

a maximally large 1-1 mapping g subordinate to .. this mapping, i. E 

a 1-1 mapping such that g(x)Rx defined for as many elements as 

possible. By the matching theorem, the number of elements for 

which g is undefined ism= max(#t - #f[t]), where f[t] is the 

set of all elements such that yR'x for some x Et. Given a subset 

t of x for which the maximum is attained, form t' = t - f[t]. 

It is clear that we never have xR'y for x,y Et'; thus t' consists 

only of unrelated elements, so m > m. Suppose now that we take 

the colle~tion of all those elements u such that u # g(v) for 

any v Es, and then form p = ~u, g(u), g 2 (u), •.. , gk(u)>, until 

finally gk+l(u) is undefined. Then it is clear that the pare 

a family of chains coverings, and that their number is at most m; 

so that n < m < m. 

This construction may be represented in SETL as follows: 

definef dilworth(set,reln); 

/* we assume that reln is a function re ·1rning the values ~, f */ 
h = {<x,y>, x E set, y E set I reln(x,y) ax ne y}; 

g = maxinatch'(h); bots= set - g[set]; dil = nQ.; 

(Vx E bots) y = x; tup = <y>; 

(while g(y) ~ n doing y - g(y) ;) 

tup = tup + <g(y)>; 

end while; 

tup in dil; 

end Vx; 

return dil; 

end dilworth; 

Dilworth's theorem has an interesting connection with the 

problem of representing, in compact form, a binary relationship 

over a given set·s. Such a relationship is a 0,1-valued function 

r(x,y), defined for all x Es, y Es. A relationship of this kind 

can of course be represented (at machine level) by a table of bits, 

n x n in size, where n is the number of elements of s. Various 

other possibilities, which may in certain cases be more efficie1 

exist. For example, we may store, with each x, the set of ally 



for which r(x,y) = 1, representing this set as a list. Here we 

ill consider another way of representing r(x,y), which is 

advantageous in certain cases. Our idea is as follows. First 

associate with each x the set 

Ux = {y Es r(x,y) ~ l}. 

If the family of sets Ux can be arranged in a single, steadily 

increasing family U c U c U c ... c U · of sets, 
xl x2 - X3 - xn 

then we can assign, to each x ins, the index of the set Ux in 

this sequence, thereby defining a function f(x). If, for each y, 

we let g(y) be the index of the smallest set U to which y belongs, 
X 

then plainly r(x,y) ~ 1 is equivalent to g(y) ~ f(x). Hence r(x,y) 

can be represented by a table of 2n values, rather than by a table 
2 of n bits. 

In general, we cannot expect that the sets U will form a 
X 

single, steadily increasing chain. Neverhteless, the family of 

all sets U is partially ordered, and we can use Dilworth's theorem 
X 

to break the collection of all the sets Ux into a minimum number 

of separate steadily increasing chains of sets. We may then let 

f(x) be the index of U in the chain c(x) to which U belongs, and, 
· X X 
for each y Es and each chain c, let g(y,c) be the index of the 

smallest set, in the chain c, which contains _y. It then follows 

that r(x,y) ~ 1 is equivalent to g(y,c(x)) ~ f(x). If k 

chains are needed to accommodate all the sets Ux, this method 

allows us to represent the relation r(x,y) by a table of (k+2)n, 
2 rather than by a table of n , values. 

This compaction procedure, quite useful in certain cases, may 

be written as follows in SETL. 

define£ compactreln(set,relation); 

relpairs = {<x,y>, xEset, yEsetl 
(\f z E set I relation(y,z) imp relation(x,z)))}; 

chains= dilworth(set,reln); 

f = nt; g = ni; c = ni; 

('dch E chains, x(j) E ch) f(x) =· j; c(x) = ch;; 

E set, ch E chains) g(y,ch) = 

if 3X(j) E chi relation (x,y) then j else #ch+l;; · 

return < f, g, C>; 
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end compactreln; 

/* for the present application, the function reln called by 

dilworth is defined as follows*/ 

define£ reln(x,y); /* relpairs is assumed global*/ 

return <x,y> E relp~irs; end reln; 

Next we give a set of combinatorial· routines of a rather 

different character. These are all combinatorial generators, i.e., 

algorithms which generate all the members of a certain interesting 

class of combinatorial objects. The first of these is a program 

to generate all permutations of n objects, which we give here 

because of its rel at.ion to other of the algori thn1.s to be given 

in this section, even though most of our discussion of algorithms 

related to permutations is reserved for later pages. 

This program generates all permutations of n. Like most of our 

other generators·, it works by iterative application of a rule 

which defines the k+l-st object to be generated in terms of the 

k-th object; where the enumeration of objects is to be in some 

well-defined, generally lexicographic, order. For permutations, 

we do in fact use the standard lexicographic order. Then the next 

permutation after a givens is defined by the following rule: n . 
increase the last possible element by the smallest possible amount. 

That is, givens , find the last elements. which is not part of 
n J 

a monotone decreasing "tail", interchange it with the smallest sk 

with k > j and sk > sj 

into ascending order. 

, and then place all the elements sj+ 1 , ... sn 

In the program which now follows, a signal 

is transmitted through "more" when the process restarts. 

define£ perm(n,more); 

/* initialize if new*/ 

if n more then more= t; seq=[+: l~k~n] <k>; return seq;; 

/* if sequence is monotone decreasing, there are no more 

permutations. Otherwise find last point of increase*/ 

if~ (n > 3j > 1 I seq(j) lt seq(j+l)) then 

more= f; return n; 
end if; 
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/* then fi_nd the last seq (k) which exceeds seq ( j) and swap * / 

nd = n ~ 3k > j I seq(j) lt seq(k); 

<seq ( j ) , seq ( k) > = <seq ( k) , seq ( j ) > ; 

/* then rearrange all the elements after seq(j+l) into 

increasing order*/ 

(j < Vk ~ (n+j+l)/2) 

kk = n - k + j + l; 

<seq (k) , seq (kk) > = <seq (kk) , seq (k) >; 

end Vk; 

return seq; 

end perm; 

A routine for generating the elements of the set npow(n,s) may 

be based on the same principle. We arrange the elements of sin 

a sequence, and always arrange each subset of sin the increasing 

order of this sequence. The rule for obtaining the next subset 

after a given one is again: increase the last possible element by 

the smallest possible amount; and reduce all the elements which 

follow it by the greatest possible·arnount. In SETL we have: 

definef nexnpow(n,s,more); 

if n more th:.n 

more= !i seq= nt; 

(\fx Es) seq(#seq+l) = x;; 

select= {<i,i>,l~i~n}; 

return seq[tt[select]]; 

end if; 

if select(n) ~#seq.then 

select(n) = select(n)+l; 

return seq[tt[select]]; 

end if; 

if n (n > 3j ~ 1 I select(j+l) s_! select(j)+l) then 

more= f; return n; 
end if; 

(n ~ Vk > j} select(k) = select(j)+k-j+l;; 

:urn seq [tt [select]] ; 

end nexnpow; 
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Of course, a complete power set generator is easily defined 

using this routine. 

define£ nexpow(s,more); 

if n more then more=~; n = l; mor = f; return nl;; 

subset= nexnpow(n,s,mor); if mor then return subset;; 

if n ~ #s then 

more= f; return n; 
else n = n+l; mor = f; 

return nexnpow(n,s,mor); 
end if; 
encl nexpow; 

Again using the same idea, we may define a routine which 

generates all the maps of one set into another. 

define£ nexmap(fr.om,to,more); 

if n more then 

more= ii fseq = nl; 

('r/x E from) fseq(#fseq+l) = x;; 

tofol = nl; prev = n; /* now chain elements of to together i,n a list * 
(Vx E to) if prev ne n then <prev,.x> in tofol; 

else first = x; 

end if; 

prev = x; 

end 'r/x.; 

map= {<x,first>, x E from}; 

return map; 

end if; 

if ~ ( #from ~ 3 j ~ 1 I to fol (map (fseq (j) )) ne n) then 

more= f; return n; 
end if; 

map(fseq(j)) = tofol(map(fseq(j)); 

(j < Vk ~ #from) map(fseq(k)) = first;; 

return map; 

end nexmap; 

Next we give a generator of all the partitions of n (i.e. dis1 t 

combinations of positive integers with sum n), constructed along 
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similar lines. The ordering scheme used is as follows. Parti-

ons n 1 , ... ,nk with n 1+ ... +nk = n are kept in monotone 

decreasing arrangement, i.e., n 1 ~ n 2 > > nk > 0, and are 

generated in lexicographic order. 

The next partition after n 1 , ... ,nk is then obtained by finding 

the largest j such that n. can be increased (either j = 1 or the 
J 

largest j < k such that n. 1 > n.), 
J- J 

setting all the n's after n. to 1. 
J 

definef nexpart(n,more); 

if n more then 

more=!; pseq=[+: l~k~n]<l>; 

return pseq; 

end if; 

incrementing n. by 1, and 
J 

Here is the SE.TL code. 

if(#pseq · ~ 1 then more= f; return D,; 
if n #pseq > 3j > 1 I pseq(j-1) ~ pseq(j) then j = l;; 

pseq(j) = pseq(j)+l; tot=([+: j<k 2 .#pseq]pseq(k))-l; 

pseq = pseq(l:j) + ([+: l~k~tot]<l> orm nult); 

return pseq; 

end nexpart; 

Next we generate various types of trees using a similar technique. 

Since trees have a recursive structure, we shall want to code the 

advance from one tree to another as a recursive process. First 

consider the problem of generating all binary trees with n nodes. 

We order these trees by the following recursive principle: 

suppose that all trees of less than n nodes have already been 

ordered. Then, among tr.ees. with exac:tly n node$, we put all those 

with a smaller number of nodes down the left-hand branch from the 

root ahead of those with a larger number of nodes down the left 

hand branch from the root. Among those with a given number of 

nodes down the left-hand branch from the root, we order trees first 

according to their left-hand subtree, then according to their right

hand subtree. The first tree is that in which no node has a left-

1d successor. To advance from a tree to the next tree, we 
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i. Advance the right-hand subtree to its successor, if possible. 

ii. If this is impossible, advance the left-hand subtree, and 

set the right-hand subtree to the first tree with the same number 

of nodes. 

iii. If this is impossible, transfer one node from right to left, 

and set both the right and left-hand subtrees equal to the first 

tree with the appropriate number of nodes. 

The following figure shows all three-node binary trees in the 

order in which th~y will be generated. 

\ 
/ /\ < 

Fig. 3. All binary trees with three nodes. 

In SETL, the tree-generation r.outine is as follows: 

definef nextree(n,more) 

if n more then 

more=~; Q. = nQ.; r = {<j,j+l>, l2_j<n}; 

top = 1; 

return <Q.,r,top>; 

end if; 

advance(top,more); 

return if more then<Q.,r,top> else Q; 

en'a. nextree; 
\ 

define advance(top,more); 

if r(top) ~ n then 

if Q.(top) ~ n then more= £i return;; /*else*/ 

advance(Q.(top) ,more); return; 

else 

advance(r(top) ,more); 

end if; 

if more then return;;/* otherwise*/ 

nodesetr = nodesof(r(top)); advance(Q.(top) ,more); 

/ 

if more then r(top) = newtree(nodesetr); return;; /*otherwise*/ 

nodesetr = nodesetr less r(top); 

nodseti = nodesof(Q.(top)) with r(top); 

Q.(top) = newtree(nodesetl); r(top) = newtree(nodesetr); more=t; return 
end advance; 
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definef nodesof(top); 

:urn if top ~ Q then nR. else 

nodesof(R.(top)) + nodesof(r(top)) with top; 

end nodesof; 

definef newtree(set); 

if set~ nR. then return Q;; 

prev from set; first= prev; R,(first) = Q; 

O'x E set) R, (x) = Q; 

r(pr~v) = x; 

prev = x; 

end Vx; 

r(prev) = Q; 

return first; 

end new tree; 
As a final example of this class,we consider the problem of 

generating all unordered trees with n nodes. Such a tree is. 

defined by a set of n nodes, one of which is designated as the 

head of the tree; and by a multivalued mapping cesors of this set 

into itself, which defines the set of successors of each node. 

We require that the iterated 'application of this map to the head 

should eventually produce every other node; and that, for each 

node x, the iterated application of this map to x can never 

produce x. This last condition amounts to requiring that a tree 

be cycle free. We assign a standard sequence number to unordered 

trees recursively, as follows. Suppose that sequence numbers 

have already been defined for all unordered trees of less·than 

n nodes. Givon a tree of n nodes, take its root x and take all 

the subtrees whose roots are the immediate successors of x. 

Arrange these successors first by decreasing order of the number 

of nodes they contain, and, if two contain the same number of 

nodes, then in decreasing order of their sequence numbers; we call 

this order the standard ordering of the unordered tree. This 

associates a sequence S of sequence numbers with each unordered 

tree T of n nodes. By arranging all such sequences Sin lexico

graphic order, and assigning the position of Sin this lexicographic 

:er to T as its sequence number, we define a sequence number for 

each unordered tree with n nodes. 
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In this standard sequencing of trees with n nodes, the first ;c 

that in which the root has n-1 successors. To advance from a tr1 

T to the next tree, we proceed as follows: 

i. Take Tin its standard ordering; 

ii. Among the subtrees whose roots·are immediate ~escendants 

of the root R of T, find the last L which it might be possible to 

advance. This is either the first subtree, or the last subtree 

which either has fewer nodes than, or the same number of nodes 

and a lower sequence number than, its immediate predecesso~. 

iii. If possible, advance L, and make all the nodes belonging 

to later subtrees immediate successors of R. 

iv. If L cannot be advanced, collect all the nodes belonging 

to later subtrees into a sets. Transfer one node out of S, into 

L. Redefine Las the first tree with its new number of nodes; make 

all the nodes remaining in S into immediate successors of R. 

v. If the root of Lis the last descendant of R, find the 

last immediate subtree of R prior to L which it might be possible 

to advance,. and proceed with L' as in case iv. 

The following figures show all unordered trees of three, four, 

and five nodes, in the order in which they would be generated by 

the algorithm just outlined. 

I\ I 
Fig. 4. Unordered trees of three nodes. 

A\. 0 I I 
Fig. 5. Unordered trees of four nodes. 
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Fig. 6. Unordered trees of five nodes. 

The following observations will clarify salient details of the 

SETL algorithm given below. In· place of unordered trees (defined 

by a set of nodes and a multivalued 'descendant' function 

desc{n}) v.e keep ordered 'representatives', in which each node n 

is mapped into a sequence odesc(n,j). With each node n we also 

keep the sequence number seqno(n) of the subtree T having n as 

root, and the number numnodes(n) of nodes in T. This auxiliary 

information is used during the necessary tree-advance 

The SETL algorithm is as follows; note the use of 

function x orm y, which returns if x ne Q then x 

definef nexotree(n,more); 

if more then go to try; else 

/*initialize*/ 

more=~; top= l; odesc = ni; 

numnodes = {<top,n>}; seqno = {<top,l>}; 

hang(top,l,{j, l<j~n}); 

process. 

the auxiliary 

else y. 

/* the subroutine 'hang' adds a set of nodes as immediate successors 

of a given node x, starting at a given position j. Each node hung 

is assigned numnodes = l; seqno = l; all prior immediate succes~ 

sors of x, beginning at the position j, are removed*/ 

cesors = n£; 

end if; 

<ret: > (1 < \fnode .s_ n) resors {node} = {x (2) , x E odes:c{node}};; 

return <top,cesors>; 

<try:> advance(top,more); 

more then go to ret; else return Q;; 

ena.nexotree; 
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define advance(top,more); 

k = # odesc {top}; if k ~ 0 then more = f; return;; /* otherwise~ 

<look;> if~ k ~3j > 1 I 
numnodes(odesc(top,j)) lt numnodes(odesc(top,j-1)) or 

seqno(odesc(top,j)) lt seqno(odesc(top, ⇒ -1)) 

then- j = 1;; 

<adv:> advance(odesc(top,j) ,more); 

set= [+: j<k~#odesc{top}] nodes(odesc(top,k)) orm ni; 

if~ more then go to movenode;; 

/*else*/ hang(top,j+l,set); return; 

<movenode:> if set~ ni then go to backup;; 

setl=nodes(odesc(top,j)); 

newtop = 3set; 

<numnodes(newtop) ,seqno(newtop)> = <#setl+l,l>; 

odesc(top,j) = newtop; hang(newtop,l,setl); 

hang(top,j+l,set less newtop); 

return; 

<backup:> if j ~ 1 then more= f; return;; 

/* else */.k = j-1; go to look; 

end advance; 

define hang(top,j,set); 

k = j; 

(while odesc(top,k) ne n doing k = k+l;) 

odesc(top,k) = n;; 

k = j; 

(Vnod E set) 

odesc(top,k) = nod; k = k+l; 

<numnodes(nod) ,seqno(nod)> = <1,1>; 

odesc(nod) = n; 
end Vnod; 

return; 

end hang; 

definef nodes(top); 

if numnodes (top) ~ 0 then return {top};; 

return [+: 1 ~ j ~ #odesc{top}] nodes(odesc(top,j)) with top; 
end nodes; 
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4. Algorithms for Permutations. 

A permutation of a sets of n objects is a one-to-one mapping 

of s into itself. The set of permutations of s forms a group, 

indeed, the prototype of all groups; the combination and inverse 

being given as follows: 

definef f cg; return{<x, g(f(x))>, x E hdTf]}; end c; 

definef inv f; return{<x(2), x(l)> x E f}; end inv; 

Permutations can conveniently be represented in the so-called 

cycZe_form. The cycle form of a permutation f of sis a family 

of disjoint sequences, collectively coverings, such that f(x) 

is always the next element in sequence after x, unless x_ is the 

last element of a sequence, in which case f(x) is the first element 

of the same sequence. A SETL algorithm for putting a permutation 

into cycle form may then be written as follows: 

definef cycform(f); 

s = hd[f]; eyes= ni; 

(whiles ne ni) elt from s; eye= <elt>i 

(while f(elt) is e Es doing elt = e;) 

eye= eye+ <e>; 

s = s less e; 

end while f; 

eye in eyes; 

end whiles; 

. return eyes; · 

end cycf orm; 

Since the cycle form of a permutation represents the permutation 

in a condensed and structurally revealing manner, it is useful to 

be able to perform the basic operations of combination and inversion 

directly on the cycle form of a permutation. Inversion is easy: 

we merely reverse every cycle. In SETL this is: 

definef invc eyes; 

return { [+: #e~n~l] <e (n) >, e E eyes}; 

inve; 
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The existence of the cycle form of a permutation shows that ar-

permutation may be written as a product 0£ 'cyclic' permutations 

i.e. , permutat_ions of the special form a -+ b, b -+ c, ... , d -+ e, e-+a. 

(The notation (abc ... de) is often used for a permutation of this 

special sort.) A number of algorithms ·for the inversion of permuta

tions '_in place' , (i.e. , without the use ot: extra storage space; 

assuming that the permutation is represented- by a permuted array 

of values) implicitly make use of the cyclic decomposition of a 

permutation. The simplest of these inversion algorithms rather 

resembles the algorithm for putting a permutation into cycle form. 

define cyclinv(f); s = hd[f); 

(whiles ne ni) elt from s; next= f(elt); 

(while next Es) s = s less next; 

<£(next) ,elt,next> = <elt,next,f(next)>;; 

£(next) = elt; /* closing the loop*/ 

end whiles; 

return; 

end cycinv; 

A very short but quite enigmatic algorithm serving the same 

purpose, due to Boothroyd, may be written as follows. 

define boothinv(f); 

s = hd[f]; heads= s; 

(Vp Es) q = p; 

(while~ q E heads) q = f(q);; 

r = f(q); f(q) = f(r); f(r) = p; 
end Vp; 

return; 

·end boothinv; 

heads= heads less r; 

The analysis of this very short algorithm is surprisingly complex, 

and may be given as follows. Let f be a cyclic permutation, which 

we may think of as shifting a group of elements arranged in a cj~~ 1 e, 

each being shifted to the next position around the circle. Flag h· 

element of s as a "head". Then, process the elements of s, in any 
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random order, as follows. Take any as yet unprocessed element p, 

i find the first element·q in the sequence p, f(p), ... ,fk(p) 

which is still flagged as a head; drop the flag of r = f(q), and 

put f ( q) = f ( r) ; f ( r) = p. 

To follow the action uf the algorithm, we take the sets to be 

divided into·a set of runs, where each run consists of a sequence 

of elements (in their original circular order) beginning with an 

element flagged as a head, up to but not including the next element 

flagged as a head. Then note that by induction w~ have the following: 

i. By definition, the first element of a run is flagged, all 

others are unflagged. 

ii. The last element of a run is unprocessed; the others have 

all been processed. 

iii. For all p of a run but its first element, f(p) is the 

previous element in circular order; if pis the first element of 

a run, f(p) is the first element of the next succeeding run (in 

circular order). 

All these remarks hold initially, all runs initially being of 

unit length. Since by (ii) every unprocessed element pis the 

last element of a run, our procedure will always find the head q 

of the same run, and by (iii) the head r = f(q) of the next run 

in circular order. By putting f(q) = f(r), f(r) = p, and dropping 

the flag of r we join two runs into a single run, preserving the 

properties i , ii and iii. 

This proves that Boothroyd's ·process works for every cyclic 

permutation; since every permutation can be decomposed into cyclic 

permutations, it must work for every permutation. 

Next we consider algorithm~ for the multiplication of permuta

tions given in cyclic form. Suppose that we have a sequ.ence of 

cyclic permutations 

(1) ( ... abed ... ) c ( ... efgh ... ) c ... c ( ... ijkL .. ) 

to be multiplied together. (We continue to assume a 'left-to-right' 

convention; that is, the first of these maps to be applied to a set 

~ ;s the leftmost.) Then the image of an element a under the 

duct map is obtained by finding the leftmost occurrence of a, 
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and the element b which follows it; then the next occurrence oft 

further to the right, and the element c which follows i't, etc., 

until the right-hand end of the sequence ( 1) of cycles i·s reached. 

Each occurrence of a symbol x in the product (1) will be used in 

such an image-finding subprocess only once; thus if we mark the 

occurrences that have been used, and continue the image-finding 

subprocess as long as any positions in. the sequence 1 are still 

unmarked, we can multiply permutations in cycle form without having 

to know the set of elements on which these permutations act. The 

algorithm is most conveniently expressed if, at the end of each 

cycle, we repeat the first element of the cycle, and mark the 

corresponding position as used. 

The following small example will clarify the procedure just 

outlined. Suppose that the permutations (1 2 3) (4 5) and (3 4 2) 

are to be multiplied. We prepare for multiplication by establish

ing the sequence 

1 2 3 1 4 5 4 3 4 2 3 

('marked' elements are indicated by underbars). In a first left

to-right pass over the sequence, we determine that 1 + 2_+ 3; th.us 

we obtain the result-fragment 

(1 3 

and the additional markings 

1 2 3 1 4 5 ~ 3 4 ~ ~ 

Next we find that 3 + l; completing our first cycle 

(1 3) 

and giving the markings 

1 2 3 1 4 5 4 3 4 2 3 - -
An additional left-to-right pass shows that 2 + 3 + 4, giving the 

output fragment 

(2 4 

and the marking 

1 2 3 1 ·4 5 4 3 4 2 3 

.-304-



Next we find that 4 + 5, bringing us to the output fragment 

( 2 4 5 

and the marking 

1 2 3 ! 4 5 1 J 4 ~ J 

Finally we see that 5 + 4 + 2 , at which point all components 

of our sequence are marked, and we have the result permutation 

(1 3) (2 4 5). 

The following SETL algorithm, which assumes that an ordered 

tuple seqperms of permutations in cycle form is given, uses the 

procedure just explained. 

definef multall(seqperms); 

/* first make single sequence with repetitions*/ 

seq= nult; marked= ni; 

(Vperm(m) E seqperms, eye E perm) 

(Velt(m) E eye) seq(#seq+l) = elt;; 

seq(#seq+l) = cyc(l); /* repeating the first element*/ 
(#seq) in marked/* marking the repeated elements*/ 

end 'fperm;
result = ni; 

(while 3e(m) E seq I gm E marked) /* start new output cycle*/ 

eye= <seq(m)>; elt=seq(m+l); 

loc = m+l; min marked; 

<loop:> 

(while loc < 3n < #seq I se9 (n) ~ el t and n n E marked). 

n in marked; 

elt = seq(n+l); loc = n+l; 

end while loc; 

if elt ne cyc(l) then 

cyc(#cyc+l) = elt; loc = l; go to loop; 

else eye in result; 

end_ if; 
end while 3e (m); 
return result; 
end multall; 
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we·now give another algorithm, which 'in one pass' multiplies 

permutations given in cycle form. The algorithm exploits the 

following facts: 

i. If* is an object not appearing .in a cycle, then the cyclic 

permutation (ab ... cdef) is the following product of maps 

(f + *) c (e+f) £ (d+e) c (a+b) £ (* + a) . 

ii. If map is any mapping, then the composition 

map'= (x + y) £ map 

is defined by map' (x) = map(y); map' (z) = map(z) if z is different 

from x. 

The SETL code for this al·gorithm, which as might be imagined 

works from right to left, is as follows: 

definef multal12(seqperms); 

map= nt; 

(#seqperms > Vn > 1, eye E seqperms(n) I #eye~ 1) 

mapstar = if map (eye (1) ). is x ne n then x else eye (1); 

( 1 < \f i < # C¥C) 

map(cyc(i)) = if map(cyc(i+l)) is x ne n then x elsecyc(i+l); 

end \f i; 

map(cyc(#cyc)) = mapstar; 

end Vn; 

return cycform(map); 

end mul tal 12; 
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s. A Data Compaction Algorithm. 

In any computer system, storage space, and especially high

quality storage, is available only in limited amounts. For this 

reason the problem of table anddata compaction, i.e., the problem 

of encoding a given mass of data into the most compact form 

possible, is an important one. The same problem arises also in 

connection with the transmission of data; in order to maximize 

the rate at ~hich useful information is transmitted, we wish to 

make use of an encoding which reduces.to a minimum the number of 

bits which must be transmitted. This compression problem has been 

much studied, and has generated a vast literature; we shall in the 

present short section touch on only one of the interesting ideas 

which have been developed. Generally speaking, data is compressed 

by discovering and exploiting regularities in it; the most 

drastic compressions will come when a large table of data can be 

replaced by a short routine capable of calculating all its entries. 

Even where this is not possible, any statistical regularity which 

the data exhibits may be used to secure compression. The algorithms 

we shall now exhibit, those for Huffman coding, make use of this idea. 

The setting assumed is as follows. Text, consisting of a stream 

of characters, is to be encoded. The various possible characters 

occur with differing relative frequencies, the expected frequency 

of character c being .given by freq(c). 

It is then advantageous to assign a binary code to each character 

in such a way that the most probable characters receive short codes, 

while the least probable characters receive long codes. In this way 

we may on the average expect a text to be ret'resented compactly. 

Huffman's specific technique is as follows: take the two characters 

c,d of smallest frequency, and hang them as left and right branches 

from a newly created.node n, whose heuristic mea_ning is 'either c 

or d'. Remove c and d from the set of characters and insert n, 

taking its frequency to be the sum of that of c and d. Repeat this 

operation until only a single character remains, in the process 

growing a tree, the so-called Huffman tree of the set of characters~ 

~hA code for a character is then its address in this tree, where 

down to the left' is represented by a binary O, and 'go down 

to the right' is represented by a binary 1. The _decoding process 
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to be applied to a stream of characters represented in Huffman 

coded form by a binary sequence is then clear: Start at the top 

of the tree, and proceed downward to a twig, in the mann-er 

directed by the binary seq·uence. When a twig is reached, take 

the character found there as the next symbol of a decoded sequence, 

)Ump back to the top of the tree, and repeat. 

In SE'l'L, the Huffman-tree and encod.ing-table build routine 

appears as follows: 

definef huftables(chars,freq); 

work= chars; wfreq=freq; i = ni; r = ni; 

(while #work 9:!:_ 1) 

cl= getmin work; c2 = getrnin work; n =newat; 

i(n) = cl; r(n) = c2; 

wfreq(n) = wfreq(cl) + wfreq(c2); n in work; 

end while; 

code= ni; seq= nulb; walk(3work is top); 

return <code,i,r,top>; 

end huftables; 

definef getmin set;/* freq is global*/ 

<keep,least> = <3set is x, freq(x)>; 

(Vx E set) 

if freq(x) lt least then <keep,least> = <x,freq(x)>;; 

end 'c/x; 

keep out set; return keep; 

end getmin; 

define walk(top); /* recursive tree-walker which builds up 

address of each twig*/ 

/* code, seq are global. * / 

if i(top) ne Q then 

seq = seq + i_; walk(i(top)); 

seq = seq + ~; walk(r(top)); 

else /* at twig *I code(top) 

end if; 

seq= seq(l: #seq-1); 

return; 

end walk; 

= seq; 
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Next, the decoding process. Given a sequence bitseq of bits, 

produce a sequence cseq of characters by the following decoding 

algorithm. 

definef cseq(huftables,bitseq); 

<-,i,r,top> = huftables; 

output=nulc; node= top; 

('o'b {n) E bitseq) 

if i(node) ~ Q /* so that we are at twig*/ 

then output(#output+l) = node; node= top; 

else node= if n b then i(node) else r(node); 

end if; 

end Vn; 

return output; 

end cseq; 

The basic Huffman-coding technique that we have outlined can be 

refined in a number of ways. Instead of encoding single characters, 

we can encode pairs or triples of characters using the Huffm~n 

technique. Instead of using a fixed set of frequencies, we can 

collect separate tables showing the relative frequency which each 

character will have in known preceding contexts, e.g·. the relative 

frequency which c will havein those cases when it follows immediately 

after a given character d. This information can then be used to 

build up a set of Huffman tables, one for each context that we wish 

to distinguish. During the decoding process, we will of course 

know the preceding context of each symbols we are attempting to 

decode, having decoded the symbols determining this context before 

we begin trying to decodes. We leave it to the reader to work up· 

generalized Huffman coding and decoding algorithms incorporating 

these more sophisticated possibilities. 
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6. An algorithm for the SETt input-read process. 

In the present section, we shall use SETL to describe a cent~-

part bf the SErL input routine. The algorithm to be given furnishes 

an interesting example of use and advantages of the flow statement. 

It will also provide us with good ground on which to compare other 

proposed programming styles (including a type of scrupulously 

goto-less style) with the more familiar pragmatic style which 

describes control flow by using a judicious mixture of if-then and 

9.9..-to statements. 

The algorithm to be presented corresponds to the single 'parsing' 

operation performed during input. It calls a lower level routine, 

tokread, to get successive tokens from an input file, and uses a 

table spekind from which a numerical attribute tokind is obtained 

for each token. Tokens are classified into three categories: 

atoms (for which tokin-d = $1), composite object delimiters (opening 

and closing symbols for sets and tuples) and separators: blank, 

comma, E-O-R and E-O-F. 

Two stacks, partstack and termstack, are used. The first, 

partstack stores partly-built composite objects; termstack stores 

opening delimiters. Whenever a new opener is found, a corres

ponding null object (nult or nt) is added to the top of partstack. 

When a closing delimiter is encountered, a matching opener hd~ to 

be found on the top of termstack; at this point the composite item 

being scanned (the current top of partstack) is complete. 

This completed item is either returned from the read routine 

(if it is the only item present in partstack) or it is added to the 

next lower element on partstack which becomes the current composite 

object being built. 

Further details of the algorithm can easily be gleaned from the 

SETL test that follows. For purposes of comparison, we give the 

algorithm in three SETL versions. In each version (flow-statement 

style, style using nested ifs without go-to statements, and 

style using nested ifs plus go-to's) the following macros are used: 
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+* top(x) = x(#x) ** 

+* newtop(x) = x(#x+l) ** 

+*set= 1 ** +* opentuple=2 ** +* closeset = 3 ** 

+* closetuple = 4 ** +* slash=S ** +* comma=6** +* ef = 7** 

The table spekind is then given by the following mapping: 

~<'{' ,set>, <'<', opentup>, <'}' ,closeset>, <'>', closetuple>, 

<'/',slash>,<',', comma>,< '$', ef>~ 

Our first version of the input algorithm, using the flow statement, 

is then as follows: 

definef read(file); 

/* SETL read routine*/ 

partstack = nult; . terrnstack = nult; 

start: tok = tokread(file); tokind=spekind(tok); 

flow special? 

startnew? stackempty? 

startit+ 

start, matches? 

first? error, 

retfirst, endit+ 

termin? returnit, 

comma? 

enterit+ 

start, 

stackeml?ty? 

error, start, 

start, 

slash? 

stackempty? crashterm, 

start, errprint; 

special:= tokind ne n; 
stackempty:= termstack ~ nult; 

returnit: 

enterit: 

startnew:= 

termin:= 

matches:= 

startit: 

return tok; 

if top(termstack) ~ set then top(partstack)=top(partstack) 

with tok; 

else top(partstack) = top(partstack)+<tok>;; 

tokind le opentuple; 

tokind le closetuple; 

top(termstack) ~ (tokind - opentuple); 

newtop(partstack) = if tokind ~ set then ni else nult; 

newtop(termstak) = tokind; 
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first: = (#termstack) ~ l; 

retfirst: return partstack(l); 

endit: composite= top(partstack); top(partstack)=Q; 

if top(termstack) ~ set then top(partstack)=top(partstack) 

with composite; 

else top(partstack) = top(partstack) + <composite>; 

top(termstack) = Q; 

comma: = tokind ~ comma; 

slash: = tokind ~ slash; 

crashterm: print 'end of file on attempt to read'; crash; 

end flow; 

go to st.art; 

error: skipover(file); /* reads to next slash mark*/ 

errprint: print 'illegal configuration detected on attempted 

file read. skipping past next slash mark'; 

return Q; 

end read; 

Next we give a goto-free version of the same algorithm. 

Notice that the outer loop (corresponding to the statement: 

~-to start; in the preceding version) is here coded using 

a while statement with a dummy variable. 

definef read(file); 

errmsge = 'illegal configuration detected on attempted file read. 

skipping past next slash mark. 1
; 

partstack = nult; termstack = nult; 

(while t) 

tok = tokread(file); 

t"okind = spekind(tok); 

if tokind ~ Q then 

if termstack ~ nult then return tok;; 

/*else*/ topp = top(partstack); 

if top(termstack) ~ set then 

tok in topp; 

else 
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newtop(topp) = tok; 

end if top; 

top(partstack) = topp; 

else if tokind le opentuple then 

newtop (partstack)=if tokind ~ set then n£ else nul t; 

newtop(termstack) = tokind; 

else if tokind le closetuple then 

if top(termstack) ne(tokind - opentuple) then 

skipover(file); print errmsge; return Q; 

else if(#termstack) ~ 1 then return partstack(l); 

else composite= top(partstack); 

top(partstack) = Q; 

topp = top(partstack); 

if top(termstack) ~ set then 

composite in tbpp; 

else 

newtop(topp) = composite; 

end if top; 

top(partstack) = to.pp; 

top(termstack) = Q; 

end if top(termstack); 

else if tokind ~ comma then 

if termstack eq nult then ---
skipover(file); print errmsge; return Q;; 

else if tokind ~ slash then 

if termstack ne nult then print errmsge; return Q;; 

else print 'end of file on attempt to read'; crash; 

end if tokind; 

end while; 

end.read; 

Our third version of the same algorithm, which may be called the 

"pragmatic" version, can be coded as follows: 
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definef read(file); 

/* SETL read routine, transcribed to avoid flow statement 

by use of go-to statement*/ 

partstack = nult; termstack = nult; 

start: tok = tokread(file); tokind = s·pekind(tok); 

if tokind ne n then go to startnew;; 

if termstack ~ nult then return tok;; 

topp = top(partstack); 

if top(termstack) ~ set then tok in topp; 

else newtbp(topp) = tok; 
end if top; 
top\partstack) = topp; 
go to start; 

startnew: if tokind 9:!_ opentuple then go to termin;; 

newtop(partstack) = if tokind ~ set then ni else nult; 

newtop(termstack) = tokind; 

go to start; 

termin: if tokind le closetuple then go to matches;; 

·if tokind ~ comma then go to stackempty;; 

if tokind ~ slash then go to stackempty2;; 

print 'end of file on attempt to read'·; crash; 

stackempty: if termstack ne nult then go to start;; 

error: skipover(file); /* reads to next slash mark*/ 

errprint: print 'illegal configuration detected on attempted file read 

skipping past next slash mark'; 

return n; 
matches: if top(termstack) ne (tokind-opentuple) then go to error;; 

if (#tertnstack) ~ 1 then return partstack(l) ;; 

composite= top(partstack); top(partstack) = n; 
topp = top(partstaek); 

if top_(-termstack) -~ set then composite in topp; 

else newtop(topp) = composite; 

erid if top; 

top(termstack) = n; 
top(partstack) = topp; 

go to start; 

stackempty2: if termstack ~ nult then go to st.art;; 

go to errprint; 

end read; 
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The following comparative. remarks concerning these three 

versions of one and the same algorithm are worth making: 

a) The flow version has the layout diagrammed by (A) below. 

It is by far the easiest version to read. It is also the easiest 

to code, and the flow tree (whose skeleton can be represented 

as (A)) .is an extremely useful starting point for transcribing 

the algorithm into one of the other versions, or into a lower 

level language. 

1 1 

(A) (B) 

b) The goto-less version is obscure, and borders on the 

undecipherable. It is very hard to code. The flow-tree can 

be of help in producing the goto-less version, especially if 

"stretched" along the longest decision path, so that the nodes 

of the main if-then-else statement become apparent as in (B). 

(C) 

In any case, it is clear that the if-then-else statement is mainly 

suited for trees with little or no· lateral growth (ZPG trees?) 

as in (C), and not for 'fertile' trees like (A). 

c) The third pragmatic version of our algorithm is somewhat harder 

to read than the flow version, but does not invqlve substantially 
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more non-local eye motion (especially in locating actions to be 

performed) although the physical proximity "bf ·1ogically relatSd 

decisions has been lost. It is however much easier to read than 

the structured version. The flow-tree translates easily into the 

appropriate go-to statements. 

An attractive mixture of go-to and if statements might involve 

the bse of if-then-else statements on ZPG branches of the main tree 

(as in the block following the label termin in the third program 

given above, corresponding to node no. 4 in (A)), and the use of 

go-to statements to enter each such subtree. 
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7. Parsing and Other Miscellaneous Compiler-Related Algorithms. 

In the present section we will describe a set of general 

algorithms which serve to define efficient table-driven parsers 

for a wide class of programming languages. Generally speaking, 

parsing constitutes (after a lexical scan) the first stage of a 

total compilation process. A lexical scanner breaks an input 

stream of characters into a string of tokens. The parser then 

associates a tree, called the parse tree, with this string of 

tokens. This tree is valuable for the following reason: it 

establishes a fixed system of tree addresses for the tokens of 

the sentence parsed, and does· this in such a way that tokens 

playing given roles within a sentence will always be found at 

fixed corresponding tree addresses. For example, in statements, 

statement-type determining keywords will always be found at 

certain particular tree nodes; in expressions, the central operator 

sign, i.e., that sign denoting the operation to be performed last, 

will always be found at certain particular tree nodes, etc. This 

is of course not the case for the string of tokens originally 

representing a sentence. 

The first parsing technique we shall describe is the 'nodal span' 

method of Cocke, Younger, and Earley; a detailed discussion of this 

algorithm will be found in Cocke and Schwartz, Programming Languages 

and Their Compilers, second revised version, New York University, 

April 1970, section 4.6. In contrast to most other parsing 

procedures, this method is highly stable in the presence of 

ambiguity; in particular, it can be applied to any context-free 

grammar whatsoever; moreover, the method can readily be generalized 

to apply to grammars more flexible than simple Backus grammars. 

It can also be adapted to grammars in which a central group of 

exactly correct rules is surrounded by a penumbra of partly 

incorrect rules, and in this adaptation can be used to assign a 

quantitative 'degree of grammaticalness' to sentences which are 

not quite grammatical. It also suggests interesting methods for 

the parsing of structures, such as plane figures, which are more 

general than linear strings. 
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In d~scribing this algorithm, the notion of a context free or 

Backus grammar is convenient. Such a grammar is defined by gi vin 

i. An alphabet of tokens, called the alphabet of the grammar; 

the symbols in this alpha~et are distinguished into two classes, 

intermediate symbols and terminal symbols. We shall often indicate 

intermediate sybmols by capital letters, terminal symbols by small . 
. . 

ii. For each intermediate symbol B, a finite set of productions 

of the form 

( 1) B -+ AcdE •.• f G , 

where the right-hand side of a production may be any finite sequence 

of intermediate and terminal symbols. Heuristically, the inclusion 

of the production (1) in a grammar means that the symbol B, whenever 

it appears in a sentence of the language which the grammar describes, 

can be replaced by a string AcdE ... fG. Conversely, this means that 

it is possible to cover the string AcdE ... fG by a treelet 
B 

A c d E f G 

when sentences are being supplied with parse trees. 

iii. One intermediate symbol of the grammar must be designated 

as its root or sentence type. Valid sentence-forms are then all 

those strings of symbols which can be produced from the root symbol 

by the successive application of productions of the grammar; valid 

sentences are all those valid sentence-forms containing terminal 

symbols only. 

Having said this, we prepare to present a SETL program for the 

nodal span parsing algorithm by giving a brief review of this 

algorithm's structure. The algorithm accepts an input sequence of 

tokens and a context-free grammar, and parses the tokens according 

to the grammar. The grammar may be ambiguous or unambiguous, but, 

in order to simplify our exposition, we take it to be given in a 

standardized "reduced" form in which each production of the grammar 

either has the form A-+ a or the form A-+ BC, A, B, and C deno 

intermediate symbols of the grammar, and a denoting a terminal 

symbol of the grammar. In this situation we call a triple . (pAq) 
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consisting of two integers p, q and an intermediate grammatical 

mbol A a span. We say that this span (pAq) is present in the 

input if the string of tokens extending from the pth through the 

q-1-st position in the input string can be generated from the 

symbol A using products of the grammar. For q = p+l this will 

clearly be the case if and only if some production A+ a generates 

the p-th character of the input string; for q > p+l this will 

equally clearly be the case if and only if there exists some r, 

p < r < q, and two intermediate symbols B, C of the grammar such 

that both spans (pBr) and rCq) are present in the input, and 

such that A+ BC is a valid production of the grammar. In this 

case we say that=the triple (BrC) is a valid division of the span 

(pAq); the set of all divisions of a span is called its division 

list. If A0 is the root symbol of the grammar, an input string I 

of length n is grammatical if and only if the root span (1A 0 (n+l)) 

is present in it. In this case, producing the collection of all 

division lists for all spans present in I may be regarded as 

equivalent to parsing I; if these lists are available the ordinary 

"parse tree" of I can be obtained in a perfectly direct way by 

dividing the basic span into parts in all the ways indicated by 

its division list, dividing all these parts into subparts using 

their division lits, etc. until spans of unit length are reached. 

It is also clear that not all spans present in the input, but 

only those spans which are obtained from the basic span by this 

process of division, are relevant to the final analysis of the 

input. Other spans present in the input are ·in effect. merely 

false starts never resulting in a complete parse. The set of 

division lists belonging to the narrower collection of spans 

relevant in this sense is called the cleaned division list for 

the parse of the input string. 

The above remarks should make clear the structure of our 

parsing algorithm. We proceed from left to right, accumulating 

spans present in the input string. On encountering then-th symbol 

a of the input string, we add a span (nC(n+l)) to our collection 

· whenever the existence of·a production C + a justifies this. 

rly added spans (rCq) are then "processed" by locating all spans 

,por) for which the existence of a production A+ BC in the grammar 
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will yield a new span (pAq). Each time two spans are combined 

in this way to give a span (pAq) we make an appropriate entry on 

the division list of the span (pAq). When as many spans as possible 

have been produced by this combination process, we go on to 

consider the next input token in turn,·and so forth to the very 

end o~ the string of input tokens. When the end of the string 

of input tokens has been reached we check to see whether or not 

the root span (1A 0 (n+l)) is present; if this basic span is present, 

we prepare a cleaned set of division lists by the division process 

described above. 

The SETL program given below carries out the steps just outlined, 

determining at the same time whether the given in~ut has an ambigu

ous or unambiguous parse; the criterion for ambiguity is simply 

that at least one of the division lists in the cleaned set should 

contain more than one element. A few additional preliminary remarks 

will cast light on the details of the program which follows. Spans 

are represented as ordered triples <q,A,p> composed of two integers 

p, q and an intermediate grammatical symbol A. For technical reasons 

the larger integer q is placed first and the smaller second. The 

family of division lists belonging to such spans is maintained as 

a collection of quadruples <<q,A,p>, r,B,C> associating with 

each span all its divisions (BrC). The context-free grammar accord

ing to which the input is to be parsed is taken in the program which 

follows to be ·the collection of all triples <B,C,A> corresponding 

to productions A+ BC of the grammar. A function syntypes, which 

maps each character a of the input string onto the set of all 

intermediate symbols A for whfch there exists a production A+ a, 

is also· assumed in the following program. 

Here then is a SETL version of the basic algorithm for parsing 

by the method of nodal spans. 

define nodparse(input,gram,root,syntypes,spans,divlis,amb); 

todo = nt; divlis = nt; spans= {<2,s,l>, s E syntypes{input(l)}}; 

(1 < Vn < #input) 

todo = {<n+l,s,n>, s E syntypes{input(n)}}; 

spans= spans+ todo; 
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(while todo ne ni) 

next from todo; 

<end,typ2,mid> = next; 

(Vspend E spans{mid}, typeEgrarn{hd spend is typl,typ2}) 

newsp = <end,type,spend(2)>; 

<newsp,mid,typl,typ2> in divlis; 

if n newsp E spans then 

newsp in spans; newsp in todo; 
end if; 

end Vspend; 
end while; 

end Vn; 

/* check on grammaticalness*/ 

if~ (<#input+l,root,l> is topspan) E spans then 

<spans,divlis,amb> = <ni,ni,f>; return; 

end if; 

/* else clean up set of spans and determine ambiguity*/ 

spans= ni; amb = f; getdescs(topspan); 

/* clean division list*/ 

divlis = {d E divlis I hd d E spans}; 

return; 

end nodparse; 

define getdescs(top);. /* auxiliary tree-walker*/ 

/* divlis, spans, amb are global*/ 

if topEspans then return;; /*since descendants have already 

been added*/ 
top in spans; 

if (#divlis{top}) 9!. 1 then amb = ~;; 

<end,-,start> = top; 

(Vx E divlis{top}) 

<mid,typl,typ2> = x; 

getdescs(<end,typ2,mid>); 

getdescs(<mid,typl,start>); 

end Vx; 

return; 

end getdescs; 
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In unfavorable cases, the nodal span parsing method may 

generate reasonably large nunbers of spans not relevant to the 

final analysis of an input string. J. Earley has introduced an 

interesting modification of nodal span parsing which improves its 

performance in this regard. In Earley '·s method, one is always 

sure, as one scans from left to right over an input string 

S = t 1 t 2 ... tm of tokens, that a span pAq+l will never be 

formed unless there is some continuation t 1 ... tqt~+l t~+ 2 -~· 

of the inital portion t 1 t 2 ... tq of S to whose analysis pAq+l 

is relevant. Thus one never forms spans which are not 'relevant 

to as much of the input as has been scanned'. 

The method is this. Immediately before scanning then-th token 

of S, one calculates a set, called startat(n} in the algorithm 

which follows, which consists of all those intermediate symbols of 

the grammar r being considered which can validly follow the part 

of S already scanned. •rhe rule for forming this set is simple 

and iterati~e: If there exists a span pBn, and intermediate symbols 

A and C, such that A+BC is a production of rand such that 

A E startat(p}, then any sumbol D for which there exists a 

string DEF ... derivable from C by productions of r belongs in 

startat·(n). Having constructed these sets, we use them in the 

remainder of the algorithm to control the formation of additional 

spans, always applying the following test: no span pAq is to be 

formed for which A E startat(p) is false. 

In other respects, Earley's procedure, for which we now give 

a SETL algorithm, is very close to the nodal span parsing algorithm 

set forth above. 

/* auxiliary macro block used below*/ 

macro makenewtodofrom(next); 

<end,typ2,mid> = next; 

(~spend E spans{mid}, typeEgrarn{hd spend is typl,typ2} 

I type E startat(spend(2) )) 

newsp = <end, type, spend(2)>; 

<newsp,mid,typl,typ2> in divlis; 

if n newsp E spans then 

newsp in spans; newsp in todo; 

end if; 
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end ~spend; 

din; 

note use below of the transitive closure routines given 

on pp. 119 ff*/ 

define earleyparse(input,gram,root,syntypes,spans,divlis,amb); 

/* first calculate the fixed relationships needed*/ 

begins= {<x(3) ,x(l)>,x E gram}; 

descends= begins+ {<x(3), x(2)>, x E gram}; 

symbs = close (descendsjroot}); ultbegin = closef(begins,symbs); 

/* the above need not be repeated unless the grammar is changed*/ 

todo = nt; divlis = nt; startat = <ultbegin{root}>; 

spans= {<2,s,l>, sEsyntypes(input(l)) lsEstartat(l) }; 

(1 < ~n < #input) 

/* calculate startat(n) */pops= nt; 

(~spanend E spans{n}) 

<typl,beg> = spanend; 

pops=pops+{hd x, xEgram{typl}lx(2)Estartat(beg)}; 

end Vspanend; 

startat(n) = ultbegin[pops]; 

/* now go on to form spans*/ 

todo ={<n+l,s,n>, sEsyntypes(input(n)) lsEstartat(n)}; 

spans= spans+ todo; 

(while todo ne nt) 

next from todo; makenewtodofrom(next); 

end while; 

end ~n; 

/* check on grammaticalness*/ 

if n (<#input+l,root,l> is topspan £ spans then 

<spans,divlis,amb> = <nt, nt, f>; return; 

end if; 

/* else clean up set of spans and determine ambiguity*/ 

spans= nt; amb = f; getdescs(topspan);. 

/* clean division list*/ 

divlis =·{d £ divlis l(hd d)£ spans}; 

return; 

--1 earleyparse; 

a copy of the subroutine 'getdescs' occurring on page 162 is 

also required here*/ 
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Next observe that we can generally expect to be able to 

duce the direction in which the parse tree of a string leans 

from a given token t by examining a very few tokens in the 

immediate neighborhood oft. This is the basis for the simple 

precedence parse; a language can be parsed by the simple prece

dence method if its parse trees always lean in the direction of 

whatever nearby operator sign has highest precedence. Even for 

languages too complex for this ultra-simple rule to work infallibly, 

a slightiy more sophisticated variant of the same method may be 

feasible; we call languages for which this is the case extended 

precedence languages. 

In the logical setting established by a context-free grammar 

r we may give formal definitions capturing the ideas concerning 

extended precedence which are set forth above. These definitions 

are as follows. Let 

(2) 

be two strings of symbols, terminal or non-terminal, of the 

alphabet of r. We define three relationships, a•> B, 
a~ B, a<• B between such strings. The definitions are as 

follows: 

i. a•> B (heuristically: the parse should lean toward a 

from the last symbol of a} if ••• a 1 ••• an b 1 ••. bm··· can occur 

within a sentence a; in whose parse tree an is attached to the 

rightmost twig of some subtree. 

ii. a<• B (heuristically: the parse should lean toward B 

from the first symbol of B) if .•. a 1 ••• an b 1 .•. bm··· can occur 

within a sentence a, in whose parse tree b 1 is attached to the 

leftmost twig of some subtree, while an is not attached to the 

rightmost twig of a subtree • 
• iii. a = B (heuristically: the parse is balanced at the 

last symbol of a} if .•• a 1 ••• an b 1 ••• bm can occur within a 

sentence a, in whose parse tree an and b 1 are both attached to 

twigs with a common parent node. 
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If at most one of these three relationships holds between 

a and B, we call the pair a,B an unambiguous context. (If none 

holds, we call a,B an impossible conte~t; it is easy to see that 

in this case •.• a 1 ••. anb 1 •.• bm··· can never occur within a 

grammatical sentence.) If the language defined by r is such that 

whenever a is a sequence of symbols of length n and Bis a sequence 

of symbols of length m it follows that a,B is an unambiguous 

context, then we say that is an n,m-generaZized precedence 

grammar. In this case, the generalized precedence parsing method 

outlined above can be used to reconstruct the parse tree of any 

sentence valid according tor. 

Parsing by this scheme will plainly involve the use of 

tables which state the relationships which hold between sequences 

a and B of symbols. We shall now present a SETL algorithm which, 

given a grammar (and given limits n,m for the lengths of left-

and right-hand contexts to be considered) will produce such tables. 

The basic idea of the algorithm is quite simple. We start with 

a pair of single symbols, and determine whether or not these 

1-token strings constitute an unambiguous context. If they do 

not, we add one symbol of additional context, first on the left, 

then on the right, looking always for unambiguous contexts. This 

will generate a sequence of tables which collectively contain the 

required precedence information. If,when we have reached the 

maximum length-limit for contexts to be considered,ambiguities 

still remain, then it follows that the grammar being considered 

is not an n,m-generalized precedence grammar. 

The algorithm which follows immediately below is a quite 

straightforward elaboration of this idea. It works with left

and right-hand contexts of the lengths (1,1), (2,1), (1,2), (2,2), 

(3,2), (2,3), (3,3) in sequence, up to a stated maximum length. 

A data-structure tabZe(seqa,seqb), which is progressively built 

up, records values 1, 2, and 3, depending on the relation 

-326-



of precedence that holds betwee~ the sequences seqa and seqb 

characters; the value O is used if this relationship is 

ambiguous. Amgibuous pairs are held temporarily in a set 

ambig. 

An output flag definite is set tot if the situation analyzed 

has the lmax, rmax precedence property; to f otherwise. The 

definitions of the basic relationships seqa •> seqb , etc., 

given above convert very directly into algorithmic form. 

The algorithm which follows assumes that a context-free 

grammar gram and its alphabet chars are both given. The 

grammar gram is assumed to be a set of pairs <int,seq>, .where 

int is an intermediate symbol, and seq is a tuple of characters 

cor~esponding to the right-hand side of a grammatical production. 

In what follows, two functions, isgram(x) and isgraml(x,y)· 

are also used. The boolean-valued function isgram(x} has the 

value true if xis a subsequence of some sequence of. characters 

constituting a valid sentence. The related Boolean function 

isgraml(x,y) tests a pair of sequences x,y and determines 

whether ... x~ .. can occur within a well-formed sentence within 

whose parse tree there exists no subtree to whose final twig 

the last character of xis attached. The routines isgraml 

and isgram make use of several auxiliary subroutines, one of 

which, standptgram, produces a grammar g', in the reduced form 

required for the above-described nodal span parsing algorithm; 

the sentences of the language described by g' are all the 

substrings of sentences of some initially given language. 

-327-



definef mckeetable (lmax, rmax, gram, root, chars, definite); 

/*'driver' routine for calculation of mckeeman tables*/ 

/* ambig, oZdambig, useambig, origins, startcovers, endcovers, 

covers, and table are assumed to be global*/ 

/.,,. first calculate fixed tables useful· ·below * / 

;~ .origins maps each right-hand side of a production 

into the corresponding left-hand side * / 

origins= {<x(2) ,x(l)>, x E gram}; 

/* startcovers (resp. endcovers) maps each initial subsequence (resp. 

terminal subsequence) of the right-hand side of a produ·ction 

into the corresponding left-hand side*/ 

startcovers = {<x(2) (1:k) ,x(l) >, xEgram, 1.:s_k.:s_#x(2) }; 

endcovers = {<x(2) (k:) ,x(l)>, xEgram, 1.:s_k.:s_#x(2) }; 

/* covers maps each subportion of the right-hand side of a 

production into the corresponding lefthand side*/ 

covers = {<x(2) (k:R.-k+l), x E gram, 1 .:s_ k .:s_ #x(2), k.:s_R-.:s_#x(2)}; 

/* some initializations*/ ta0le = nR.; 

oldambig={<<c>,nult>, c E chars}; .ambig={<nult,<c>>,cEchars}; 

/* generate sequence (1,1), (2,1), (1,2), (2,2), (3,2), ... */ 

m = O; n = l; 

(while m le lmax or n le rmax) 

if m g! n then 

m = m-1; n = n+l; useambig = oldambig; 

else 
m = m+l;·· useambig = ambig; 

end if; 

i.f m le lmax or n le rmax then 

extendres(m,n); 

end if; 
end while; 

if ambig ne nR. then 

print 'ambiguous cases remaining', ambig; 

definite=!_; 

else 

definite = !; ; 
return table; 

end mckeetable; 
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define extendres(m,n); 

extends context one symbol, to the left or right depending 

on the relative values of m and n */ 

/* ambig, oldambig, useambig, origins, endcovers, startcovers, 

covers, and table are assumed to be global*/ 

newambig = nR.; 

( "1 ampair E useambig, c E chars) 

<seqa, seqb> = ampair; 

/* extend by 1 character to right or left*/ 

if n g!_ m then 

seqb = seqb + <c>; 

else 

seqa = <c> + seqa; 

if m ~ n and <seqa,seqb(l:n-l)>nE oldambig then 

continue \f ampair;; 

.end if n; 

poss= ni; /* set of possible precedence relationships*/ 

if 3x E endcovers{seqa}lisgram(<x>+seqb) then 

1 E poss;; 

if 1 < 3n ~ #seqa, x E origins{seqa(n:)} 

lisgram(seqa(l:n-1) + <x> + seqb) then 

1 E poss;; 

if seqa evenwith seqb then 2 in poss;; 

if 3x E startcovers{seqb}lisgrami(seqa<x>) then 

3 in poss;; 

if 1 ~ 3n < 1seqb, x E origins(seqb(l:n)) 

lisgramR.(seqa,<x>+seqb(n+l:)) then 

3 in poss;; 

/* now either set up a new table entry or classify the context 

<seqa, seqb> as ambiguous*/ 

if (#poss)~ 1 then 

table (seqa,. :.seqb) = 3poss ;· 

else 

<seqa,seqb> in newambig; 

table(seqa,seqb) = O; 

end if; 
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end \'ampair; 

oldambig = ambig; ambig = newambig; return; 
end extendres; 

definef seqa evenwith seqb; 

/* auxiliary routine to test for 'equality' case of precedence*/ 

/* orig{ns, startaovers, endaovers, and covers 

are assumed to be global*/ 

return if covers{seqa + seqb} ~ nt then t 

else if 1 2 3k < #seqb, xEendcovers{seqa+seqb(l:k)} 

lisgram(<x>+ seqb(k+l:}} then t 

else if 1 < 3k 2 #seqa, xEstartcovers{seqa(k:} +seqb} 

lisgram(seqa(l:k-1) +<x>} then t 

else if 1 < 3k 2 #seqa, 1 < t < seqb, 

xEorigins{seqa(k:} + seqb(l:t}} 

lisgram(seqa(l:k-1) +<x>+seqb(t+l}} then!; 

else£; 

end evenwi th; 

Next we give code for the isgraml(x,y) function used above. 

As noted, this tests a pair of strings x,y and determines 

whether ... xy ... can occur within a sentence, valid according 

to the grammar gram, within whose parse tree there exists no 

subtree to whose last twig the final character of xis attached. 

This test is made as follows. If the final character c of xis 

not the last character of any production, then isgraml(x,y) 

has the same value as isgram(x+._y). In the contrary case, 
I 

the grammar gram is replaced by a modified grammar gc, 
, 

arid isgraml(x,y) is equal to testgram(x'+y, ga, root, types). 

Here x' is identical with x, except that the final c in xis 

replaced by a new symbol c'; the Boolean fnnction testgram(u,g',r,t) 

returns the value! if the sequence u is part_of a sequence gram

matical according to the grammar g'; rand tare auxiliary 

parameters, explained below. The grammar g~ is obtained by 

putting a third.grammar g~ into the special 'reduced' form 
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required for the nodal span parsing algorithm depicted earlier 

the present section. The symbols of g" are all the symbols 
C . 

of gram, plus the additional symbol c". Each production in 

·gram is also a production of g" ; moreover, if pis a production 
C 

of gram, and if c is replaced by c 11
, in one occurrence of con 

the right-hand side of p (but not an occurrence as the last char~ 

acter of the right-hand side of p), the production which 

results belongs tog". Using the grammar g" and its reduced 
. C C 

form g' 
C 

Details 

, we can express the function isgraml very simply. 

follow below. Note that all necessary grammars g' are 
C 

constructed in an initialization section of isgram. This 

construction uses a function standptgram, whose algorithm will 

be shown later, to obtain each g' from the corresponding g". 
C C 

Note also that in the algorithms shown below we assume that grammars 

are given as sets of ordered pairs <int,seq>, where int is 

an intermediate symbol occurring on the left-hand side of 

a production p, and seq is the sequence of characters occurring 

on the right of p. 

definef isgraml(x,y); 

/* gram and root are .shared with the routine mckeetable */ 

include mckeetable(gram,root); 

/* initialize: build the collection of all symbols occurring 

as the · final characte.r of the right-hand side of some 

production; for each such character, form a 'primed' character 

and a modified grammar*/ 

initially 

termsyms = {x(2) (#x(2)), x E gram}; 

primemap = {<c, newat>, cEtermsyms}; 

chargrams = nR.; 

('r/c E termsyms) 

cprime = primemap(c); 

modgram = gram; 

(Vp E gram, 1 < k < #p(2) I p(2) (k) ~ c) 

q = p; q ( 2) (k) = 
q in modgram; 

end Vp; 
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<c,mqqgram> in chargrams; 

end Ve; 

cnargraminf = {<c, standptgram(chargrams(c) ,root)>, cEtermsyms}; 

./* the rout~ne standptgram takes an arbitrary context free 

grammar g and its root r as arguments, and produces 

a related grammar g' whose sentences are the 

same as those of the language defined by g. 

moreover, g' is in the 'reduced' form assumed by th~ 

nodal span algorithms described in earlier paragraphs 

of the present section. the precise object returned 

by standptgram is a triple '<g' ,r' ,ctypes>, where 

g' is as described, r' is the root of g', and 

ctypes is a mapping which sends each terminal symbol 

b of g' into the collection of all intermegiate 

symbols A of g' for which there exists a production A+b */ 

end initially; 

/* now we show the processing of a pair of character sequences x,y*/ 

q=x(#x); 

if primemap(c) is cprime ~ n then 

return isgram (x+y) ; 

end if; 

/*else*/ <cgram, croot, ctypes> = chargraminf(c); 

return testgram(x(#x-1) + <cprime> + y, cgram, croot, ctypes); 

end isgraml; 

The routine testgram called in the semi-final line of 

the_above procedure may be expressed very simply by using 

the nodal span parse procedure nodeparse: 

defin~,f testgram(string ,gram,root,types); 

nodeparse(string,gram,root,types,spans,divlis,amb); 

return spans ne ni; 

end testgram; 
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The routine isgram(x) used in the makeetable routine is 

nsiderably simpler than, but similar to, the isgraml function. 

Here are the 'details of isgram: 

definef isgram{x); 

/* gram and root are shared with the routine makeetable */ 

include mckeetable{gram,root); 

/* initialize by calculating the 'reduced' form of gram*/ 

initially 

<standgram,standroot,types> = standptgram{gram,root); 

/*seethe routine isgraml for a comment on standptgram */ 

end initially; 

return testgram{x,standgram,standroot,types); 

end isgram; 
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Next we discuss the manner in which a general context-free 

grammar of the form allowed in the preceding algorithm can be 

transformed into one having the more restrictive 'reduced' form 

considered in connection with the nodal span parsing method 

(cf. pp. 159-161). Observe that in the following discussion 

we consider two grammars as equivalent if their alphabets 

contain the same terminal symbols and if they generate the 

same set of valid sentences, i.e., the same non-empty valid 

strings containing terminal symbols only. Suppose then that 

a grammar is given as a set of products of the general form 

(1) B -+ AcdE ••• fG 

We will initially allow products having nul.l right-hand sides 

(these might be called 'erasing' productions); our first aim 

is to show how a grammar r containing such productions can be 

transformed into one which contains no such productions. This 

transformation is easy enough, and can be accomplished as follows. 

i. Call an intermediate symbol B erasable if the null-string 

can be produced from it.by some sequence of productions. Note 

that Bis erasable if either Bis the left-hand side of some 

'erasing' production 

B -+ 

or if there exists a production 

B -+ CDE .•• F 

such that every symbol occurring on the right-hand side is known 

to be erasable. 

ii. Drop all erasing productions from r. At the same time, 

given any production (1) of r, introduce as additional produc

tions of r all those productions which result from (1) by dropping 

some set of erasable symbols from its right-hand side, but in 

such a way that at least one symbol remains on the right-hand side. 
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The set of productions obtained in this way constitutes a 

, grammar, equivalent tor, but containing no erasing productions.· 

Assuming that a grammar is given as a set of pairs <int,seq> 

where seq is a tuple of characters, we can express this simple 

procedure in SETL as follows. 

erasables = {hd x, x E gram I x(2) ~ nult}; 

(while 3x E gramln hd x E. erasables and(Vc(n)Ex(2) lcEerasables)) -- --
hd x in erasables; 

end while; 

newgram = ni; 

( \f xEgram) 

<symb,seq> = x; 

eraselocs = {n, c(n) E seq I c E erasables}; 

(\fspotset E pow(eraselocs)) 

newseq = [+: c(m) E seqlm n E spotset]<c>; 

/* now have built up new right-hand side*/ 

if newseq ne n then <symb, newseq> in newgram;; 

end '1spotset; 

end Vx; 

/* replace old grammar by new*/ gram= newgram; 

Next we aim to eliminate all single-character productions 

(2) A -+ B 

of one intermediate symbol from another, and~ at the same time, 

to eliminate terminal symbols from the right-hand side of every 

production except those having the single-symbol form 

A -+ b . 

This again is an easy transformation, and can be accomplished 

as follows: 

iii. For each terminal symbol a, introduce a new intermediate 

symbol A. Replace each occurrence of a on the right-hand side 

n~ a production of r by an occurence of A. Then add the 

,ductions 

( 3) 

tor. 

~ 
A -+ a 
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iv. Call A a prime ancestor of B if the single symbol B 

can be produced from A by some sequence of productions of the 

grammar r. Drop all single-intermediate-symbol productions (2) 

from r. At the same time, wherever there exists a production, 

B-+ COE .•. 

with more than one symbol on its right-hand side, introduce a 

new production 

A -+ CDE ... 

In SETL, this procedure may be written as follows: 

/* calculate the set of all symbols, and the set of all 

intermediate symbols of the grammar*/ 

inter = hd [gramj ; 

chars= inter+ {p(2}(j}, p E gram, 1 < j < #p(2}}; 

term= chars - inter; 

intof = ni; newg = ni; 

(Vt E term} intof (t} = newat;; 

(Vx E gram} 

<symb, seq>= x; if (#seq} gt 1 then 

<symb, [+: s(n}Eseq]<if intof(s} is int ne n then int else s>> 

in newg; 

end '!Jx; 

else x in newg;; 

/* which accomplishes step iii of the text*/ 

singles= {<hd x(2}; hd x>, x E newg I #x(2} ~ l}; 

/* determine 'prime ancestor' relationship by :transitive closure, 

cf. p. 119 */ 
pransc = closef(singles,inter}; 

newgram = ni; 

(Vx E newg I #x(2} _9:! 1 or hd x(2} E term} 

<symb,seq> = x; x in newgram; 

(Vy E pransc(symb}}<y, seq> in newgram;; 

end Vx; 

/* now add terminal single-symbol productions to the new grammar, 

and set gram to new value */ 

gram= newgram + {<intof(t}, <t>>, t E term}; 
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As transformed thus far, the grammar gram contains productions 

two types; producti.ons A + a, and productions A + BCD ... EF, 

where at least two symbols appear on the right, and where all 

symbols app:earing on the right are non-terminal. For every 

production of the second kind whose right-hand side contains 

more than two symbols, we introduce a sequence of auxiliary 

intermediate symbols G, G' , ... , and replace the production 

A+ BCD ... EF by a set of productions 

A + BG 

G + CG' 

G' + DG" 

G''' ➔ EF 

This step, which essentially completes the transformation of our 

grammar into the desired form,· may be written in SETL as follows. 

newgram = {x E gram (#x(2)) le 2}; 

( \1 x E gr am I ( # x ( 2 ) ) -9!_ 2 ) 

<left,seq> = x; 

(1 < Vn ~ #seq-2) 

aux= newat; 

<left,<seq(n) ,aux>> in newgram; 

left= aux; 

end Vn; 

<left, seq(#seq-1:)> in newgram; 

end Vx; 

gram= newgram; 

A grammar in the precise form required by the nodal span parsing 

algorithm is then obtained from a grammar in the r~duced form 

we have attained by.making·the following trivial final transforma

tion. 
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finalgram = {<(x(2)) (1), (x(2)) (2_), hd x>, xEgraml (#x(2)) ~ 2}; 

synt = {< (x(2)) (1), hd x>, x E gram I (#x(2)) ~ l}; 

syntypes = {<x, synt{x}>, x E hd [synt]}; 

By combining of the code fragments appearing on the last few 

pages we obtain a routine standgram(gram,root) which takes an 

arbitrary context-free grammar ~s input, and as output returns 

a pair <finalgram,syntypes>; here finalgram is a grammar 

in 'reduced' form equivalent to the originally given grammar 

gram, and syntypes maps each .terminal symbol b into the set of 

all intermediate symbols A which can produce b via some 

production ( 3) • 

The transformations described in the. last few pages enable 

us to represent the standptgram function required by the 

McKeeman table algorithm given above. The problem addressed 

in programming this function is as follows: given a string 

S of tokens, we wish to determine if Sis a part of any 

sentence grammatical according to a given grammar r. To solve 

this problem, we extend the grammar r, obtaining a larger grammar 

r• which generates all strings S which are parts of strings 

generated by r. This is done in the following way. For each 

intermediate symbol A of r, introduce three additional symbols, 

which we c~ll A£' Ar, and Air; if a is a terminal symbol, 

at, ar, and air will all b,? equal to a. For each production 

( 4) A ➔ BCD ..• EFG 

of r, introduce new productions 

A£ ➔ BiCD EFG 

A£ ➔ CtD EFG 

A£ ➔ Di EFG ' etc. 

by removing zero or more symbols from the left-hand end of the 

right side of (4). Similarly, introduce productions 
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A + BCD .•. EF r r 

by removing zero or more symbols from the right-hand end of 

the rig~t side of (4). Moreover, introduce productions 

Air+ CiD .•. Er , etc. 

by removing zero or more symbols both from the right and from 

the left-hand end of the right of (4). For each symbol D 

which occurs on the right-hand side of a production (4), 

introduce a production 

Air+ Dir 

Next, take the root symbol A of r, introduce a new root 
A 

symbol A for r•, and introduce three productions, 
A 

A + Ai 
A 

A + A r 
A 

A + Air 

Finally, introduce productions 

Ai+ A 

Ar+ A 

for each intermediate symbol A. The grammar f' we require 

consists of all these productions, and has A as its root symbol; 

we leave it to the reader to show that f' generates precisely 

those sentence~forms which are parts of sentence-forms generated 

by r. 
Assuming that root designates the root-symbol of r, a procedure 

partgram which consLructs f' from r may be depicted in SETL 

as follows. 
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definef partgram(gram,root); 

inter= hd[gram]; i = ni; 

(Vx E inter) i (x) = newat; 

r = n i ; i r = · .n i ; 

r(x) = newat; ir(x) = newat;; 

newroot = newat; extgram = gram; 

/* initialize new grammar*/ 

('dx E inter) 

<i(x) ,<x>> in extgram; 

<r(x), <x>> in extgram; 

('dseq E gram{x}, 1 ~ n ~ #seq) 

<ir(x) ,ir(seq(n))> in extgram; 

<r(x), [+: l~m~n] <if m lt n then seq(n) else r(seq(n))> 

in extgram; 

<i(x), [+: n ~ m < #seq]<if m _9'.! n then seq(m) else i(seq(n))> 

in extgram; 

(1 < 'c/nn < n) 

<ir(x), [+: nn < m ~ n] <if m ~ nn then i(seq(m)) 

else if m ~ n then r (seq (m)) else seq (m) > in extgram; 

end li/nn; 

end Vseq; 

end Vx; 

extgram = extgram with <newroot,<i(root)>> with<newroot,<r(root)>> 

with <newroot,<ir(root)>; 

return <extgram,newroot>; 

end partgram; 

By combining the routine standgram described earlier with 

the routine partgram which has just been given, we obtain the 

routine standptgram required for the isgraml subroutine of the 

McKeeman procedure. The detailed definition of standptgram 

is as follows: 

definef standptgram(gram,root); 

<newgram,newroot> = partgram(gram,root); 

<finalgram,syntypes> = standgram(newgram,newroot); 

return <finalgram,newroot,syntypes>; 

end standptgram; 
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We now give a few additional algorithms .which arise in 

1nection with compilers. The first may be used in processing 

the EQUIVALENCE:declarations which occur in the FORTRAN 

languag~. In this language, one is allowed to specify an 

overl~y pattern for arrays by stating that Location kin an 

array A is to be the same as location k' in another array A'; 

then the j-th address . in A' · is the address j+k-k' . in A. The 

algorithm (due to Fisher and Galler) that we give below takes 

a set of declarations of this sort and divides the·set of-all 

arrays mentioned in them into disjoint families, within each 

one of which every array is related by a given offset to a 

specified master array. In the process, the whole set:of

declarations is checked for consistency. 

We write the algorithm as a function, whose input is a 

set of declaration triples <arraya, arrayb, offset>, offset 

being an integer quantity. A flag is set if analysis of the 

whole set of triples reveals an inconsistency. The map master 

gives, for each array A, a pair <arrayb,offset> consisting 

of an array to which A is related by a definite offset, and 

also gives this offset. 

definef equivproc(dectrips,err); 

err= ii master= nt; arrays= nt; 

(~trip E dectrips) 

<arra,arrb,offs> = trip; 

arra in arrays; arrb in arrays; 

/* chain to ultimate masters*/ 

(while master(arra) ~ Q) /* correcting offsets*/ 

<arra,offs>=<hd master(arra) ,offs+master(arra) (2)>; 

end while; 

(while master(arrb) ne Q) 

<arrb,offs>=<hd master(arrb), offs-master(arrb) (2)>; 

end while; 

/* offs is now the offset relating two formerly independent 

master arrays. check for contradiction*/ 

if arra ~ arrb and offs ne O then .err=!;· return Q;; 

/* otherwise make second array master of first*/ 
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master(arra) = <arrb,offs>; 

end Vtrip; 

/* now summarize all the relationships that have been collected*/ 

( 'rJ arr a E arrays) 

<arr,offs> = <arra,O>; 

(while master(arr)ne Q) 

<arr,offs> =<hd master(arr), offs+master(arr) (2)>; 

end while; 

master(arra) = <arr,offs>; 

end 'rJarra; 

return master; 

end equivproc; 
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Next we shall. describe, _in somewhat simplified .form, the 

cucture of a macroprocessor, not quite as powerful as that 

specified for SETL, but nevertheless providing quite a useful 

degree of function. The facilities supported by the macroprocessor 

to be described are as follows. 

a. Macro· d'e•fin•iti•on·s';' mac·ro·s· ·with and without arguments. 

In the macro-system to be described, macros with parameters 

are declared in the form 

(l) define macro macroname (arg 1 , •.. ,argn); body endm; 

Macros without arguments are declared in the form 

(2) define macro macroname; body en&n; 

We suppose that input to the macroprocessor comes from a lexical 

scanner of the kind described in Section 2 of the present item, 

and that the macroprocessor is in turn required to supply tokens 

to some other routine forming part of an overall language 

processing system. 

In (1) and (2), macroname is a token which becomes the name 

of a macro; the arguments arg 1 , ••• , argn are also tokens, which 

must be distinct, and which become the arguments of this macro. 

The body occurring in (1) and (2) is a text, which is decomposed 

into tokens. 

A macro defined. by (1) and (2) may be invoked at any·point 

subsequent to its definition by writing 

(3) macroname(argum 1 , .•• , argumn) 

or, if there are no arguments, simply by writing 

(4) macroname· 
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The number of arguments in (1)_ and (3) must match, though null 

arguments are permitted in (3). _Each argument argum j may be 

any sequence of symbols which is parenthesis-balanced and con

tains no exposed commas, i.eo, no commas not enclosed in paren

theses. Moreover, the token combinations 

(5) define macro 

and 

( 6) end; 

are prohibited from appearing in a macro's body. 

Macro invocations are expanded by substituting argum. for 
. J . 

each occurrence of arg. in the text body appearing in definition 
J 

(1), and issuing the resulting stream of tokens instead of the 

stream initially input to the macroprocessor. If this stream is 

found to contain a macro invocation, this inner invocation is 

expanded, and so on recursively. Thus macro bodies may usefully 

contain macro invocations. It follows from the restrictions 

stated just above (cf. (5), (6)) that direct inclusion of macro 

definitions within macro bodies is excluded; however, the macro

processor to be described does allow macro definitions to be 

included in macro bodies in a somewhat roundabout way, which we 

leave it to the reader to discover. 

b. Generated symbols. 

It is often useful to have each expansion of a macro generate 

symbols which are unique to that expansion. This, for example, 

allows statement labels to be used in macros without label

repetition conflicts arising. The macroprocessor to be described 

will support the following generated symbol facility. A macro 

which is to generate symbols should be defined in the form: 
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~~ the macro involves n arguments and k generated symbols, or, 

only_ generated symbols but no arguments are wanted, in the 

form 

(8) define macro macron·ame (/xarg 1 , ... ,xargk); body end; 

The invocation of a macro defined in the form (7) is identical 

with that of a macro defined in the manner (1); likewise the 

invocation of a macro defined in the form (8) is identical with 

that of a macro having a definition { 2) • However, the appl_icable 

macro-expansion rules are somewhat modified. The string argum. 
. J 

is still substituted for each occurrence of a~n. in the text . ., J 
body of definition (7). In addition, unique symbols 

symb 1, ••. , symbk are generated, and symb. is substituted for 
J . 

each occurrence of xarg. in body. The generated symbois symb. 
J J 

consist of the prefix ZZZZ, followed by decimal digits; symbols 

of this special form should not be used explicitly for any other 

purpose. 

c. Macro redefinition,· mac'ro drop. 

Macros may. be redefined. The special definition 

define macro macroname end; 

removes macroname from macro status. 

The macro facilities described above are all supported by 

a relatively simple processor, which we assume is to function 

as an interface between a parser and a lexical scanner. The 

parser calls upon the macro processor when it requires an 

'additional token. The macro processor either supplies a token, 

produced as a result of macro expansion, or, if no macro expansion 

is appropriate, calls upon the lexical scanner for a new token 

to be passed along. The macroprocessor acts recursively, but 

not written as a recursive routine; instead, it secures 
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recursive effects by the manipulation of a pushdown stack. An 

internal "library" of previously declared macros is maintained 

by the macroprocessor, in the form of a function m·aarodict which 

maps each macro onto a triple <nxargs, argfn, mbody>. Here nxargs 

is the number k of generated arguments appearing in (7) or (8), 

.mbody is the declared text of the macro, and argfn maps each 

prototype argument (whether supplied or generated} of the macro 

onto its serial number. 

The overall structure of the macroprocessor is shown in the 

following diagram. 

· t · C 1 l macroprocessor 
~~~~ng fetoken]+racexpandl+eefabsorb1textword + output 

An innermost ro'utine, called getoken, is essentially the same 

as the lexical scanner described in Section 2 of the present item. 

The next innermost routine is called macexpand. It receives 

tokens from getoken, and supplies tokens to a routine called 

defabsorb. The proced~re macexpand works with a stack represent

ing macros to be expanded. If this stack is not empty, macexpand 

supplies tokens by performing expansion operations as indicated 

by the topmost stack entries. Otherwise macexpand simply obtains 

a token from getoken and passes it along. 

The routine defabsorb receives tokens from macexpand and passes 

them along to the outermost routine of the macroprocessor system, 

which is called nextword. Defabsorb monitors the token stream 

which it is handling for the special token combination which 

indicates the start of a new macro definition. When the start of a 

macro definition is found, defabsorb builds up a list of formal 

arguments of the macro, and enters the macro body into the macro 

dictionary function macdict. Note therefore that all text 

associated with macro definitions is completely absorbed by 

defabsorb. 

The routine nextword, which is the outermost portion of the 

macroprocessor} gets tokens from defabsorb and passes them out 

to the language processing system of which the macroprocessor 

forms part. In addition, nextword monitors the token stream fo: 

tokens flagged as macro names. When a macro name 'is found, a 
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new layer of macro expansion is set up. To begin the expansion 

a macro, nextword collects the actual arguments of the macro 

from the token stream which it is handling. 

If there are any genera.tea arguments, i.e., if the macr.o 

to be expanded has been defined in the form (7) or (8), new 

symbols are generated and added to the tuple of actual arguments 

to be used by macexpand- A pointer to the initial symbol of the 

body of the macro to be expanded is also stacked. Nextword then 

initiates macro expansion simply by calling upon defabsorb to 

supply an additional token. 

Three auxiliary routines are used. The subroutine 

getargs(argfn) is called by defabsorb to read a comma-separated 

string of macro arguments and to extend an argument tc, argument

number map as new arguments are read. Two routines printerror(msg) 

and printwarn(msg) are called, the first to record fatal errors 

and to print error messages and accompanying diagnostic text, 

the second to print warning messages. 

Two main data objects are used by the macroprocessor. The 

first, macdict, maps each word which has been declared to be a 

macro into a tuple describing the arguments and text of the macro. 

The second, expstack, is a pushdown stack used to obtain recursive 

effects ·auring macro processing. 

The counter xarggenctr is used to ensure uniqueness of gen

erated argument symbols. 

The routine nextword is set up in a way which makes 

"backup" available to whatever parser calls on nextword for 

tokens. This is done as follows. Within nextword, a 

first-in-first-out queue of tokens called reserve is maintained. 

When called, nextword examines this tuple. If reserve is 

not null, its last component is detached and returned as. 

the value of nextword. In the contrary case, nextword 

calls on defabsorb to supply a token. Therefore, 
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to return a symbol to nextword one simply appends it to reserve. 

A similar but simpler mechanism, supporting a single word 

of backup, is provided ~ithin macexpand. The global word 

macexpgiveback (see next page} is used to pold a symbol. returned 

to macexpand from defabsorb. 

We assume in what follows that tokens are supplied to the 

innermost routine of the macroprocessor system, i.e., to the 

routine macexpand, by a lexical scanner like that described in 

Section 2 of the present item. As already stated, this routine 

is called getoken in the SETL text which follows. Getoken is 

assumed to return ordered pairs of the form <string,type>, in 

which string is a token-representing character string, and in 

which type is a numerical code defining the lexical type of 

string. We do not include code for getoken with the routines 

which now follow. 

definef nextword; 
' 

/* macdict, expstack, and reserve are assumed to be global*/ 

initially 

reserve= nult; xarggenctr = 0; macdict = nl; 

expstack = nult; 

end initially; 

if reserve ne nult then 

word= reserve(l}; reserve·= reserve(2:); 

return word; 

end if; 

/* otherwise get additional token from defabsorb */ 

getword: word= defabsorb( }; 

if macdict (word}· is macinf eq Q then /*word is not a macroname* / 

return word; ; 

/* else word is a macro name. determine number and nature of 

arguments; also, determine macro body text*/ 

<nxargs,argfn,mbody> = macinf; 
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- --.:tgs = #argfn-nxargs; /* number of hortgenerated arguments * / 
allinf = <l,mbody,argfn>; /* first fragment of macro-call 

information * / 

argtupl = nult; /* collection of arguments*/ 

if nargs ~ 0 then go to getargs; 

/* otherwis=·merely generate additional arguments, as required*/ 

genargs: (1 ~ Vj ~ nxargs) 

argtupl = argtupl + <'zzzz' + dee xarggenctr>; 

xarggenctr = xarggenctr + l; 

end Vj; 

expstack(#expstack+l)=mcallinf+<argtupl>; 

/* completing set-up of macro call*/ 

go to getword;. 

getargs:/* the macro has arguments. 

collect its arguments out of the token stream*/ 

if (hd defabsorb( )) ne '(' then 

printerrror ( 'missing macro arguments. macro 

expansion.suppressed'); 

return word; 

end if; 

(1 ~ Vj ~ nargs) 

parertcount = O; /* unmatched parenthesis count*/ 

curargtupl = nult; /* argument being built up*/ 

(while hd{defabsorb{) is word) ne ',' or 

parencount ~ 0) 

if {hd word is token) ~ er then 

· printerror ('improper end of record') ; 

return word; 

else if token~')' then 

pa:tencount = parencount - l; 

if parencount ~ -1-then quit Vj; 

else if token~'(' then 

parencount = parencount + l; 

end if (hd word; 

curargtupl(#curargtupl + 1) = word; 

end while; 

argtupl(#argtupl+l) = curargtupl; 



end Vj; 

if #argtupl ·1 t nargs then· 

printerror('missing parameters in macro call'}; 

nxargs = nxargs + nargs - #argtupl; 

else if parencount ~ -1 then 

printerror('surplus parameters ignored in macro call'}; 

end if; 

go to_ genargs; 

end nextword; 

defined defabsorbi 

/* routine to analyze and record macro definitions*/ 

/.* nametype is assumed to be a globally known constant*/ 

/* macexpgiveback is assumed to be global*/ 

scan: token= hd (macexpand(} is word}; 

xtoken = hd (macexpand(} is xword}; 

if <token ,xtoken> -~<'endm', '; '> then 

printerror('improper macro close before opening'}; 

else if <token ,xtoken> ne <'define' , 'macro'> then 

/*giveback one word and return the other*/ 

macexpgiveback = xword; 

return word; 

end if; 

/*here we begin to read a macro definition*/ 

nargs = 0; argfn = nl; /* argument to argument - number map*/ 

type = (macexpand (} is mname} ( 2} ; 

if type ne nametype then 

printerror ('name missing in macro definition. definition 

ignored'}; 

return word; 

end if; 

-350-



)* otherwise have. vaiid macrb name. look for foliowing arcjUment 

list, semicolon, or 'enclin' */ 

token == hd . (macexpand () · is word) ; 

if token ·~ ' (' then 

go to. getargums; 

else if token ·~ . I ; I then 

if macclict (word)· ·ne Q then 

printwarn ('prior macro definition is being changed'); 

end if macdict; 

go to getbody; 

else if token ne 'endm' then 

printerror ('improper continuation of macro definition. 

definition ignored'); 

return word; 

end if token; 

/* here we have seen define macro maaroname endrn. look for 

semicolon*/ 

if hd'( inacexpahd () · •is word)· ne ';' then 

printerror ('improper termination of macro drop'); 

mace~p~iveba~k = word; 

end if; 

if macdict (mname)· ~ n then 

printwarn ('drop applied to non-macro name'); 

else 

macdict (mname) = 0; · 

end if; 

go to scan; 

getargums: /* scan for the arguments of a macro*/ 

it" hd(macexpand( ) is word) ~ '/ ' then 

go to ·getxargs; /*since there are no true arguments * / 

else 

macexpgiveback = wordf /*send word back to maaexpand */ 

'end if.; 

getargs(argfh); /* get chain of arguments separated by commas*/_ 

token = hd ·(macexpand ( .) is w0rd) ; 

if token~'/' -tJ.:ien go to -getxargs;; 

nargs = #a:rgfi1; i* r~cord number of true macro arguments * / 



testalistend: if•token ~ ')' then 

printerror ( 'illegal termination of macro argument li:: 

definition ignored'); 

return word; 

end if; 

/* now check for ';' following argument list*/ 

if hd (macexpand () is word) n~ ' ; ' then 

printerror ('illegal termination of macro argument list'); 

macexpgiveback = word; 

end if; 

/* at this point the macro argument list is complete, and we 

begin to collect the body of the macro*/ 

getbody:mbody = nult; 

loop: token= hd (macexpand() is word); 

xtoken = hd (macexpand () · is xword) ; 

if <token,xtoken>-~<tendm' ,';'>then/* close the definition* 

macdict(mname) = <#argfn-nargs,argfn,mbody>; 

go to scan; 

else if <token,xtoken> _£S. <'define', 'macro'> then 

printerror ('improper macro definition within.macro body') 

else if token~~ then 

printerror ('end of file encountered in macro definition'). 

return word; 

end if; 

/* otherwise merely add token to mbody and continue*/ 

mbody (#mbody+l) = token; 

macexpgiveback = ~Nord; /* send xtoken back to macexpand */ 

go to loop; 

getxargs:/*here we build up the list of extra arguments of a macro*/ 

nargs = #argfn; /* record number of ordinary macro arguments*/ 

getargs (argfn); 

token= hd (macexpand() is word); 

go to testalistend; 

end defabsorb; 
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define getargs (argfn); 

/* auxiliary procedure to build up list of arguments*/ 

/* nametype is assumed to be a globally known constant*/ 

getaloop:if(macexpand() is word) (2) ne nametype then 

printerror ('missing argument name in macro argument 

return; list') ; 

else if argfn(word) ne n then 

printerror ('duplicate argument name in argument list. 

duplicate ignored'); 

else 

argfn(word) = #argfn + l; 

end if; 

if hd (macexpand() is word) ~','then go to getaloop; 

~acexpgiveback = word; /* send word back to macexpand */ 

return; 

end; 

definef macexpand; 

/* routine to expand macros*/ 

/* macexpgiveback and expstack are assumed to be global*/ 

if macexpgiveback ~ Q then 

keep= macexpgiveback; macexpgiveback = Q; 

return keep; 

end if; 

start: if expstack ~ nult then return gettoken() ;; 

/* otherwise we are in process of expanding a macro*/ 

expand: exptop = expstack(#expstack); 

<symbno,body,argfn> = exptop(l:3); 

if symbno ~ #body then/* finished with expansion*/ 

expstack(#expstack) = Q; go to start; 

end if; 

symbol= body(symbno); 

if argfn(symbol) is argno ~ Q then 

/* symbol is not argument*/ 

exptop(l) = symbno+l; 

expstack (#expstack) ·= exptop; 
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return symbol; 

end if; 

/* else symbol is argument; a new level must be built on the 

expansion stack*/ 

argtupl = exptop(4); /* tuple recording actual macro arguments*/ 

expstack(#expstack+l) = <l,ni, argtupl(argno), nult>; 

/* this makes top of stack appear to be a macro whose expansion is 

the text of the argument actually supplied*/ 

go to expand; 

end macexpand; 
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Q Algorithms for theorem-provin~ by the resolution method. 

If algorithms are to discover and perform many of the powerful 

simplifying transformations utilized by human programmers, they 

will have to be able to find the proofs of correctness which 

programmers use to justify such transformations. This is but 

one of the many considerations which lend interest to algorithms 

which find proofs of mathematical theorems. Such algorithms, 

some of which we shall present in the present section, generally 

fall into one of two rather different classes.One type of.alciorithm 

is designed specifically for application in a given field of mathe

matics (such as Euclidean plane geometry), and incorporates 

structures and procedures particular to this field. The other 

type of theorem-prover, which is the type with which we shall now\ 

concern ourselves, uses general methods belonging to mathemati-

cal logic, and given axioms describing any field can in 

principle prove theorems in that field. (However, such algorithms 

may be inefficient, and may require entirely impractical amounts 

of time and memory.) 

Any algorithmic theorem-proving scheme must of course rest 

upon a formalization of the .part of mathem~tics which it is to 

cover, i.e.,upon some method for representing a mathematical 

subject domain by a set of 'formulae subject to algorithmic · 

manipulation. To this end, the algorithms which we shall consider 

make use of the so-called first order functional calculus of 

mathematical logic. In this calculus, formulae are built up 

from the following elements: 

i. The basic boolean connectives: and, or, not, implies, 

is equivalent to; or, as logi'cians normally write them: 

&,V,'v,-::),= 

ii. Variables, representing objects varying over a given 

mathematical domain. Normally written x, y, etc. 

iii. Constants, representing specific objects. Normally 

written c, d, etc. 

iv. Function symbols, representing particular basic or 

derived mappings of objects to objects within a mathematical 



domain, and normally written f, g, etc. Each function symbol is 

understood to have some fixed number of arguments. By supplying 

arguments to a function symbol, we can form symbolic structures 

representing constant or variable objects, as in the following 

examples: 

f(x); f(c); g(x,y); g(c,f(x)); g(c,f(f(g(f(y),g(y,d))))). 

v. Predicate symbols, representing particular functions whose 

values are all either tor f. Normally written P, Q, etc. 

Supplying a predicate with its fixed number of arguments, we form 

units representing constant or variable boolean values, e.g. 

P(f(x)); Q(c,c); Q(g(x,y),f(x)); Q(g(c,y) ,g(y,f(c))) . 

vi. The boolean quantifiers (\fx), (3x), where x denotes 

any variable. By combining units with connectives and quantifiers 

in syntactically valid ways, we form all the allowed formulae 

of the first order functional calculus. Examples of such formulae 

are 

(\fx)f(x) :::> f(c) ; g(c,c) :::> (3x) (3y) (g(x,y) V '\, f (x)) , etc. 

Formulae of the first order calculus can be used to represent 

the assertions of any mathematical domain. For example, to 

represent the commutative and distributive laws of algebra, we 

introduce function symbols called plus and times, and a 

predicate symbol called equa Zs, .and write the formulae 

(1) (Vx) (\fy) equals (plus (x,y), plus (y ,x)) 

(\fx) (\fy) equil~ (times(x,y), ti~es(y,x)) 

(Vx) (Vy) (Vz) equals (plus (times (x,y) ,times (x,z)), 

times(x,plus(y,z))) 

To represent the algebraic fact that there exists a zero element 

which is an additive unity, we introduce a constant symbol O 

and write 

(2) (\fx) equals (plus(x,O) ,x); 

to represent the existence of an additive inverse, we write 

( 3) (Yx) (3y) equals (plus (x,y) ,0) 



A !flathemat.:ical stru0tu::t~e described by one or more formulae C 

the first o~der functional calculus defines an interpretation 

of the formulae which describe it. More specific~lly, consider a 

collection S of formulae C of the first order functional calculus. 

In the.formulae C, certain constant symbols, function symbols, and 

predicate symbols will occur. An interpretation of Sis given by 

specifying: 

(i) a nonempty set U called the universe of the 

interpretation; 

(ii) for each constant syntPol occurring in a formula C, 

some definite object of U; 

(iii) for each function symbol of n parameters occurring in 

a formula C, some mapping of then-fold cartesian product 

ux .•. xu into U; 

(iv) For each predicate symbol of n parameters occurring 

in a formula C, some mapping of then-fold cartesian product 

ux ... xu into the two-element set {t.,i)· 
Given such an interpretation, each fo~mula of C becomes a 

definite mathematical proposition, having one of the values 

'tru~•, 'false'. For example, we may consider the two 

,following interpretations of the formulae (1), (2), (3) 

shown above: 

Interpretation A. U is the set of all real-valued functions 

of a real variable; plus designates addition of real valued 

functions; times designates multiplication of real valued 

functions; the predicate symbol equals designates function 

equality~ the constant symbol O designates the function 

all of whose vaiues are zero. 

Interpretation B. U is the set of all non-negative integers, 

plus designates integer addition, times integer multiplication; 

the predicate symbol equals designates equality of integers, 

the constant symbo+ O designates the zero integer. 

J;n both the~e interpretations, formulas (1) and (2) take on 

~ vai-qe true. ~owever, formula (3) takes on the value true in 

in~erpret;.ation A, but the value false in interpretation B. 



An interpretation which makes every one of the statements 

of a family Stake on the value true is called a model of S. 

For example, consider the following set s1 of statements, in 

which the function symbols i and prod, the constant symbol 

e , and the predicate symbol equals appear. 

(4) (Vx} equals (prod(e,x} ,x} 

(\fx} equals (prod(i(x},x},e} 

(Vx} (Vy} (Vz} equals (prod(x,prod(y,z}} ,prod(prod(x,y} ,z)) 

(Vx) equals (x,x) 

( Vx) ( \fy) ( equals (x, y) :) equals (y ,x) ) 

(\fx) (\fy) (\fz) ( (.equals (x,y) & equals (y ,z)) D equals (x,z)) 

(\fx) (\fy) (equals (x,y) :) equals (i (x) ,i (y))) 

(\fx) (Vy) (\fz) (Vu)) ((equals(x,y) & equals(z,u):) 

equals(prod(x,z), prod(y,u))) 

What is ordinarily called a group is simply a model of the state

ments ( 4) in which "=" is interpreted as equ3.li ty. The interpre

tations of e, prod, and i are then the group identity element, 

group multiplication, and the function.which maps each group 

element into its inverse, respectively. In fact the statements 

(4) are a formal system of axioms for group theory. 

Next, suppose we wish to show that some particular statement 

T can be proved using a finite set of axioms A1 , •.. ,Am. 

We take this to mean that we want to show that: 

Every model of A1, ... ,Am is also a model of T. 

For example, to show that the axioms s1 listed above 

imply the elementary group-theoretic theorem 

( 5) · (\fx) equals (prod(x,i(x)) ,e) 

is to establish that (5) is true in every model of the 

statements (4). This point of view towards provability from 

axioms is usually characterized as semantic or model-theoretic. 

Textbooks of logic tend to emphasize a different, syntactic 

point of view in which to derive a T from A1 , ... ,Am 

is to use a certain set of formal rules of inference 

to obtain T from A1 , ..• ,Am. However, these rules of 
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~-ference (the inference rules of first order functional 

Lculus) may be shown to have the following property: 

T can be obtained from A1 , ... ,Am by employing the 

rules of inference of first order functional calculus 

if and only if every model of A1 , ... ,Am is also a model of T. 

This is the content of the fundamental completeness 

theorem of Godel, which therefore guarantees that the syntactic 

and the semcIDtic notion of provability are equivalent. 

Every interpretation of T must make T either true 

or false. Hence,every model of A1 , ... ,Am is either a 

model of Tor of 'vT. Thus, to say that every model of A1 , ... ,A . rn 
is also a model of T is equivalent to saying that no model of 

A1 , ... ,Arn is also a mod~l of 'vTF or equivalently that 

A1 , ... ,Am, "'T have no model. All the proof procedures to 

be discussed in this section use this approach, i.e., attempt 

to prove that A1 , ... ,Arn imply T by showing that A1 , ... ,Arn' 'vT 

have no model. 

Faced with this latter task, we always begin by subjecting 

the statements A1 , ... ,Am' 'vT to certain preliminary trans

formations, which transform them into new statements c 1 , ... ,ck 

which have a model if and only if A1 , ... ,Am' 'vT have a model. 

These transformational _steps are as follows: 

Step 1. Relabel variables. If the same variable occurs in 

more than one quantifier in the same statement, use a new 

variable for one of them. For example, (Vx)R(x) v(Vx)S(x) 

should be written as, say, (Vx)R(x) v(Vy)S(y). 

Step 2. Eliminate:> and Whenever:> and - occur, make 

the following replacements: 

Replace A -+ B by- ('vA) V B . 

Replace A - B by (A & B) V [("'A) & ('vB)] . 

Step 3. Mo1,1e "' inwards. Where possible make the replace

ments: 

Replace 'v(x)M 

Replace "'(3x)M 

by 

by 
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Replace 'v (M & N) by ('vM) V ('vN) . 
Replace 'v (M V N) by ('vM) & ('vN) . 
Replace 'v'vM by M. 

Ultimately the statements are obtained in a form where each 'v 

occurs immediately preceding an atomic formula. 

For atomic formulas we write R(u
1

, ... ,um) instead of 

'vR(U 1 , ... ,Um); R(U 1 , ... ,Um) and R(U1 , ... ,Um) are both 

referred to as literals. 

Thus beginning with 

(Vx){R(x) V 'v(3y)[S(x,y) & (R(x) V U(x))]} 

we obtain 

(\Ix) {R(x) v (Yy) ['vS (x,y) V ('vR(x) & ('vU(x))]} 

Step 4. Eliminate existential quantifiers. Cross out each 

existential quantifier, say (3y) . The corresponding variable 

(in this case y) is replaced by g(x
1

, ... ,xm), where g is a new 

function symbol, and x 1 , ... ,xm are all of the variables 

occurring in universal quantifiers to the left of the existential 

quantifier (in .this case .(3y)). 

In case there are no universal quantifiers to the left of the 

existential quantifier, the variable is replaced by a new constant 

symbol g; this case may be included in the general case 

by regarding a constant symbol as just a function symbol of 0 

arguments. 

To see that step 4 preserves the properties of having or. 

not having a model, we note that if the·statements had a model 

before one use of step 4, for each x
1

, ..• ,xm of the universe 

there would be one or more values of y making the statement being 

processed true. Hence we may take as the interpretation of g a 

function such that for each x 1·, ••. ,xm the statement is true 

when y = g(x 1 , ... ,xm). Conversely, if the statements have a 

model after processing, then y = g(x 1 , •.• ,xm) will make the 

statement true for all x 1 , ..• ,xm so that the original existential 

condition likewise has a model. 

Step 5. Advance universal quantifiers. Move all universal 

quantifiers to the left so that the statement has the form of a 

sequence of universal quantifiers followed by a quantifier-free 

expression. 
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Step 6. Distribute, wherever possible, & over v. I.e. replace 

& B) V C by (AV C) & (B V C). 

After steps 1-6 have been performed each statement must have 

the form 

where, for each C. 
1 

C = n (i) 
i Nl 

V JI, ( i) 
2 

V • • • V ,(I, ( i) 
r. 

1 

and where each Jl~i) is either a unit or the negative of a unit. 
J 

In this expression each C. is called a clause. 
1 

Step 7. 

a clause C. 
1 

Simplify. If a unit and its negation both occur in 

, strike out the entir~ clause. If a literal occurs 

twice as a literal of the same clause C. , strike out one 
1 

occurrence. (E.g. the clause t 1 v t 2 v t 1 is to be replaced 

by Jll V t 2 .) 

Step 8. Abbreviate, by omitting the universal quantifiers 

prefixed to each remaining statement; and break up each disjunc

tion c 1 & ... & ck into its separate clauses c 1 , ... , cm. 

This completes our preliminary processing of an initially given 

set of statements A1 , .•• ,An, 'vT. Note that it is not claimed 

that the set of statements c 1 , ... ,cm which results from the 

processing is equivalent to 

that the set A
1

, . .. ,A , 'vT n . 

A1 , ... ,An,"'T. Rather, it is claimed 

has a model if and only if the set 

c 1 , .•. ,cm has a model. The set of statements c 1 , ... , Cm is said 

to be the Herbrand normal form of the initial set A1 , ... ,An,"'T. 

The Herbrand universe (HU) of c
1

, ... ,Cm is defined as follows: 

let K = {k.} be the set of all constant symbols occurring in 
1 

c 1 , ... ,cm, and let {fj} be the set of all function symbols 

occurring in c 1 , .•• ,cm. (If no constant symbols occur in 

c 1 , ••. ,cm, we invent one nominal constant k 0 , and let K = {k 0 }.) 

Then the elements of HU are all the symbols k. , as well as all 
1 

the formulae f(e 1 , ••• ,ep), where f is a function symbol of p 

mal parameters, and e 1 , ... ,ep are themselves symbols of HU. 
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It is plain that each function symbol f of p formal parameters 

automatically defines a p-parameter mapping of HU into itself, 

namely the mapping which takes p formulae e 1 , ... ,ep of HU into 

the formula f{e 1 , ... ,em) of HU. Note that if c 1 , .•. ,Cm have 

a model with universe U, then each element k of K corresponds 

to some element µu of U, and-each function symbol f of p 

formal parameters to a p-parameter mapping of µf of U into 

itself. Thus the recursive rule 

µ{f{e 1 , ... ,ep)) = ·{µf) {µe 1 , •.. ,µep) 

defines a mapping of HU into u. 
A model of c 1 , ... ,cm associates a p~paramete 4 boolean valued 

function µP defined on U with -each predicate symbol P of 

p parameters, and we can carry this over to HU by insisting that 

(µP) (e 1 , .•• ,ep) = {µP) {µe 1 , ... ,µep) 

for each sequence e 1 , •.. ,ep of elements of HU. This observa

tion makes it plain that c 1 , ... ,Cm has a model {with arbitrary 

universe) if and only if it has a model with universe HU. Note 

now that finding a model of c
1

, ••. ,cm with universe HU is 

precisely the same as finding some way of assigning a truth 

value to each unit generated using the predicate symbols, 

function symbols, .and constant symbols of c 1 , ... , Cm , in such 

a way as to make every substituted instance of each of the 

formulae c 1 , ..• ,cm have the value true. Hence this will be 

impossible, i.e., c 1 , ... ,cm {or equivalently A1 , ... ,Am,l\.,T) will 

have no model, if·and only if a contradiction can be derived 

from c 1 , ... ,cm by some finite process of substitution and 

boolean calculation. This is Herbrand's theorem, which we 

restate for emphasis as follows: 

Let A1 , ..• ,An and T be formulae of the first order 

functional calculus. Then T follows from A1 , .•. ,An if and 

only if the following procedure leads after a finite number of 

steps to a boolean contradiction: 

a. Reduce the set A1 , ..• ,An'l\.,T of statements to their 

Herbrand normal form c 1 , .•. ,cm. 

b. For the variables xj occurring in c 1 , .•. , Cm, subs ti t\.1.1...c: 

formulae belonging to the Herbrand Universe. HU constructed from 
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_._,._e ~onstant symbol~ and functio11 symbql~ occurring in c
1

,~··,Gm. 

is le~ds to a family of substit~ted clauses C; enumerate the 

untt~ oqcurring in t4ese cla,uses, calling them P1 , ... ,Pj, .•. , 

and write the clauses as 

{ 6) V ••• V P. V 
ik 

c. As new cla~ses ~~e generated by the substitution process 

just qescribeq, _seek for a Boolean contradiction between these cla,us es 

anq the collection of all previously generated clauses (6). 

The process of substitution anq Boolean calculation described 

by {a), {b) anq {c) above is straightforward and obviously 

algorithmic. ~erbqmd' s theorem tells us that, if we ignore 

considerations of efficiency and apply this p~ocess in an 

.exhaustive manner to an initial set of clauses which is actually 

inconsistent, a Boolean contradiction must eventually emerge. 

Of cqu~se, if wear~ to have any practical chance of finding this 

contradiction, we m45t µsea m~thod more selective than wholesale 

formula generatiop. Any theorem-prover algorithm worth consider

ing will in fact incorporate so~e :heuris~ic for formula selection, 

whic~ aims to r~ach a contradiction before the mass of propositions 

gene~ated become.s overwhelm.ingly large. Heuristics of at least 

two types are concei vab.le. We might imagine heuristics which examine 

a set of propositions, looking for subsets exhibiting particular 

patterns, and wh,ich, on finding these, route the course of formula 

gen~rati0n i~ particular directions. ~his corresponds to part 

of the normal procedure of the mathematician. For example, a 

mathematician workin~ with formulae describing group theory would 

probably note that 'transitivity' and 'associativity' both play 

a role, a,µd, having made this obse~vation, would employ a special 

notati9n pe~itting deduction to proceed in particular directions 

mo~e rapidly than qoes the completely general stepwise substitu

'tion process that we. have just discussed. 
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Such 'feature noticing' heuristics have in fact not been 

used much in general theorem-proving algorithms of the kind we 

shall consider; the development of methods of the kind suggested 

is probably a useful direction of future work. Algorithmic 

theorem provers have instead used heuristics of a more general 

and formal character. Such heuristics can be developed by formal 

analysis of the manner in which contradictions can be derived. 

The following reasoning belongs to this line of thought, and 

will serve to illustrate the meaning of the preceding remark. 

In deriving a contradiction, we may restrict ourselves to any 

method of Boolean deduction which is capable of making manifest 

the contradictory character of an arbi~rary set of inconsistent 

Boolean clauses. It is not hard to see that for this we may rely 

exclusively on use of the following Boolean rule: from two clauses 

a V Band ~a V C, where Band Care themselves subclauses, derive 

B V C. This Boolean rule is sometimes called resolution. Now, 

in the situation with which we mean to deal, the basic terms a 

which can be involved in such resolutions are obtained by substitu

tion of particular elements for the variables occurring in an 

originally given set of clauses. Given that resolution is the 

sole Boolean technique that we shall employ, it is clearly not 

worth making a~y substitutions which do not lead to the production 

of a pair of formulae of the form a VB and ~a V C. On the other 

hand, given a pair of formulae a 1 VB', ~a 2 V C', we can tell 

algorithmically whether there exists any substitution which, in 

the necessary sense, will unify a 1 and a 2 , i.e., make them iden

tical. For this to be possible, the units a 1 and a 2 must begin 

with the same predicate symbol, and must be structured in corre

sponding ways: whenever a 1 and a 2 differ, a variable x must be 

found in one where a variable, constant, or compound structure e 

occurs in the other. The most general substitution which unifies 

a 1 and a 2 is then the substitution which replaces each such x by 

the corresponding e. For example the units 

P(x,f(y}} and P(g(z},w} 
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can be unified by putting g(z) for x and f(y) for wt this i~ the 

st general substitution which can be used to make these two 

units identical. 

The above analysis makes it clear that the following set 

of rules will derive a Boolean contradiction from a set of 

clauses, if such a contradiction can be derived. 

1. Search the clauses for pairs a 1 VB', ~a 2 V C' such that 

a 1 and a 2 can be unified by making some substitution a for the 

variables occurring in these clauses. 

i. Make this substitution in both clauses, proqucing two 

clauses a V Br ~a V C to which Boolean resol 11tion can be applied. 

3. Apply resolution, thus adding a new clause B V C to the 

stock of clauses available. 

4. Iterate, until a null clause, i.e., a contradiction, 

emerges. 

The procedure we have outlined, which essentially describes 

the first formal algorithmic method we shall consider, the so

called binary resolution method, will find a contradiction if 

one exists. In this sense, it is complete. Note that the binary 

resolution procedure bypasses many of the useless false starts 

which a cruder substitution method might make, only generating 

substitutions which have some advantage, at least locally. This 

shows the way in which general formal analysis can suggest improve

ments in the efficiency of theorem proving algorithms. Of course, 

the preceding paragraphs have by no means exhausted the measure 

of formal analysis which may be brou_ght to bear. It is useful, 

for example,. to consider the pattern in which negated and unnegated 

terms in clauses can enter into the derivation of a contradiction. 

We will take up this point somewhat below: it will lead us to the 

so-called hyper-resolution var~ant of the binary resolution method. 

It may also be observed that, in addition to 'global' heuristics 

derived by consideration of ali the possible ways in which a con

tradiction might eme-rge, one may also find 'local' heuristics of 

a somewhat more ad-hoc character to be useful. For example, long 

clauses will in. many cases not be worth considering, since such 
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clauses must either contain many terms, whose eventual elimina

tion by successive resolutions may be doubtful, or must contain 

highly substituted and hence very specific terms, which it may 

be difficult to match with terms in other clauses. For the 

reasons suggested, a heuristic scheme which counts the number 

of characters which a clause contains and prefers short to long 

clauses can be advantageous. We may also wish, as we generate 

clauses c, to attach to c some measure of the number of steps 

required to derive c. We might then set aside all c for which 

this measure grew too large, thereby giving preference to 'shallow' 

proofs over 'deep' proofs; most of our algorithms are incapable 

of finding deep proofs in any reasonable length of time, and hence 

the hint that a proof is shallow is very useful. In point of 

fact, we shall generally not incorporate heuristics of ad-hoc 

character into the algorithms to be presented in this section. 

We prefer to omit them in order that the various possible strate

gies derived from formal analysis which are to be presented can 

stand forth with maximum clarity. 

It should also be noted that the algorithms which follow 

merely derive a contradiction (if they can) and report their 

success. Actually, realistic theorem-prover algorithms will keep 

an account of the parentage of each clause, and, on deriving a 

contradiction, will print out the ancestry of this contradiction,· 

thus exhibiting the proof that they have found, rather than merely 

asserting success. As this addition is easily made to the algo

rithms which are to follow, we have felt free to omit it. 

After these general introductory remarks, we begin a more 

detailed algorithmic discussion. We will always start from a set 

of clauses which are to be shown to be contradictory. We represent 

each clause c by a pair 

<negunits,posunits> , 

where posunits is the set of all units which occur unnegated in 

c, and negunits is the set of all units which occur negated inc. 

-366-



F~oh unit is itself taken to be a pai~, 

<relnsymbol,argsequence> , 

where relnsymbol is some (atomic) relation symbol, and 

argsequence is a sequence, namely the sequence of arguments of 

thi$ relation. Finally, each argument is an element, i.e., is 

either 

i. A variable, represented by an atom; 

ii. A constant, represented by a set whose sole 

member i? an atom; 

iii. An item, represented by a pair 

<functionsymbol,ar9sequence> , 

where functionsymbol is some (atomic) function symbol, and 

argsequence is·the sequence of arguments of the function, having 

again one of the forms i, ii, or iii. All this is to say that 

we rep~esent clause$, and their units and elements, by recur

sively defined, tree-like structures. 

Before coming to the algorithms of principal concern· to us, 

we build up a group 9f a~xiliary routines for the manipulation 

of logical formuiae represented in the form we have just described. 

First, some elementqry aigorithms: 

definef varsof(obj); /* a recursive tree-walker which collects 

all tne variables of a term or element*/ 

if atom obj then ret~rn {obj};; 
' ' 

if txpe obj ne tupi then return ni;; 

/*else*/ return [+: arg(n) £ obj(2)] varsof{arg); 

end Vqrsof; 
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Next, two subroutines which implement basic substitution 

operations. 

In these basic algorithms (and in certain subsequent algo

rithms as well) we deal with substitutions defined by mappings 

Each such substitution associates some unique element with each 

of a finite set of variables xj. The effect of the substitution 

(1) on a term is to replace each occurrence of each of the 

variable xi by the corresponding element 

which map(x) ~ n are not replaced. T~e 

taneous.' Note then that n1 aets as the 

e.; variables x for 
]. 

replacement is 'simul-

identity substitution. 

definef obj subst map;/* the basic recursive substitution 

operation, applying either to a term or an element*/ 

return if atom obj then 

if map(obj) is new ne n then new else obj 

else if type obj eq tupl then 

<hd obj>+ ([+: arg(n) e: obj(2)]<arg subst map> orm nult) 

else obj; 

end subst; 

definef mapa compose mapb; /* the 'multiplication' of maps 

corresponding to the preceding substitution operation*/ 

return.{<hd x, x(2) subst mapb>, x e: mapa} + 

· {item e: mapb · 1 !!_ (hd item) e: hd [mapa]}; 

end compose; 

Two units (or elements) ta and tb are said to be unifiable 

if there exists a substitution map such that 

(2) (ta subst map) eq (tb subst map) 

If such a map exists, then there exists a most general unifier, 
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=·, a map m with the property (2) such that any other map witn 

: property (2) can be written in the form m compose n for some 

n. The map m can be found by the follow~ng procedure: ta and tb 

must be structurally identical,. except that where a variable x 

occurs in either, some compound element e may occur in the other. 

If sucn an x can be found, substitute e for each occurrence of 

x, thus bringing ta and tb c.loser to equality, and continue to 

search for additional v~riables x for which substitutions ought 

to be, made. The map we desire is then the cqmposition of all 

the individual substitutions which this pi;-ocess will uncover. 

Note however that if x itself occurs as a variable in the element 

e to be substituted for it, then unification becomes impossible. 

The following $ETL algorithm makes use of the procedure just 

described. The algorithm is writ~en as a function which returns 

the most general unifier of two units (or elements); if unifica

tion is impossible, it retur~s n. 

defj,.nef mogenu(ta,tb); 

if ta eq tb then return n~;; 

if atom ta then return 

if t~ E var~of(tb) then n else {<ta,tb>};; 

if atom tb then return 

if tb E varsof (ta) t.hen n e.lse {<tb,ta>};; 

if n type ta~ tupl ~ ~ ~ tb eq tupl then :return n;; 

if (hd ta) ne hd tb then return n;; 

argsa· = ta(2); argsb=tb(2); map=nt; /*·the identity substitution*/ 

(Varga(i) E argsa) 
obja = argsa(i) subst map; objb=argsb(i) subst map; 

if mogenu(obja,objb) is mgu ~ n then 

return n; 
else 

map= map com:Eose, mgu; 

end if; 

end 'fJ ai;-ga; 

-~.i:urn map; 

l moge,1;1u; 
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Next we give a routine which forms part of the simplifica

tion procedure we will use. A clause c is said to subsume a 

clause c' if there exists a substituted instance c of c, such 

that every positive unit of c is included among the positive 

units of c' and every negative unit of c is included among the 

negative units of c'. In this case it is clear that c represents 

a more general assertion than c', so that c' may be dropped with

out loss of information from any set of assertions containing c. 

Let the units of c' be 

and the units of c be 

t' v· t' 1 2 V ••• 

t 1 V ••• V tm 

Vt' n , 

-We test for subsumption as follows. Taking t 1 , we form the 

collection of all maps which would make t 1 identical with a term 

of c'. Then, taking each such map m, we attempt to extend it to 

the next unit t 2 of c, by the following rule. Take t 2 , and_ apply 

the substitution m to it; call the result E2 . If there is_ some 

map m' which makes E2 identical with a unit of c', the composi

tion m compose m' represents the desired extension of m; if no 

such m' exists, we simply drop m. Any maps which can be extended 

to t 2 we attempt to extend to t 3 , etc. If there exists any map 

which can be extended to all the units of a, then c subsumes c'; 

otherwise not. 

Note that in our extension process, we never wish to make 

a substitution for any variable-in a unit of c which prior sub

stitutions have made identical with a unit of c'. This part may 

be handled neatly by redesignating all the variables of c' as 

constants before the extension process begins. Given this, the 

compositions of maps to be performed during the extension process 

reduce simply to unions of sets of ordered pairs. 
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aere is the SETL algorithm. 

definef c subsumes cpr; 

cprime - cpr; 

varspr = [+: t E cprime(l) + cprime(2)] varsof(t); 

makeconst = {<x,{x}>, x E varspr}; 

cprime = <[cprime(l)] subst makeconst,[cprime(2)] subst makeconst>; 

maps= {nt}; /* start with set consisting of identity rr.ap only*/ 

<neg,pos> = c; <negpr,pospr> = cprime; 

(VtEneg) if extend(maps,t,negpr) is maps~ nt then return 

(VtEpos) if extend (maps ,·t ,pospr) is maps eq nt then return 

/* if arrive at this point then*/ return t; 

end subsumes; 

definef extend(maps,unit,unitset); 

extensions= nt; 

(Vm E maps,t E unitset) 

if mogenu (unit subst m,t) is newmap ne Q then 

(newmap + m) in extensions; 

end if; 

end Vm; 

return extensions; 

end extend; 

f .•• , , , 

f ••• , , , 

We will also have use for.the 'pluralized' variant of the 

above procedure in which we ask whether any one of a set of 

clauses subsumes a given clause. This is expressed.in SETL simply 

as follows: 

definef clauses subsume c; 

return 3 clause E clauses 

end subsume;· 

(clause subsumes c); 

Now we come to the resolution process itself. Suppose that, 

given clauses ca and cb, we can find a negative term na in ca, 
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and a positive term pb in cb with which na can be unified. Let 

m be the most general unifier of na and pb. The resolvent of 

ca with cb on na and pb is then obtained by dropping na from ca, 

pb from cb, joining the remaining terms into a single clause, 

and applying the substitution m to the result. In SETL, this is: 

define£ resolvent(na,pb,ca,cb); 

m = mogenu (na,pb); 

hcasub = [ca(l)] subst m; tcasub = [ca(2)] subst m; 

hcbsub=[cb(l)] subst m; tcbsub=[cb(2)] subst m; 

nasub = na subst m; 

return <hcasub less nasub + hcbsub; tcbsub less nasub + tcasub>; 

end resolvent; 

A sets of clauses produced by resolution may contain clauses 

c subsuming other clauses dins. It may also contain tautologous 

clauses, i.e., clauses containing a given term both negated and 

unnegated. Such clauses can clearly never contribute to a con

tradiction, and may therefore be dropped. The simplification 

procedure which we now give accepts a set of old and a set of new 

clauses, removes all subsumed clauses, tautologous clauses, and 

superfluous units from both sets, and ensures that the variables 

occurring in any new clauses are disjoint from those appearing 

in any other clau~e. This iast is a condition assumed implicitly 

in some of our other algorithms. 

define simplify (newclauses ,oldclauses·); 

/* olds, news are assumed to be global*/ 

news= newclauses; olds= oldclauses; 

(Vclause £ newclauses) 

news= news less clause; 

if n superfluous(rebuild(clause) is newclause) then 

newclause in news; 

end if; 

end Vclause; 
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tu~1ause £ oldclauseS) 

if news subsume clause then 

olds = ·olds 1·ess clause; 

end if; 

end Vclause; 

newclauses = news; oldclauses = olds; 

return; 

end simplify; 

definef superfluous(clause); 

/* olds, news are assumed to be global*/ 

if olds subsume clause or news subsume clause then return t;; 

return 3 t £ clause ( 1) I t £ clause ( 2) ; 

end superfluous; 

definef rebuild(clause); 

map= ni; 

(Vvar £ [+: t £ clause(l) + clause(2)] varsof(t)) map(var) = newat;; 

return <[clause(l)] sUbst map, [clause(2)] subst map>; 

end rebuild; 

ijaving now built up all necessary formula-manipulating 

auxiliary routines, we go on to describe various of the principal 

theorem proving methods which appear in the literature. As has 

been mentioned, theorem-proving methods differ in the strategies 

which they use to generate new clauses. The first method we shall 

describe, binary resolution with set of support, divides the set 

of clauses from which it aims to derive a contradiction into two 

sets: those derived from the axioms of its subject, and those 

derived by negation of the theorem whose 'proof by contradiction' 

is to be generated. It then forms pairwise ·resolvents in all 

possible ways, never matching two axioms since a contradiction 

can never be reached through successive resolutions of axioms 

alone. 
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Note however that it is essential for the com~leteness of 

this method that when forming resolvents for two clauses c and 

d, we attempt wherever possible to identify two 9.E. more units 

of c (or of d) by applying appropriate substitutions to c. This 

remark is illustrated by the set 

a(x) V a(c) 

b(x) V b(c) 

'va (x) \/ 'vb (x) 

of three clauses. This set is contradictory, but a boolean con

tradiction can only be derived if the substitution x = c is 

applied to its first and second clauses. A clause c' produced 

from the clause c by a substitution which causes two of the units 

of c to coalesce is called a factor, and the term of c' produced 

by this coalescence is called its distinguished term. Of course, 

when we form a factor we will wish to perform resolution on its 

distinguished units rather than on any other term, since to pro

ceed otherwise would be to perform work that is bound to be 

repeated later. 

The SETL program for binary resolution theorem proving is 

as follows (see J. Robinson, "A Machine-Oriented Logic Based on 

the Resolution Principle," JACM 12, Jan. 1965, pp. 23-41 for the 

source of this method). 
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~~finef binres(axioms,antitheorems); 

newer {s assumed to be global; cf. matchup */ 

old= axioms; new= antitheorems; 

(while new ne nt) 

newer= nt; 

if_!£ (matchup[old,new] /* the procedure matchup will 

generate new resolvents */ + matchup[new,old] + 
matchup[new,new]) then 

return t; 

end if; 

old= old+ new; simplify(newer,old); 

new= newer; 

end while; 

/* if no new resolvents then*/ return f; 

end binres; 

definef rnatchup(ca,cb); 

/* newer is assumed to be· global*/ 

(Vx £ tandmaps(ca(l} ,cb(2}} 

<tmx, -mapx> = x; 

newres = <[ca(l)]subst mapx less tmx + [cb(l}] subst mapx}, 

[cb(2}"] subst mapx less tmx + [ca(2}] subst mapx}>; 

if newres = <nt,nt> then 

return t; 

else newres in newer; 

end Vx; 

return f; 

end matchup; 
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definef tandmaps(neg,pos); /* finds all maps which lead to the 

elimination of one or more unit during a resolution; returni 

a set of pairs of form <unit eliminated,map> */ 

/* first sequence all the units*/ ~ 

nseq = [ +: na £ neg]<na> orm nult; 

pseq = [ +: pb £ pos]<pb> orm nult; 

tmps = ni; 

(1 < Vj < #nseq, 1 < k < #pseq I mogenu(nseq(j) ,pseq(k)) is map 

tm = nseq(j) ·subst map; 

pile = [{nseq(m) ,j<m~#nseq} + {pseq (m) , 

work ={<tm,pile,map>}; 

(while work ne ni) --
x from work; <tmx,plx,mpx> = x; 

<tmx,mpx> in tmps; 

/* sequence the 'pile' of units*/ 

seq= [+: t £ plx]<t> ~ nult; 

k<m< #pseq}] subst 

lE:SS 

(1 < Vn < #seq I mogenu(tm,seq(n)) is xtramap ne s-2) 

tmnew = tm subst xtramap; 

ne 

map 

tm; 

n) 

pilenew = [{seq(k) ,n<k~#seq}] subst xtramap less tmnew; 

mapnew = mpx compose xtramap; 

<tmnew,pilenew,mapnew> in work; 

end Vn; 

end while; 

end Vj; 

return tmps; 

end tandmaps; 
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In the tp.eqrem proving algo:i::itl').ri jµs~ g.:j..ven, the f0u)11at:ioI?-

f a_ctors is inefficient, sirice factors of a given clause will 

be formed again and aga.:j..n. We can av9id this inefficiency by 

re~tructuri_ng our algorithm somewhat, so as to save factors 

once forIT).ed; this l~ads to the factor resolution method 

presented belp~. In this. algorithm, we associate, with each 

clause c, the s~t fqctors(c) of all its f~ctors. Note also 

that when a factor of a clause c is rroduced, we consider 

the particula~ one qf its upits which resulted from the fusion 

of two units of c to be distinguished, and, when the factor 

i~ used to produce a reP.olvent, insist that this distinguished 

unit disappear fn the resolvent. For thi~ ~eason factors are 

S!3-ve<3; as triples in the following formats: 

<'pos',unit,clause> 

if they (?Ontain a dist.:j..nguished positive unit, wh_ere unit is that 

distingut~~ed unitr and where as usual clause= <posunits,negunits> 

gives the set of all posttive and negative units of 

the factor; si~i+arly, factors containing a distinguished. 

negative unit are represented _as triples 
. . . . . . 

<!negl,uni~,~lause> 

The SETL algorithm :for factor resoJ,.ution is as follows. 

definef factres(axioms,antitheorems); 

/* factors is assumed to be global*/ 

old= axioms; new= antitheorems; factors= nl; 

makefc1.cts[old]; 

(while new ne ni) 

makefclcts [ne~l; 

newer= nl; 

if t E (mcltchfact[old,new] /* the procedure matchfact will 

generate new resolvents */_ 

+ mat~hfqct[new,old] + matchfact[new,new]) then 

r~turn t; 

e~d if; 

qld =. 9+d + new; o!qkeep = old; 



simplify(newer,old); 

(Vx E oldkeep) 

if n x E old then factors(x) = n;; 

end Vx; 

new= newer; 

end while; 

/* if no new resolvents then*/ return f; 

end factres; 

definef matchfact(ca,cb); 

/* newer, factors are assumed to be global*/ 

/* first match unfactored terms*/ 

(Vna E ca(l), pb E cb(2) I mogenu(na,pb) ne Q) 

if resolvent(na,pb,ca,cb) is newres ~ <nt,nt> then 

return~; 

else 

newres in newer; 

end if; 

end \Ina; 

/* now match factored terms*/ 

(Vfct E factors(ca), pb E cb(2) 

<-,dist,caf> = fct; 

hd fct ~ 'neg') 

if mogenu(dist,pb) is mgu ~ n then continue;;/* else*/ 

if resolvent(dist,pb,caf,cb) is newres ~ <nt,nt> then 

return~; 

else 

newres in newer; 

end if; 

end Vfct; 

(Vfct E factors(cb), na E hd ca I hd fct ~ 'pos') 

<-,dist,cbf> = fct; 

if mogenu(dist,pb) is rngu ~ n then continue;;/* else*/ 

if resolvent(na,dist,ca,cbf) is newres ~ <nt,nt> then 

return~; 

else 

newres in newer; 

end if; 

end Vfct; 
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1* if arrive at this point then*/ return f; 

d matchfact; 

define makefacts(ci); /*builds up all factors of a clause*/ 

/* factors is assumed to be global*/ 

factors(ci) = {<'neg'>+fct, fct E negfacts(ci)} 

+ {<'pos', fct(l) ,<fct(2) (2) ,fct(2) (1) >, 

fct E negfacts (ci (2) ,ci (1) >)}; 

return; 

end makefacts; 

definef negfacts(ci); 

/* builds factors by identifying 'negative' units*/ 

<negu,posu> = ci; facts= ni; 

/* make sequence of 'negative' units*/ 

seq= [+: x E negu]<x> orm nult; work= ni; 

(1 ~ Vj ~ #seq, j < k ~ #seqlmogenu(seq(j) ,seq(k)} is map ne n) 

ut = seq(j) subst map; 

pile = [{seq(i), k < i ~ #seq}] subs_t map; 

clprime = <[ci(l)] subst map, [ci(2)] subst map>; 

<ut, pile, clprime> in work; 

end \fj; 

(while work ne ni) 

x from work; <ut,pile,clprime> = x; 

<ut,clprime> in facts;/* sequence the 'pile' of units*/ 

seq= [+: x E pile]<x> orm nult; 

(1 < \fj ~ #seqlmogenu(u·t,seq(j)) is map ne n) 

ut = ut subst map; 

pil = [{seq(k), j<k<#seq}] subst map; 

clprim = <[clprime(l)]. subst map, [clprime(2)]subst map>; 

<ut,pil,clprirn> in work; 

end '«tj; 

ehd while; 

return facts; 

~nd negfacts; 
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Clauses may be distinguished as positive (containing positive 

clauses only) and mixed (containing both negative and positive 

clauses, or negative clauses only). The clause types which can 

result on forming the resolvent of a pair of clauses are as 

follows: 

positive with mixed: null, positive, or mixed 

mixed with mixed: mixed. 

Note in·Farticular that a null clause, i.e., a visible contra

diction, can never result from two mixed clauses, but only from 

a positive and a negative clause. This remar~ suggests that 

positive clauses deserve special attention. Next observe that 

the process of resolution has a kind of 'associativity' property. 

If the resolvent c of two mixed clauses ca and cb is produced, 

and the resolvent d of c with a positive clause pis produced, 

then the term entering into the second resolution must be derived 

from a term either of ca or of cb, say ca for the sake of definite

ness. We could therefore obtain the same resolvent by resolving 

ca with p, and then resolving cb with the result. Now, if d 

is positive (or null) it follows that the resolvent of ca with p 

must be positive. Arguing inductively, we see that every positive 

(or null) clause can be produced by a chain of resolutions such 

that one of the two clauses entering into each resolution is 

positive. Thus, in searching for a contradiction, we may 

restrict ourselves to forming resolvents from pairs of clauses, 

one of which is positive. 

This last remark leads to yet another observation. One 

principal difficulty which any resolution theorem prover must 

attempt to overcome is the tendency for clauses to accumulate 

rapidly during .the functioning of the algorithm, leading 

eventually to swamping of available memory. Given that we can 

proceed by resolving positive with mixed clauses exclusively, 

it is clear that, if we are willing to resolve a mixed clause 

against an entire sequence of positive clauses, we need not 

bother to accumulate new mixed clauses, but can accumulate 

positive clauses only. If no new positive clauses can be 
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~~~uinulated, it follows tliat the set 6f ciauses with which our 

rorithm is working is consistent. Resolution theorem proving 

by the use of this strategy was introduced by J. Robinson, cf. 

Automatic deduction with hyper-r~solution, Int. J. Comp. Math. 

1 (1965) pp. 227-234, and is called hyperresoZution. Note also 

that if a new positive clause can result by successive resolu

tions of a sequence of positive clauses- with a given mixed 

clause rri, it follows that all. the negative terms of m must 

eventually be eliminated. Thus we may attempt to match the 

n~gative terms of min any convenient order.· 

The following SETL algorithm embodies the theorem-proving 

strategy just outlined; note -that the preceding routine 

negfacts is used, and that this returns a set of pairs 

<nt,<negcZ,poscZ>> 

in which nt is a distinguished negative unit, while negcZ and 

poscZ a.re respectively the negft:::)ve an_d positive units of a 

clause containing this unit and obtained by factorization . 
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, I 

define hyperres(axioms,antitheorems); 

all= axioms+ antitheorems; 

setpos = {c £ all I c(l) eq n1}; 

setmixed = all - setpos; 

try: (Vmc E setmixed) /* try to form new positive clauses using me*/ 

work "" {me}; 

(while work ne n1 doing work= rebuild[nework];) 

nework = n1; 

(Vmct £ work) 

/* first form negative factors and match against 

positive clauses*/ 

nfacts = negfacts(mci); 

(Vnf £ nfacts,posct £ setpos,post £ posci(2) 

mogenu(nf(l) ,post) ne Q) 

<dist,ci> = nf; 

if resolvent(dist,post,c1,posci) is newres ~ <n1,ni> 

then print 'proof of contradiction obtained'; 

return; 

else if (hd newres) eq n1 then 

newres in newpos; 

else 

newres in nework; 

end if; 

end Vnf; 

/* next treat factors of positive clauses*/ 

negt = mci (1); 

(Vposc1 £ setpos) 

pfacts = negfacts<posc1(2) ,n1>; 

(Vpf E pfacts,nt E negt I mogenu(nt,pf(l)) ne Q) 

<dist,ptms> = pf; 

pc1 = <ni, hd ptms>; 

if resolvent(nt,dist,mc1,pc1) is newres 

eq <ni,n1> then 

print 'proof of contradiction obtained'; 

else if (hd newres) ~ n1 then 
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hewres in newpos; 

else 

newres in nework; 

end if; 

end Vpf; 

end Vposc£; 

/* now process unfactbred ciauses */ 

(Vposci £ Setpos,post £ posc£(2) ,nt £ negt I 
mogenu(post,nt) ne n) 

if resolvent(nt,post,mc£,posc£) is newres 

eq <n£,n£> then 

print 'proof of contradiction obtained'; 

return; 

else if hd newres eq n£ then 

newres in newpos; 

else 

newres in nework; 

end if; 

end Vposc £.; 

end time£; 

end while; 

simplify(newpos,setpos); 

if newpos ne· ni then 

setpos = setpos + newpos; 

go to try; 

end if; 

end Vmc; 

/* if this point is reached, no new positive .c.l,a'uses can be formed*/ 

print 'given set of clauses is consistent'; 

return; 

end hyperres; 
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Resolution theorem prover~ will often exhibit a kind of 

indecisiveness, forming a promising clause from a given clause c 

but then not pursuing the line of investigation opened up. Our 

next method, maximal clash resolution, seeks to overcome'this 

difficulty by performing resolution repeatedly on the terms of 

a given clause as often as possible .before a new clause is 

taken up. (Cf. J. Robinson, A review of automatic theorem proving, 

Proc. Symposia in Appl. Math. (1966), v. 19, American Mathematical 

Society, Providence, R. I. for the source of this approach.) 

In the SETL algorithms which follow, the following convention' 

is used to facilitate the processes that must be applied. As 

resolution is repeatedly applied to the terms derived from an 

original clause ci, the clauses which result are maintained 

as triples in the form 

<<ntmscl,ptmscl>,extneg,extpos> 

Here ntmscl are all the negative terms, and ptmscl all the 

positive terms, which derive from terms originally present in 

cl; while extneg are all those other negative terms, and 

extpos all those other positive terms, which derive from clauses 

against which cl has been matched for the forming of resolvents. 

The SETL algorithm for maximal clash resolution is as follows: 

definef maxclash(axioms,antitheorems); 

/* old, proved, and newer are assumed to be global*/ 

new= axioms+ antitheorems; old= new; proved= f; 
(while new ne ni) 

newer= maxresols[new]; 

if proved /*proved is a flag set by maxresols*/ then 

return~; 

end if; 

old= old+new; 

simplify(newer,old); new=newer; 

end while; 

/* if no new resolvents then*/ return f; 

ertd maxclash; 
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~ 0 ~inef maxresols(clatise); 

oZd,proved,newer,work,canextend, and map are assumed to be global*/ 

if proved then return ni;; /* bypass work if finished already*/ 

work= {<clause, ni, ni>}; maxs == ni; 

(while work ne ni) 

elt from work; 

<<ntmscl,ptmscl>, xtrneg, xtrpos> = elt; 

canextend = !_; 

vars = [+: x E ntmscl + ptmscl + xtrneg + xtrpos]vars,of (x); 

map= ni; 

(Vv E vars) map(v) = newat;; 

ntmscl = substin ntmscl; ptmscl = substin ptmscl; 

xtrneg = substin xtrneg; xtrpos = substin xtrpos; 

extnegcl(ntmscl,ptmscl,xtrneg,xtrpos,'n'eg'); 

extnegcl (ptmscl,ntmscl ,xtrpos ,xtrneg, 'pos'); 

if canextend then continue;;/* else*/ 

<ntmscl + xtrneg, ptmscl + xtrpos> is newresol in maxs; 

if newresol ~ <ni,ni> then 

proved = .:!:_; return ni; 

end i_f; 

end while; 

return maxs ;_ 

end ma.xresols; 

/* auxiliary substitution routine*/ 

definef substin x; 

/* map is assumed to be global*/ 

return[x] subst map; 

end substin; 

define extnegcl(ntmscl,ptmscl,extneg,extpos,switch); 

/* extends clash with negative terms of clause*/ 

/* map, work, canextend, and old are assumed to be global*/ 

( 'iJ oldcl E old) 

if switch~ 'neg' then <ont,opt> = oldcl; 

else <opt~ont> = oldcl;; 

('iJx E tandmaps (ntmscl ,opt.)) 
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/* tandmaps will produce a set of pairs <term,map>, 

each showing a map which may be used to produce a 

resolvent and the term which resolution will then 

eliminate; the code for tandmaps has been given above*/ 

<term,map> = x; 

ntmsc = substin ntmscl; 

ptmsc = substin ptmscl; 

extng = substin extneg; 

extp = substin extpos; 

ontl = substin ont; 

optl = substin'opt; 

ntmsc = ntmsc less term; 

extng = extng +. (ontl - ntmsc) less term; 

extp = optl + (extp - ptmsc) less term; 

if n 3at E ntmsc + extng I at E (ptmsc + extp) then 

can extend = t; 

if switch~ 'neg' then 

<<ntmsc,ptmsc>,extng,extp> in work; 

else 

<<ptmsc,ntmsc>,extp,extng> in work; 

end if switch; 

end if n 3; 

end 'rJx; 

end 'doldcl; 

return; 

end e:xtnegcl; 
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The partial "associativity" of the resolvent-forming process, 

which we have already alluded in our discussed of hyper

resolution, can be used in additional ways to standardize any 

tree T of resolutions which leads to a contradiction, thereby 

cutting down on the number of alternatives which a theorem

prover algorithm must explore. In particular, suppose that a 

contradictory sets of clauses is given, but that there exists 

a subset n such that s-n is consistent. Then, by using the 

above-mentioned partial "associativity" to force Tinto a 

pattern in which clauses are resolved against clauses of s 

(input clauses) as often as possible, it may be shown that 

we can always assume T to have a special form, which we may 

describe as follows (Cf. R. Anderson and W. Bledsoe, A Linear 

Format for Resolution with Merging and a New Technique for 

Establishing Completeness, J. ACM 17 (3), 1970, pp. 525-534, 

for a proof). 

Given two clauses c 1 and c 2 containing unifiable terms 

t 1 , ~t 2 , and given the map m which unifies these terms and 

the resolvent c produced frqm this unification, we call a term 

t of .c a merge term if it arises both as t 1 subst map and 

t 2 subst map, where t 1 is a term of c 1 and t 2 is a term of c 2 . 

Then, in the situation described above, T may be taken to 

consist of a sequence of resolutions, the i+l'st resolution 

producing a clause Ri+l from two clauses Ri and. Ci , and 

where the following assertions hold. 

i. Each c. is either ins (i.e., is one of an original 
l. 

'input' set of propositions) or is an R. with j < i; 
J 

ii. If Ci is not ins, then Ci contains a merge term t, 

and the term resolved upon to produce R.+l from R. and c. is t. 
l. l. . l. 

Moreover, every term of Ri+l is a term of an appropriately 

substituted version of R. (subsumption condition). 
l. 
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We note finally that the initial clause R0 may be an 

arbitrarily specified element of the initially given set 

of clauses. 

The assertions made in the.preceding paragraphs establish 

the completeness of the modified resolution procedure, which 

may be called the linear resolution method, embodied in the 

SETL algorithm below. Note that during the i-th iteration of 

this algorithm (we refer here to the outermost 'while' loop) 

the set curres represents all the resolvents R which might 

appear in the i-th place in a sequence of resolvents R0 , •.. ,Ri 

satisfying the above conditions and with R0 = c; except that 

if R would appear with lower index in.such a sequence we drop 

it from curres. .The set al.lres represents all .the resolv:ents 

R which could ever appear in such a sequence, only clauses 

which are properly subsumed by clauses subsequently appearing 

in curres being dropped. The set mergeres represents the 

cumulative total of all resolvents belonging to such a sequence 

and containing a merge term. 

The routine matchup2, modeled after the matchup routine 

used in the binary resolution algorithm given earlier, not 

only forms additional resolvents but notes those resolvents 

which are merge resolvent~; merge .resolvents are represented 

as pairs <<negmerge,posmerge>, cc>, where cc is a clause 

containing merge terms, negmerge is the set of the negative 

merge terms which c contains, and posmerge is the set of 

positive merge terms which c contains. The routine ca subsinst .cb 

tests to see whether there exists a map such that every term 

of ca is included among the terms of cb subst map. The technique 

is rather like that usedin the subsumes routine given earlier: 

All the variables of ca are redesignated as constants; a set 

of maps is initialized to consist of the identity map only. 

Then, proceeding through the terms t of ca successively, and 

for each map E maps , one tests to see if map can be extended 

to a map' in such a way as to make t agree 
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t.H th a t'errn of ab s:ubst map'. If a s'equence of extehsibh;s 

timate ly covering every term t of ca -can be made, true is 

returned; otherwise false . 

Here is the SETL algorithm. 

definef linres(axioms;antitheorems); 

/* mergeres, newer, ·cZ, and cZm are assUIJled 

to be global*/ 

input= axioms+ antitheorems; 

C = 3input; /* choose some starting clause*/ 

curres = {c}; allres = curres; 

merge res = ni; 

(while curres ne ni) 

/* as long as there are current resolvents */ 

('tlci E curres) 

<neg,pos> = ci; 

(Vitem E mergeres) 

<<negmrg,posmrg>,clm> = item; 

if matchup2(neg,posmrg,ci,clm) or matchup2(negmrg,pos,clm,ci')theh 

return t; 

end if; 

end 'tfitem; 

end "lei; 

elm= n; 
/* to control a detail of the processing by matchup2 ; 

note that matchup2 will define a new total set of resolvents, 

and a new set of merge resolvents */ 

(\/ci E allres) 

<neg,p0s>.= ci; 

(\fclin E ihput) 

<negih,posin> = clin; 

if matchup2(neg,posin,ci,clin) or matchup2(negin,pos,clin,ci)then 

return~; 

end if; 

end ~clin; 

end 'tfci; 
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simplify(newer,allres); 

allres = allres + newer; 

curres = newer; 

end while; 

/* if no surviving resolvents then*/ 

return!_; 

end linres; 

definef matchup2(neg,pos,ca,cb); 

/* forms resolvents and notes merge resolvents */ 

/* note use of subroutine tandmaps given previously*/ 

/* mergeres, newer, cl, and elm are assumed to be global */ 

(Vx E tandmaps(neg,pos)) 

<tmx,mpx> = x; 

newres = <ca(l) subst mapx less tmx is nl 

+ (chH) subst mapx is n2), 

cb(2) subst mapx less tmx is pl+ (ca(2} subst mapx is p2>; 

if newres ~ <ni, nl> then return~;; 

if n elm~ n /* so that not matching an input clause 

but an old merge resolvent*/ then 

if ~(newres subsinst elm) then continue;; 

end if; /*else*/ 

newres in newer; 

mergeparts = <nl * n2, pl* p2>; 

if mergeparts ne <nl,ni> then 

mergeres = mer9=reswith <mergeparts,newres>; 

end if; 

end 'f/x; 

return!_; 

end matchup2; 
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~ 0 f inef ca subs.inst· cb; 
determines whether there exists a map such that every term of ca 

is included among the terms of cb subst map*/ 

varsa = [+: t E ca(l) + ca(2)] varsof(t); 

makconst = {<x,{x}>, x E varsa}; 

<neg a ,posa> = < [ca,( 1) ] subst makconst, [ ca ( 2) ] sub st makconst>; 

maps= {nt}; /* start with set consisting of identity map only*/ 

<negb,posb> = cb; 

(\fta E nega) 

if extend2(maps;ta,negb) 

end \fta; 

(\ftb E posa) 

is maps en nt then return f·· =..:;;;L. _I I 

if extend2(maps,tb,posb) is maps~ nt then return!;; 

end \f tb; 

/* if arrive at this point then*/ return t; 

end substinst; 

defirtef extend2(maps,term,termset); 

/* auxiliary routine which tests to see if by extending some 

, map E mcips to a newmap, term can be identified with an element 

element of termset subst map subst newmap */ 

extensions= nt; 

( \frn E maps, t E termset) 

if. mogenu(t subst m, term) is addition ne n then 

addition+ min extensions; 

end if; 

end \fro; 

return extensions; 

end extend2; 
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D. Loveland has given a theorem-proving algorithm rather 

closely related to the linear resolution method discussed just 

above; Loveland calls his procedure model elimination. 

(See Loveland, A simplified format for the model elimination 

theorem-proving .procedure, J. ACM v. 16, pp. 349-363 (1969) .) 

Like the linear resolution method just described, model elimina

tion forms resolvents using input clauses whenever possible. 

The 'merge resolvent' case arising in the preceding algorithm 

is handled somewhat differently, however. The technique used 

is as follows. As resolvents are formed, a partial record of 

their parentage is kept. Resolvents are in fact maintained as 

sequences t 1 , ... ,tn of units (Loveland calls these sequences 

'chains'). Certain of the units in a sequence are specially 

flagged. A sequence corresponds, in the more customary resolu

tion theorem provers, to a clause formed by a succession of 

resolutions;.flagged units are those which resolution would have 

eliminated. In Loveland's procedure., these uni ts are kept (but 

specially marked) so as to permit the subsequent elimination of 

additional units by a logical equivalent of the 'factoring' 

process applied in conventional resolution theorem provers. 

It is not hard to see that if resolvents are kept in this form 

~he follow~ng three processes must be applied: 

1. Extension (Corresponding to simple resolution). Take a 

sequence t 1 , ... ,tn whose last unit is unflagged. Find an 

input clause c and a unit tin c, having negativity opposite 

to that of tn, and such that t and tn can be unified by a map m. 

Apply the map m to all the terms t 1 , ... ,tn and to all the terms 
I I 

of c, thus obtaining a new sequence t 1 , ... ,tn and a new clause 

c'. Eliminate t map m from c' and append the remaining units 
I I I 

of c to t 1 , ..• ,t; flag t. n n 
2. Reduction (Corresponding to factoring). If a sequence 

t 1 , ... ,tn contains a flagged unit tj which is followed by an 

unflagged unit tk of opposite negativity, and if there exists 

a map m which unifies tj and~ , then apply m to all the units 

of t 1 , ... ,tn , and drop the k-th unit of the result. 
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3. Contractj,.on (Dr.opping terms no l,onger needed). If a 

1uence ends with a flagged unit, drop this unit. 

Process 3 should be applied when possible; if this is not• 

possible, th~n process 2; otherwise process 1. A contradiction 

is represented by a sequence of length zero. A sequence 

containing a flagged upit identical (and in particular having 

the same negativity) to a unit, flagged or unflagged, standing 

to its right represents a resolvent into whose formation a 

tautologous clause has entered; such a sequence may therefore 

be ignored. A sequence containing two flagged identical units 

of opposite negativity represents a resolvent into whose forma

tion a clause with duplicate literals has entered and may 

therefore·be ignored also. Finally, a sequence containing two 

unflagged identical terms of opposite negativity between flagged 

units comes from a tautology, and may be ignored for this 

reason. 

In the following SETL algorithm, the 'sequences' spoken of 

above will be represented as sequences of triples 

<unit,posneg,flag> 

where posneg is t if the unit is to be .considered as unnegated, 

f otherwise; flag is t if the unit is to be considered as 

flagged, f otherwise. 

In our algorithm, the following macro will be used when a 

mapping map which unifies two terms of opposite negativity 

has been discovered, and a new sequence of terms must be built 

by appending sets mapneg of new negative and mappos of new 

positive terms to an old sequences: 

macro buildnewseq; 

newseq = [+: s (y) E seq] <<hd s subst map> + U, s> 

newseq(#seq) (3) = t /* 'flag' final unit of sequence*/ 

('d ut E mapneg) newseq(#newseq+l) = <ut,f,f>;; 

(\Jut E mappos) newseq(#newseq+l) = <ut,t,f>;; 

if trim(newseq) then 

return!_; 

else if~ ignore then 

newseq in newchains; 

end if; 

endm buildnewseq; 
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definef modlim(axio,ns,antitheorems); 

/* ignore is assumed to be global*/ 

all= axioms+ antitheorems; chains= ni; 

(Vx E antitheorems) <neg,pos> = rebuild(x); 

seq= [+: nu E neg]<<nu,!,!>> orm nult; 

(Vpu E pos) seq(#seq+l) = <pu,!,!>;; 

seq in chains; 

end Vx; 

(while chains ne ni) 

/* first apply reduction process to produce additional chains*/ 

redchains = chains; 

(while redchains ne ni) 

newred = ni; 

(Vseq E redchains, s(j) E seq, j < k -2 #seq I 
s(3) and n seq(k) (3) and s(2) ne seq(k) (2) 

and mogenu (hd s, hd seq (k) · is map ne r2) 

newseq=[+: 12£2 j]<<hd seq(i)subst map>+ ti seq(£)>; 

utm = hd s subst map; 

(j < Vi 2 #seq) 

t =seq(£); 

utlm = hd t subst map; 

if utlm ~ utm_ and n t(3) and s(2) ne t(2) then 

continue; 

end if; 

/*else*/ newseq(#newseq+l) = <utlm>+ tt t; 
end Vi; 

if trim(newseq) then return !ii /*else*/ 

if n ignore /* ignore is global and set by trim*/then 

newseq in chains; 

end Vseq; 

end if; 

newseq in newred; 

redchains = newred; 

end while redchains; 

. /* now apply· extension process * / 

(~seq E chains, incl E all) 

newchains - nt; ·-
if seq(#seq) (2) then go to postlast;; 

-394-



/* else negative unit is last*/ 

(VpuE inc1(2}lmogenu(pu, hd seq(#seq}} is map ne Q} 

<mapneg,mappos> = 

< [incl (1)] subst ~ap, [incl (2)] subst map 

less (pu subst map}>;. 

buildnewseq; 

end Vpu; /* completes treatment of trailing negative unit; 

treatment of trailing positive unit follows*/ 

[poslast:] (Vnu E hd incllmogenu(nu,hd se:q(#seq}}} is map ne Q} 

<mapneg, mapos > = 

< [incl (1) l subst map less (nu subst map}, 

(inGl (2).] subst map>; 

buildnewseq; 

end Vnu; 

end Vseq; 

chains =·newchains; 

enq while chains; 

/* if reach this point then * / retur·n !_; 

end modlim; 

definef trim(seq}; 

/* ignore is assumed to be global*/ 

(while seq ( #seq} (3) ) 

seq(#seq) = Q; 

if seq ~ nul t then return .!:; ; 
end while; 

/* now check for various conditions of redundancy*/ 

ignore = !_; 

if 1 ~ 3j < #seq, j < k ~ #seq I 
seq(j} (3) and seq( j) (1:2) ~ seq(k} (1:2) 

or (seq(j} (3) and seq(k} (3) and hd seq(j} ~ hd seq(k} 

and seq(j} (2) ne seq(k} (2)) then 

ignore = t; 

return !_; 

if; 
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if 1 .:_ 3 j .:_ #seq, j<k.:_#seq, k<R-.:_#seq, R-.:_m.:_#seq-I 
seq.(j) (3) and seq(m)' (3) and seq(k) (1) ~ seq(R-) (1) 

and seq(k) (2) ne seq(R-) (2) and n seq(k) (3) and~ seq(R-) (3)then 

ignore = .:!:_; 

return!_; 

end if; 

/* if not redundant, then substitute new variables before return*/ 

vars= [+: s{j) E seq] varsof(hd s); map= nR-; 

(Vv E vars) map(v) = newat;; 

seq=[+: s(j) E seq] <<(hd s) subst inap> + tR- s>; 

return. f; 

end trim; 
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n Some artificial intelligence al~orithms. 

Two-person competitive board ~ames ~r~ often objects of study 

in investigatiops of artificial intelligence. The small, self-

enclosed world of such a game -is a maximally simple 

setting in which to analyze the action of algorithms which detect 

logical patterns anq cpooseeffectively among alternatives. Such 

games fall into two classes, the deterministic, in which the board 

pos~tion evolves strictly in response to alternating moves of the 

two piayer~; and the chance games, in which the poard position is 

also affected by some random+y varying quantities (for example, 

by dice or cards). We consider deterministic games. Any such 

game will ~t any time be in a given board position. Each 

position will define a set of possible moves; and a given move, 

if chosen, will bring the board to some well-defined new position. 

The two players will choose moves alternately_, always from a 

set possmoves(posn) determined by the current board position posn. 

The rules of the game will define a set of terminai positions, and 

associate a payoff (or prize) value with each such position. 

We define the value of a given nonterminal position posn, 

to the player P having the move in that position, to be the maximum 

payoff which he can secure, in spite o:j: his opponent's best efforts, 

by choosing his future ~oves· correctly starting from 

posn. This is of course equal to the amount which his opponent 

Q is certain to lose, if play starts in the position posn, P having 

the·move and being assumed to play perfectly'. Call this quantity 

value(posn), and let newposn(posn,m) be the new position which 

will result if the (legal) move m is executed in position posn. 

If P chooses move~, then he will arrive at a position from which 

Q's payoff (assuming perfect play on both sides) is 

(1) v~lue(newposn(posn,m)) , 

and hence a position in which his own payoff (on the same assump

tion) will be 

(2) -value~newposn(posn,m)) 

best new position available to P (after the move which he must 

make) is of course that in which (2) is maximized; and the maximum 

of (2) cleaily is the value to P of the position posn from which 
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he mu~t move. Thus we have 

(3) value(posn) = max (-value(newposn(posn,m))) . 
mEpossmoves(posn) 

The position-value function value is determined by equation (3) 

and by the condition that in each terminal position value (posn) 

is the payoff (by the player who has just moved,to his opponent) 

determined by the rules of the game being considered. 

\ It is plain from the preceding discussion that, when it is 

his 'turn to move, player P should choose a move m wh.ich maximizes 

the expression (2); any such move will be as advantageous to him 

as any other. This rather simple rule is a universal recipe for 

perfect play in any board game whatsoever. It is however generally 

impractical to apply, since,for most interesting games,no rapid 

scheme for the calculation of the value function is known, and 

because complete tables of this function would be very large. 

In checkers, for example, the number of logically possible positions 

is approximately 10 19 . The way around this difficulty often 

adopted in game-playing programs, is as follows. One chooses some 

easily calculated function approxvalue(posn) which is known(or 

suspected) from experience with a game under investigation to be 

a monotone increasing function of the optimal strategy-determining 

function.value. In the game of chess, for example, this would be an 

artfully devised combination of scores assigned to such factors 

as pieces remaining on the board, mobility of pieces, center 

control, pawn configuration, and so forth. Putting 

( 4) value 0 (posn) = approxvalue(posn) , 

and using the recursive definition 

(5) valued(posn) = max (-valued_ 1 (newposn(posn,m))) 
mEpossmoves(posn) 

one then develops a better (cf. (3)) approxim.ation to the true value 

function. Finally, one chooses that move m for which 

( 6) -valued_ 1 (newposn(posn,m)) 

is a maximum. 
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All this is shown in the following straithtforward SETL 

jori thm, in. ·which the function valued calculates the most 

advantageous move at the same time· that it accomplishes the 

calculation (5). The parameter maxdepth is the d of (5); 

the trivial funct_ion bestmove, given first, returns the 

recommended move as its result. Note the use of the 

function orm defined on p. 216. 

scope best; global depth, move, maxdepth, approxvalue, . 

possmoves, newposn; 

owns bestmove(depth); 

definef bestmove(posn,maxdepth); 

depth = 0; 

posvalue = valued(posn); /* this function call establishes 

the value of move *I 
return move ; 

end bestmove; 

end best; 

definef valued(posn); 

include best*; 

if depths maxdepth then return approxvalue(posn) ;; 

bestilnow = Q; 

('dm E possmoves(posn)) 

depth= depth+ l; 

valmove = valued(newposn(posn,m)); 

depth= depth-1;• 

if valmove s_! (bestilnow orrn (valmove-1)) 

/* since n represents 'minus infinity' */ 

.then bestilnow = valmove; 

if depths 1 then/* save best move*/ move= m;; 

end if valmove; 

end 'dm; 

return bestilnow; 

--.:1 valued; 
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The algorithm shown above can be improved 

(by using the so-called' (a,S)-cutoff'). 

of final estimated value at least v (to 

in a significant way 

If a position p 1 
me) is reached 

from an initial position Po via a position p 2 in which 

my oponent has the move and which is of final estimated value 

at least u (to my opponent) and if -v < u, then we can be sure 

that p
1 

is not relevant to the choice of move in position Po· 
Indeed, since at the intermediate position p 2 my opponent has 

a line of play yielding him an estimated outcome u, he will not 

allow himself to be pushed from p 2 into a position p 1 of estimated 

value to him certainly not exceeding -v. For the same reason, the 

potential line of play p 0 ... p 2 ... ~l may be ignored in 

calculating valued(p
0

). It follows that examination of positions 

developing from p
1 

can be broken off as soon as an estimated value 

in excess of -u is ascribed to p 1 . 

The modifications in our earlier algorithms necessary to 

incorporate this important refinement are shown below. Note that 

valued becomes a function of three parameters. The first of 

these parameters is a board position. The second parameter is the 

maximum value which the player having the move can hope for (given 

other options open to his opponent on the path leading to a given 

position); this is essentially the quantity -u of the preceding 

remarks. The third parameter, carried so that it can be passea 

down a level, is the value which the player having the move is 

sure of attaining (in view of already-explored options open to him 

along the path to a given position). Initially, the revised_ 

procedure valued should be called with second parameter equal to +00 

and third parameter equal to - 00 ; in the SETL code which now follows, 

these extreme values are instead represented by n. 

scope best; global depth;move,maxdepth, 

approxvalue, possmoves, newposn; owns bestmove(depth); 

definef be.stmove(.posn,maxdepth); /* revised bestmove function */ 
depth = 0.; 

posvalue = valued(posn,n,n); /* this function call establishes 

the value of move*/ 

return move ; 

end bestmove; 

end best; 
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definef-va).ued(posn,myme2x,~y~in); 

lude l;>est*; 

if depth~ maxdepth then return approxvaiue(posn) ;, 

bestilnow = mymin; 

(Vm E possmoves(posp)) 

depth = depth+ 1; 

valmove = -valued(newposn(posn,m), -bestilnow, -mymax); 

depth= depth-1; 

if valmove ~ (mymax ~ (valmove+l)) 

/* since here n represents 'plus infinitx' */ 

then return valmove;; 

if valmove ~ (bestilnow orm (valmove-1)) 

/* since here n represents 'minus infinity' */ 

then bestilnow = valmove; 

·if depth~ 1 then/* save best move*/ move= 

end if valmove; 

end '<Im; 

return bestilnow; 

end valued; 

m •. I I 

The relative advantage of the modified over the unmodified 

algorithm can be seen most readily by_ considering the ideal case 

in which approxvaZ.ue (posn) is -identical with the true game value 

function detined by (3}, and in which the iteration over 

possmoves(posn) in the algorithms shown above always examines the 

move m for which valued(newposn(posn,m)) takes on its maximum 

value before any other node is examined. It can be shown in this 

case that, if called with depth parameter d to a tree in which 

T moves are possible in every position, the first algorithm will 

examine approximately Td nodes, whereas the second algorithm 

will examine approximately Td/ 2 nodes. Thus, in this most 

advantageo~s case, the improved algorithm will allow one to look 

ahead twice as mapy levels with given·computational effort as will 

the unimproved algorithm. 

This suggests a procedure in which we 



make a preliminary 'shallow' estimate of the relative advantage 

of various moves, and then sort the moves into order of decreas

ing estimated advantage before proceeding with the sysiematic 

investigation of their consequences. We are thus led to the following 

further modification of the move-choice and of the recursive 

position-evaluating functions. In the algorithms shown below 

sort designates a procedure use·d to sort moves into order of 

decreasing estimated advantage (any one of the fast sort procedures 

described in Item 14, Section SB may be used), and in which 

the parameter surveydepth determines the depth of 

the preliminary survey made to estimate move desirability. 

Note that in the algorithms which follow this preliminary survey 

is omitted whenever one deals with tree nodes lying within 

distance surveydepth of the stated maximum depth of investiga-

tion of moves. 

scope best; global depth, move, maxdepth, surveydepth, 

approxvalue, possmoves, newposn; owns bestmove(depth); 

definef bestmove(posn,maxdepth,surveydepth); /* second revision*/ 

depth = 0; 

posvalue = valued(posn,Q,Q); /* this function call establishes 

the value of move *I 
return move ; 

end bes tmove; 

end best; 

definef valued(posn,mymax,mymin); 

include best*; 

if depth ~ maxdepth then return approxvalue (posn_) ; ; 

if depth g!_ (maxdepth-surveydepth) or surveydepth ~ 0 then 

/* don't make preliminary survey; establish arbitrary 

order of moves*/ 

orderrnoves = I+: m E possmoves(posn)]<m>; 

else 
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/* reset depth parameter to force survey to specified depth*/ 

keepdepth = depth; depth=maxdepth-surveydepth+l; 

surveytupl=[+: mEpossmoves(posn)]«m,valued(newposn(posn,m) ,n,n)>>; 

depth= keepdepth; /* restore true depth value*/ 

/* now sort surveytupZ in order of decreasing values 

of first components of entries*/ 

sort surveytupl; /* the routine sort will not be shown*/ 

ordermoves = [+: c(n) E surveytupl]<hd c>; 

end if deptn.; 

/* now make finer estimate of position value*/ 

bestilnow = mymin; 

(Vm(n) E ordermoves) 

depth = depth+ 1; 

valmove = -valued(newposn(posn,m) ,-bestilnow,-mymax); 

depth= depth-1; 

if valmove g_,! (mymax orm (valmove+l)) 

/* since here a represents _'plus infinity' */ 

then return valmove;; 

if valmove ~ (bestilnow orm (valmove-1)) 

/* since here a represents 'minus infinity' */ 

then bestilnow = valmove; 

if depth~ l then/* save best move*/ move= 

end if vali:nove; 

end Vm; 

return bestilnow; 

end valued; 

m •• , , 

If the estimation function approxvalue(posn) supplied to the 

preceding-algorithm is a relatively perfect approximation to the true 

position-value• function associated with a game, and if T moves are 

possible in each position, then the algorithm shown just above 

will be able to look ahead d moves in a time roughly proportional 

to T(d+sd)/ 2 , sd denoting the surveydepth value that is used. 

The better the approximation function, the more reasonable it is 

rn use a surveydepth value close to 1. However, such good 

>roximations are rarely available for the most interesting games. 
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A well thought out position value estimation function will 

measure the (largely 'strategic') value of stable positions 

reasonably well, but will not respond with equal sensitivity to 

the tactical aspects of highly 'dynamic' positions in wliichl · ',.;_ · l, ' 

strong 'threats' play important roles. Thus it can be of 

advantage to classify positions into 'static' and 'dynamic' 

categories, and to be more careful in calculating the value of 

a dynamic than of a static position. We may consider a position 

to be dynamic if it allows the player having the move to increase 

the estimated value of his position substantially, or if only 

a very few moves which don't diminish the estimated value 

of his position substantially are available to this player. 

As a final algorithm in our series of move-choice procedures, 

we give a version of the bestmove/valued pair which looks more 

deeply into dynamic than into static positions. The following 

remarks will aid in the comprehension of these revised algorithms. 

i. Since valued, as revised, manipulates the quantities 

depth and maxdepth in a manner which is inherently complex, 

these quantities appear as explicit parameters of the recursive 

valued procedure; in the preceding versions of this procedure, 

these quantities were manipulated only in very simple ways, 

allowing them to be (unstacked) global variables instead~ 

ii. In the algorithm, shown below, as in the immediately 

preceding algorithm, a preliminary survey of positions is made 

to estimate move desirability, allowing deeper examination of 

moves to be made in order of decreasing desirability. The parameter 

surveydepth shown below is a mapping, giving the depth of this 

preliminary survey as a function of the depth of tree search already 

attained. Naturally, the deeper we have already come in examining 

developments from a given position, the less additional search 

depth we will be able or willing to tolerate. 

iii. Similarly, the parameter biggermax is a mapping giving 

the revised depth to which our algorithm will proceed when it 

encounters active positions at what would normally be the maximum 

depth of move-tree examination. Suppose, for example, that we take 

maxdepth = 4; 

and 
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biggermax = {<4,6>, <6,7>}; 

this case, the move tree developing from a given position will 

normally be examined to a depth of 4 moves. However, we will 

search two levels below any active position found at depth 4, 

and then again one level below any active position encountered 

at depth 6, before cutting off our search at an absolute 

maximum depth of 7. 

iv. A boolean-valued function active(posn) is used in the 

following algorithm to separate dynamic from static positions. 

We will use two global parameters gain andminalternatives to 

characterize 'dynamic' or 'active' positions. A position posn 

in which there exists a move m such that 

(approxvalue(posn) + gain) le (-approxvalue(newposn(posn,m))) 

is considered to be dynamic. A position posn in which there exist 

less than minalternatives moves m such that 

(approxvalue(posn)- gain) ~ (-approxvalue(newposn(posn,m))) 

is also considered to be dynamic. Code for a simple routine 

active(posn) incorporating these conventions is given below. 

The explanations given above should make it easy to read our 

final revised move-choice algorithm, which is as follows. 

scope best; global move, maxdepth, biggermax, surveydepth, 

approxvalue, possmoves, newposn, gain; 

definef bestmove(posn,maxdepth,biggermax,surveydepth); 

/* third revision of game playing program*/ 

dpth = O; posvalue = valued(posn,n,n,dpth,maxdepth); 

/* the preceding function call establishes the value of move*/ 

return move; 

end bestmove; 

end best; 

definef valued(posn,mymax,mymin,depth,maxdepth); 
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include best*; 

curmaxdepth = maxdepth; 

if dept~~ c~rma~depth thep 

/* check to see if active position calls for increase 

in current maxdepth */ 

if n active(posn)_ or biggermax(maxdepth) ~ n then 

/* no increase in maxdepth */ return approxvalue(posn) ;; 

/* else, if the position is active and maxdepth can be increased* 

curmaxdepth = biggermax(maxdepth); 

end if depth; 

/* establish depth of preliminary survey */sdepth=surveydepth(depth); 

if depth ~ (curmaxdepth- sdepth') .2E_ sdepth ~ 0 then 

/* no preliminary survey; establish arbitrary order of moves*/ 

ordermoves = [+: m E possmoves(posn)]<m>; 

else/* carry out preliminary survey*/ 

surveytupl = [+: n E possmoves(posn)]<< m,valued(newposn(posn,m), 

n,n,curmaxdepth-sdepth+l,curmaxdepth) >>; 

/* now sort surveytupL in order of decreasing values of 

first components of entries*/ 

sort surveytupl; /* the routine sort will not be shown*/ 

ordermoves = [+: c(n) E surveytupl] <hd c>; 

end if depth; 

/* now make finer estimate of position value*/ 

bestilnow = mymin; 

(Vm(n) E ordermoves) 

valmove = -valued(newposn(posn,m) ,-bestilnow,-mymax,depth+l, 

curmaxdepth); 

if valmove .9.!:_ (mymax orm (valmove+l)) 

/* since here n represents 'plus infinity' */ 

then return valrnove;; 

if valmove g!_ (bestilnow orm (valmove-1)-) 

/* since here n represents 'minus infinity' */ 

then bestilnow = valmove; 

if depth~ 1 then/* save best move*/ move= m;; 

· end if valmove; 

end \tm; 

return bestilnow; 
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definef active(posn); 

ilude best (possmoves, approxvalue, gain) ; 

if 3m E possmoves(posn) I 
(approxvalue(posn)+gain) le (-approxvalue(newposn(posn,m))) 

then return_!:; 

else if (#{m E possmoves(posn) I 
(approxvalue (posn) -gain) ~ (-approxvalue {newposn ( posn ,m))}) 

lt' minalternatives 

then re turn · ! ; 
else return !_;; 

end active; 

Still further improvements, valuable for important classes 

of games, can be made in these fundamental move-choosing rout'ines. 

If one has an approximate value function which will very probably 

not misrepresent the true posi tion.-value function by more than 

an amount k known in advance, then moves m for which 

(-approxvalue(newposn(posn,m))) + (2*k) lt 

[max: mEpossmoves(posn)] (-approxvalue(newposn(posn,m))) 

need not be examined~ Still better, if one has available a 'move 

generator' which, given a position posn, will produce, in order, 

a sequence of moves in which moves of high value will always occur 

early, one can call upon this generator to produce a selection of 

moves to explore, and can completely ignore all other elements of 

the set p9ssmoves(posn). However, we refrain from exploring the 

algorithms suggested by these reflections, and turn now to discuss 

artificial intelligence algorithms of another sort. 

Many of the tasks addressed in artificial intelligence studies 

may be modeled as graph-searches. In a graph searching problem, 

one has a set N of nodes (which may be an infinite set of which 

a larger and larger part is constructed as the search proceeds), 

and for each node n, a mapping cesor(n) determining the (always 

finite) set of nodes which can be reached in one step from n. 

-407-



Certain nodes n are distinguished as goal nodes. of the search. 

These are distinguished by a boolean function isgoal, given 

a priori, such that isgoal(n) ~ t if and only if n is a 

goal- node. 

A graph-search problem will often have useful properties of 

symmetry. Such symmetries exist if there is some group of trans

formations of the graph into itself which maps goal nodes into 

goal nodes. In the algorithms given below, such symmetry groups 

will be represent'ed by a boolean function.similar(n
1

,n
2

J of 

two nodes, which we assume to have the value~ if and only if 

n 1 can be mapped into n 2 by an element of the symmetry group. 

Note that, if similar(n 1 ,n 2 ) ~~'then any path from n 1 to an 

eventual goal node is matched by a corresponding path from n 2 
to some other goal node. Thus, once a path from the initial point 

init to n 1 has been constructed, the existence of paths from init 

to n 2 becomes a less interesting question, which in some cases 

may be ignored. 

On occasion, some type of cost will be associated with the 

edges of a graph to be searched; in this case, one may wish to find 

a path of minimum cost from an initially given node to a graph 

node. In the algorithms which follow, the cost of traversing 

an edge n 1 ,n 2 is represented by a two-parameter function 

cost(n
1

,n 2 ). 

If a graph search is not to blunder in undesirably random 

fashion about the nodes of a graph, it must be guided by some 

heuristic principle allowing steps toward a goal node to be selected 

preferentially above other possible steps. For this reason, we 

assume that a function heuristicvalue(n), estimating the expected 

minimal cost of a path from any node n to a goal node, is given 

a priori. 

We shall shortly give SETL code for a general heuristic graph

search algorithm. The code is broken into three principal sub~ 

routines heuristicsearch, addnewnode, and nextexpand. The first 

of these is a master search routine, which will return a path from 

init to a goal node if it can find one, and return n if it 

definitely fails. The routine addnewnode handles the addition of 

a new node to the collection of nodes known to be reachable from init. 
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~•-e routine ne:ctexpand determines the node to be expanded next 

ring the process of search; it uses a very simple auxiliary 

function betterthan whose details reflect the particular search 

strategy adopted. A tuple called ranking is used to keep nodes 

in an order allowing rapid and efficient choice of the next node 

to be expanded; this data object is accessed both by the nextexpand 

routine and by an auxiliary routine called repair. The approach 

employed is as follows. Nodes still to be expanded occur as 

components of ranking, their arrangement having the so-called 

'heap' property (which is also exploited in the 'heapsort' 

procedure, cf. Item 14, Section 5B). That is, the item in 

position n of the ranking tuple is guaranteed to outrank the 

items in positions 2n and 2n+l. This implies that the most 

desirable node to expand is available in position 1 of the ranking 

tuple. Moreover, this particular 'heap' property of an arrangement 

is easy to maintain as new nodes are added and old nodes deleted 

and processed. If k nodes are present, both t~e insertion of 

a new node into proper position in the ran.king tuple and the 

deletion of an old node require only log• k steps. 

It deserves to be remarked that the scheme explained in the 

preceding paragraph is of general application. It can be found 

useful in any situation in which numerous generated items must 

be retained in an order allowing the 'best' of them to be 

repeatedly selected for processing. Like the more general· 

balanced tree scheme described in volume 3 of Knuth's treatise, 

it is considerably more efficient than either maintaining an 

unordered collection and searching it repeatedly for a best item, 

or maintaining a completely sorted collection and rearranging it 

with each insertion. An example of another program in which 

the 'heap' scheme descri~ed in the preceding paragraph or the 

'balanced tree' scheme described by Knuth could have been 

employed is furnished by the Huffman tree building routine of 

section 5; if a very large Huffman tree is to be built, use of 

one of these devices can achieve substantial advantage. 

The main heuristicsearch routine is as follows: 
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scope heuristic; global nodes, rank, ranking, parent, children, 

costohere, hvalue, cost, . similar; 

definef heuristicsearch(init,isgoal,cesor,similar, 

heuristicvalue, cost); 

parent= nt; children= nQ.; /*node descent and ancestry mappings*/ 

nodes= {init}; /*total collection of nodes generated*/ 

ranking= <init>; /* ordered collection of nodes generated*/ 

/* auxiliary vector used to select best node to expand*/ 

rank= nQ,; rank(init) = l; 

/* rank(nd) ne n characterizes nodes to be processed*/ 

costohere = nQ.; costohere(init) = O; 

/* cost of reaching initial node is.zero*/ 

hvalue = nt; 

/* mapping giving precalculated heuristic value of nodes*/ 

(while nextexpand(ranking) is newnode ne n) 

/* main search loop*/ 

if isgoal(newnode) then/* reconstruct path*/ 

path= <newnode>; 

(while parent(newnode) is newnode ne n) 

path= <newnode> + path; 

end while; 

return path; 

end if; 

/* otherwise if goal not reached*/ 

(Vn E cesor(newnode)) addnewnode(n,newnode) ;; 

end while; 

/* if no more nodes can be constructed then*/ return n; 
end heuristicsearch; 

end heuristic; 

define addnewnode(child,parentnd); 

include heuristic(cost,similar,children,costohere,nodes,rank, 

ranking); 

costochild = costohere(parentnd) + cost(parentnd,child); 

/* now check to see if child has already been encountered*/ 
I 
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~ ~ child !!, E nodes then go to newchild;; 

costochild lt costohere(child) then 

/* we have -found a lower cost path to child. we therefore 

modify its recorded cost and parentage*/ 

oldparent = parent(child); 

children(oldparent) = children(oldparent) less child; 

install(child,parentnd,costochild); 

if rank(child) is rnk ne O then 

repair(ranking,rnk,f), /* i signals no deletion*/ 

/* now recursively reprocess the descendants of child*/ 

(~n E children(child) orm nt) addnewnode(n,child) ,; 

end if rank; 

end if costochild; 

return;/* note that new paths to old nodes will be ignored 

unless. they have cost advantages * / 

newchild: /* the chi'ld node is new. test it for similarity 

with an old node*/ 

if 3n E nodes. I simil~r(n,child) then 

/* drop more 'costly' of child and n */ 

if costochild lt costohere(n) then 

nodes= nodes with child; 

oldparent = parent(n), 

children(oldparent) = children(oldparent) less n;. 

install(child,parentnd,costochild); 

ranking(#ranking+l) = child; 

repair(#ranking, f); /* i signals no deletion*/ 

/* remove n and its descendants*/ 

removedescs(n); 

end if costochild; 

else/* case in which new node is not similar to any 

existing node*/ 

install(child,parentnd,costochild); 

nodes= nodes with child; 

ranking(#ranking+l) = child; 

~epair( #ranking, f); /* f signals no deletion*/ 
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end if 3;. 

return;/* note that nodes similar to old nodes will be ignor 

unless paths to them having cost advantages are found*/ 

end addnewnode; 

define install(child,parentnd,costchild }; 

/* auxiliary routine establishing child as a descendant of parentnd* 

include heuristic(costohere, parent, children}; 

cost9here(child} = cos~child; 

parent(child} = parentnd; 

children(parentnd} = children(parentnd) orm ni with child; 

return; 

end install; 

define 17emovedescs (pa.._·entnd) ; 

/* auxiliary routine removing the descendants of a given node, 

unto the uttermost generation*/ 

include heuristic(children,parent,nodes,rank,ranking, 

costohere) ; 

(Vn E children(parentnd) orrn ni) 

rernovedescs(n); 

end Vn; 

parent(parentnd) = Q; 

children(parentnd) = Q; 

costohere(parentnd} = ~; 

nodes= nodes less parentnd; 
if (rank (parentnd} · is rnk ne Q) then repai.r (rnk, t) ; ; 

/* t signals deletion1i"/ 
return; 

end; 

definef nextexpand(ranking); 

/* return first-ranked item and repair ranking*/ 

keep= ranking(l); 

if keep eq Q then return Q;; 

repair ( 1, t) ; 

return keep; 

end nextexpand; 

/* t signals deletion*/ 
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~-finef repair(n,deleteflag); 

routine to rearrange the items in the ranking vector after the 

n-th item is removed, while preserving the 'heap' property 

of this vector*/ 

/* if deZetefZag is true, position n in the ranking vector 

will be deleted*/ 

include heuristic(rank,ranking); 

if n deleteflag then go to arrange;; 

/* deleted element becomes unranked; remove it from rank*/ 

rank(ranking(n)). = n; 

/* replace deleted component by last component of ranking*/ 

ranking(n) = ranking(#ranking); ranking(#ranking) = n; 
/* now proceed to restore the 'heap' property of the ranking vector*/ 

arrange: posn = n; dval = ranking(n); 

flow dvalgtparent? 

interwithparent+ 

dvalgtparent, 

dvalltonedesc? 

interwithbiggerdesc+ quit, 

dvalgtparent; 

dvalgtparent:= if posn ~ 1 then f else 

betterthan(ranking(posn) ,ranking(posn/2)); 

interwithparent: oldposn = posn; 

<ranking(posn), ranking(posn/2) ,posn> 

= <ranking(posri/2),r~nking(posn) ,posn/2>; 

rank(ranking(oldposn)) = oldposn; 

dval 1 tonedesc: =if ( 2.*posn) gt #ranking then f 

else if(2*posn+l) g_!: #ranking then 

betterthan(~anking(2*posn) ,dval) 

else betterthan(ranking(2*posn) ,dval) 

or betterthan(ranking(2*posn+l) ,dval); 

interwithbiggerdesc: bposn = if(2*posn+l) s_! #ranking then 2*posn 

else if betterthan(ranking(2*posn),ranking(2*posn+l)) 

then 2*posn else 2*posn+l; 

oldposn = posn; 

<ranking(posn) ,ranking(bposn) ,posn> = 

<ranking(bposn) ,ranking(posn) ,bposn>; 

rank(ranking(oldposn)) = oldposn; 
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/* now note the rank to which dval has moved*/ 

rank (dval) = posn;. 

return; 

end repair; r •• 

The order in which nodes are chosen for expansion by the above 

algorithm depends on the precise form of the-.bette1'than function 

called by the 1'epai1' routine. By varying the form of this 

function, we vary the heuristic controlling our pattern of 

search. The following versions of the bette1'than routine are 

often used: 

definef betterthan(nl,n2); 

include heuristic(hvalue,costohere); 

return(hvalue(nl) + costohere(nl)) lt (hvalue(n2)+costohere(n2)); 

end betterthan; 

This form of the bette1'than function gives a standard heuristic 

search, called the A*-algorithm in Nilsson's -well known book on 

artificial intelligence. (Often the cost function is given 

simply by cost (nl ,n2) = 1.) The 'equal cost search' (which, if 

the cost function is constant, becomes the so-called breadth-first 

search) is obtained by takingheuristicvalue(nl) = 0, i.e., by 

dropping the hvalue terms out of the bette1'than routine shown above. 

If a graph to be searched is truly maze-like, i.e., if no 

heu1'isticvalue or similarity functions substantially aiding the 

search for a goal node is available, then the search algorithm 

given above reduces to a transitive closure procedure which 

essentially adds nodes and paths at random until a goal node 

happens to be found. Assuming for simplicity that the graph being 

searched is connected, and that it contains n nodes, of which a 

smaller number k are goal nodes, we must expect a collection of 

nodes roughly numbering n/k to be examined before a goal node is 

found. In such situations backwards-and-forwards searching, of 

which we shall now describe a special case, can have substantial 

advantage. Suppose, to be specific, that we are given a graph, 
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- starting node, and a single target node, and 

to find a path connecting the starting node 

We then simultaneously construct paths backward 

that our problem 

to the target node. 

from the target 

node and forwards from the starting node, looking for an inter

section. As our· search proceeds, we keep the group F of nodes 

reached along forward paths roug:ily equal in number to the group B 

of nodes reached along backward paths. 

The advantage of this tactic of search is shown by the follow

ing rough calculations. Let the graph being investigated consist 

of n nodes, and suppose that k 1 nodes of group F and k 2 nodes of 

group B have been constructed. Assuming that k 1 ,k 2 <<n, the 

probability that some one of the·nodes of group B also belongs 

to group F (thereby completing a path) is roughly k 2 · (k 1/n). 

The probability becomes substantial (say,~ 1/2) when 2k 1k 2 ~ n. 

With k 1 roughly equal to k 2 , a substantial probability that F 

and B intersect arises when .roughly ✓n nodes have been added 

to Fu B. If we use forward searching only, i.e., keep k2 fixed 

at 1, then n/2 nodes must be added to F before the probability 

that F intersects B becomes as large. 

In the following forward-backward path-search algorithm, 

which is of the type suggested by the preceding considerations, 

the graph to be searched is represented by a function cesor(n) 

defining the set of all nodes which can be reached in a single 

step from a given node n; we also suppose that a map pred(n) , 

defining the set of all nodes m from which n can be reached 

in a single step, is given. 

definef fbpathsearch(cesor,pred,init,targ); 

/* construction of path by forward and backward search*/ 

fset =· {init}; bset =· {targ}; 

parent= ni; /* parentage of nodes in fset and bset *I 
fnew = fset; bnew = bset; 

search: if (#fset) gt #bset then go to growb;; 

nd from fnew; 

newer= cesor(nd) - fset; 

-415-



growb: 

if 3 n E newer In E bset then /* path has been construct 0 rl* I 

fend= nd; bend= n; 

go to buildpath; 
end if; 
fnew = fnew+newer; fset= fset + newer; 
('ifn,E newer) parent(n) = nd;; 

if fnew s ni /*so that no path exists*/ then return n,; 
go to search; 

nd from bnew; 

newer= pred(nd) - fset; 

if 3m E newerjm E fset then /*path has been constructed*/ 

fend= m; bend= nd; 

go to buildpath; 
end if; 
bnew = bnew + newer; bset = bset+newer; 
('it~ E newer) parent(n) = nd;; 

if bnew s ni / so that no path exists*/ then return n;; 

go to search; 

buildpath: path= nult; 

(while fend ne n doing fend= parent(fend) ;) 

path= <fend>+ path; 

end while; 

(while bend ne n doing bend= parent(bend) ;) 

path= path+ <bend>; 

end while; 

return path; 

end fbpathsearch; 

Many other parts of the somewhat amorphous domain of artificial 

intelligence have been sources of interesting algorithms. We shall 

give only one more algorithm belonging to this subject; before 

doing so, however, we survey some of the main problems of this 

area, from which important algorithms may.be expected to arise 

in the future. These subareas are: 

i. Gestalt matching: This is the problem of creating 

algorithms which will duplicate certain aspects of the organic 

brain's sensory processing, well enough at least to enable 
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-~~puter recognition of artifacts (such as written letters and 

)ken sounds) which are regularly used for communication 

between persons. Note that the problem here is partly psycho

logical; we want a computer to rec~nize the same characteristics 

of written letters that we recognize, so that we can use intro

spection as an aid in comprehending its rea.c'tions, and so that we 

can communicate with it in a manner natural for us. There is good 

evidence that the functions to be duplicated are; to a large extent, 

innate rather than learned; thus it is reasonable to seek for 

algorithms with a relatively fixed core, though enough flex-

ibility to permit a considerable measure of subsequent learning 

is undoubtedly desirable. 

ii. Feature seeing: In both the sensory and the intellectual 

-areas, coping with complex and varying situations will require 

the ability to discern key features within complex logical patterns. 

To make it convenient to write programs with this ability, and to 

leave open the possibility of easy growth in the set of features 

recognized vital both for externally directed experimentation and 

for self-regulating learning, languages different from the ordinary 

serial procedural kind may be appropriate. Such languages might 

perhaps be closer to present-day simulation languages than to 

procedural languages, and might for example specify that whenever 

certain combinations of conditions prevail, an abstract node repre

senting this fact is to be created, which node can then function 

as an input for the creation of additional nodes. Certain of the 

parsing algorithms we have already studied, especially those for 

parsing by the method of nodal spans, are suggestive in this 

connection. 

iii. Learning: Many of the problems with which one would like 

to be able to deal involve interactioH with enormous numbers of 

subcases which cannot be searched exhaustively. Ones only chance 

of success with problems of this type will lie in the development 

of effective processes of sporadic search. Such search processes 

will be guided by a set of 'features noticed', and by an evaluation 

of the significance of these features. The more finely tuned the 

: of features and the more just their evaluation, the more effec

tive a sporadic search guided by these features will be. While 
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sets 6f featuies and weights for them can initially be elicited 

by detailed interviews with experts in a particular field to be 

treated, a 'hand' method of this kind will eventually break down. 

When it does, it will become necessary for programs to experiment 

independently in the fields to which they are dedicated. Such 

programs must both modify their evaluations of old features and 

elaborate new features, in whatever manner is indicated by the 

outcome of automatically conducted experiments. This is the 

process of computer learning. What counts here is first of all 

efficiency of learning; i.e., the size of the computation needed 

to attain a certain degree of progress. Methods which extract 

as much useful information as possible. from an experiment of given 

cost are needed; present machine learning techniques are highly 

deficient in this regard. Moreover, as a learning process leads 

to the discovery of new features, internally maintained auxiliary 

data sets will tend to grow. Methods for controlling this data

base growth, for eliminating old features subsumed by more powerful 

new features, and for ensuring that the whole process of feature

seeing, evaluation, and discovery remains reasonably efficient, 

are -required. · This is a- mechanical version of the familiar 

scientific process of "literature pruning." 

iv. Generalization: We have noted that, as a mechanical 

learning process unfolds, it will occasionally become necessary 

to compress the mass of information concerning special features 

and situations which it builds up. The best way of doing this 

is to replace large tables by small efficient programs capable 

of .calculating all of or most of their entries. The iterative 

application of such 'condensing optimizations' is the process 

of mechanical generalization. This observation reminds us that, 

just as the proper study of mankind is man, so the proper study 

for artificial intelligen~es is computer science, intelligent 

programs ought to devote as much effort to studying their own 

performance and discovering ways to improve it as they devote to 

their originally assigned prime purposes. 

Having relieved ourselves of these ex cathedra remarks, we 

go on to the detailed business at hand. Our final algorithm, 
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-"--~ to Buneman, belongs to the .sub area of gestalt finding, 

1 more specifically to visual pattern processing. It aims to 

uncover important topological relationships (connectivity and 

insideness-outsideness} implicit in plane figures. Given a 

plane figure made up of black and of white regions, .it produces 

an abstract connectivity graph, each of whose nodes represents 

a connected component (either black or white} of the figure. 

A node representing a component Risa descendant of a node 

representing a component R' if and only if R is inside R'. 

For example, if the analysis procedure to be given is applied 

to the figure 

A 

. 1/"J//, 
~ D »;/ 

/. 

/ 
,,,· . 

it will produce the following graph. 

(white -- the external universe} 

(black regions} 

D (white regions} 

H I (black regions within 

white within black 

within the master 

white} 
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This graph teils us these facts: within an outermost white region 

(the 'background', represented by the root node of our tree), the 

are two connected but mutually disconnected (black) subregions. 

Each of these enclose& precisely two (white) subregions;_ in each 

case, one of these two white subregions encloses a (black) region. 

The topological analysis algorithm given below assumes that 

the plane area which it will analyze is decomp_osed into rectangles 

forming a brick-like pattern of the following sort. 

. . . 

We assume that all the b·ricks constituting the outer boundary of 

the pattern.are white. Each brick Bis in contact with Six 

other bricks, two in the row above B, and a like number in the 

row containing Band in the row below B. We suppose each brick 

to be designated as being either 'white' or 'black'. Our algorithm 

works over the brick·s of an area to be analyzed, proceeding ·down 

through successive rows, and within each row in left to right order. 

The first or 'prime' brick belonging to a connected region R of 

given color is used to symbolize R. Each subsequent brick B 

found to touch .a brick B '· of R having the same color as B is 

assigned to the same region. This is done by use of an auxiliary 

map represent, and by executing the statement represent (B) = B' . 

Given this mapping, the region R containing Bis determined by 

calculating represent(represent( ... represent(B) ... )), iterating 

until a 'prime' brick B", distinguished by the fact that 

represent(B") ~ n, is encountered. This prime brick symbolizes 

the region R. A brick B occurring in the configuration 

. . . 
serves either to unite the distinct like-colored regions to 

which the bricks labeled 8 and y belong, or, if these regions 
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~~~ already the same, serves to complete an enclosure whose inside 

the region containing the differently colored brick labeled a. 

The first of these two cases is characterized. by the fact that 

the prime brick B symbolizing the region RS containing Sis distinct 

from the prime brick C symbolizing the region R containing y. 
- - y 

The second case is characterized by B eq C. In the first case, 
-we merely assign C as the representative of B, thus dropping B 

from prime brick status and identifying RS as identical with RY. 

In the second ·case, we note that the region R · containing a is a 
inside RS. 

In the following SETL code, a function truerep is used to 

calculate the region containing a given element a (more precisely, 

to calculate the prime brick symbolizing this region). 

definef topanalyze(color,nrows,ncols); 

/* nrows is the number of rows in the array of rectangles to 

be analyzed; ncoZs is the number of columns*/ 

/* coZor(<m,n>) is t if then-th brick in them-th row is black*/ 

/* represent is assumed to be global*/ 

represent= ni; 

/* represent(<m,n>) is a prior brick belonging to the region 

to which the brick <m,n> belongs*/ 

/* since all the bricks in the first row belong to 

the 'background', we have:*/ 

(1 ~ Vnc ~ ncols) represent(<l,nc>) = <1,1>;; 

poffset = 0; /* flag distinguishing odd and even rows. processing 

starts with the second row*/ 

(2 < Vnr < nrows) 

represent(<nr,1>) = <1,1>; /*first brick in row belongs 
I I 

to background*/ 

(2 < ~nc ~ ncols) 

/* get 3 preceding neighbor blocks*/ 

pnaybs = <<nr-l,nc-poffset~,<nr-1,nc-poffset+l min ncols>, 

<nr, nc-1>>; 
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if n 3 nayb(n) E pnaybslcolor(nayb) ~ color(<nr,nc>) then 

/* <nr,nc> may represent a new region*/ continue; 

else represent(<nr,nc>) = nayb; 

if n ~ 2 and color(pnayb(3)) ~ color(pnayb(2)) then 

/* either two regions must be identified 

or 'surround' is complete*/ 

if truerep(nayb) ~ truerep(pnayb(3)) then 

represent(pnayb(3)) = nayb; 

else 

<nayb, pnayb(l)> in inside; 

end if truerep; 

end if n ~ 2; 

end if n 3; 

end '!Jnc; 

poffset = 1 - poffset; /* reverse 'odd row' flag*/ 

end '!Jnr; 

/* now modify the 'inside' map, basing it upon the 'prime' 

nodes of each of the regions*/ 

return {<truerep(x(l)) ,truerep(x(2))>, x E inside}; 

end topanalyze; 

definef truerep(brick); 

b = brick; 

(while represent(b) ne Q) 

b = represent(b); 

end while; 

return b; 

end truerep; 

At the cost of some complication of its detail, the routine 

topanalyze shown above can be modified so as only to require that 

values of represent and color for a single row of a total array 

of bricks be stored. We leave consideration of this improvement 

to the reader. 
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Tm'EM 16. Some Optimization Algorithms.* 

J. • Gra~h· .ordering. 

Many interesting algorithms for the optimization of compiler

generated code are based on the analysis of an abstract graph 

representing the flow structure of the program. This graph, the 

so-called program graph of the program, is defined as follows. 

Call any sequence of instructions which has the property that 

control always enters .the sequence at its first instruction and 

always leaves the sequence at its last instruction a basic block. 

If the last instruction in one basic block b 1 might transfer control 

to the first instruction in another block b 2 , call b 2 a successor 

block of b 1 . The nodes of a program graph are then the basic 

blocks of a program, and the successors of a node its successor 

blocks. The node containing the first (entry) instruction of a 

program we call the entry node e; any node terminating in an "exit" 

instruction is considered to have no successors, and is called an 

exit node. We suppose that every node of a program graph is 

reachable from its entry node through a chain of successors; any 

node not reachable in this way represents code that can never be 

executed and may as well be deleted from the program. In what 

follows, any sequence of program-graph nodes in which then-th is 

always a successor of the (n-l)st will be called a path. 

Various graph-theoretical notions related to the program graph 

of a program are useful in analyzing the flow Cf control and data 

relationships during program execution. The first of these relation

ships which we shall consider is that of predomination. A node.b 

is said to predominate a node c if every path from the entry node 

to c must pass through b. The predominators of care useful in 

various ways in optimization; for example, under certain conditions, 

code can be moved from c to certain of its predominators. 

* -lis section contains some material drawn from the earlier manuscript 
,stract Algorithms; it also draws upon material due originally to 

K. Kennedy, P. OWens, and others, which appeared in SETL News
letters 28, 37, and 38. Many of the algorithms which follow have been 
checked against a library of debugged SETLB optimization algorithms 
being developed by D. Shields. 
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Here is an algorithm, due to F. Allen, for finding all the 

predominators of all the nodes in a program graph. First observe 

that if, starting from the entry node, we can reach (find a path 

to) a node c without passing through a node x, then we Can reach 

any immediate s_uccessor y of c without passing through x, except, 

of course, if y is x. Designate the set of nodes x which can be 

reached without passing through c as notfor(c). Thus the set of 

predominators of c consists of all the nodes not contained in 

notfor(c). Here is the SETL algorithm. (Note the use of the 

function a orm b , which returns .' if a n~ n then a else b'.) 

definef predoms(nodes,entry); 

/* the successor function cesor is assumed to be global*/ 

/* 'nodes' is the set of program nodes, 'entry' is the entry node, 

•cesor(x)' is the set of all ::;uccessors of node x. This function 

returns the set 'dom' such- that dom(x) is the set of all pre

dominators of x */ 

/* initially, no nodes are needed to reach entry*/ 

notfor = nt;; notfor(entry) = nodes less entry; todo = {entry}; 

(while todo ne nt) 

C from tocfo i 

('r/y E cesor(c)) /* update set of elements which are not 

predominators of y, put y back on workpile if this set changes 

new= notfor(c) -(notfor(y) ~ni) less y; 

if new~ nt then continue;; 

/*else*/ notfor(y) = notfor(y) ~ nt + new; 

yin todo; /* since the successors of y must be processed*/ 

end 'r/y; 

end while; 

dom = nt; 
('r/y E riodes) dom(y) = nodes - notfor(y) less y;; 

return dom; 

end predoms; 
Next we give an algorithm, due to Earnest, Balke, and Anderson; 

for linearizing a program graph in an advantageous order. This 

order is, among other remarks that may be made concerning it, , 

order in which all the predominators of a node precede 

the node. The algorithm is as follows: 
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i. starting at the.entry node, and always without repeating 

y· nodes, generate a path. 

ii. when this path can no longer be extended, back up along 

it to a node x from which a new node of the graph is seen as a 

successor. Starting at this new node, generate a path; and insert 

it in linear order into the old path, immediately after x. 

Continue until the whole graph is linearized. 

In SETL, we have: 

definef graphord(nodes,entry); 

/* the successor map cesor is assumed to be global*/ 

order = < entry> ; 

mark= {<entry,t>}; 

jlast = 1 /* jlast is highest numbered node from which new path 

may begin*/; 

(while jlast ~ 3j ~ 1, last E cesor(order(j)) jmark(last) net) 

/* start new path*/ 

path= <last>; mark(last) = t; 

/* and extend as far as possible*/ 

(while 3 next E cesor(last) jmark(next) net) 

path= path+ <next>; 

mark(next) = !; last= next; 

end while 3; 

/* insert path after jth node in order*/ 

order= order(l:j) +path+ order(j+l:); 

jlast = j +#path+ l; 

/* note path(#path) has no unmarked successors*/ 

end while jlast; 

return order; 

end graphord; 

A program graph straightened by the preceding algorithm is said 

to be in straight order. But in this order it may still contain 

configurations, such as the following, 
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which it is advantageous to rearrange as 

This may be accomplished by applying a loop-cleansing procedure, 

also due to Earnest, Balke, and Anderson, which may be shown to 

preserve the principal properties of the ordering established by 

the preceding procedure. The loop-cleansing procedure is as follows. 

i. Perform step (ii) for each node n, procedures from last_ to 

to first (i.e. in reverse straight order). 

ii. Find all nodes following n from which n may be reached 

by a backward branch; we call these nodes ·latches. Proceed 

through the set of latches of n in straight order, performing 

the following for each latch m: Mark m, its predecessors, their 

predecessors, etc.; call the last node marked in this way i. 

Then push all the marked nodes up-toward n and all the unmarked 

nodes down toward i, keeping the marked nodes in their established 

order, and the unmarked nodes in theirs. 

Note the use in the following code of the transitive closure 

function closure introduced on page 119. 
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1* generate predecessor map * / 

~d = {<n~ nt>, n E nodes}; 

{Vx E nodes, y E cesor(x)) pred(y) = pred(y) with x;; 

/* we assume that order(i) is the i-th node in straight: 

order, as returned by the graphord function described above*/ 

/*generate-node number*/ 

number= {<order(i) ,i>, 1 < i < #nodes}; 

{#nodes> Vn > 1) 

head = order {n) ; 

latches= {nod E pred(head)jnurnber(nod) SL!:, n}; 

k = n+l; 

/* nodes with indices at· least k are considered to be 'unmarked' */ 

(while latches ne nt) /* find element of minimum index*/ 

mn = [min: nod E latches] nurnber(nod); 

m = order (mn) ; 

marked= closure(pred,{m},{order{j), k~j~#nodes}); 

latches= latches - marked; 

/* since nodes once processed need never be processed again*/ 

/* shift unmarked elements down, others up*/ 

{while k ~ 3 j < #nodes I n order {j) E marked 

and order(j+l) E marked) 

<nurnber(order(j)), nurnber{order{j+l)),order(j) ,order(j+l)> 

= <j+l, j, order(j+l) ,order(j)>; 

end while k; 

k = k + #marked; 

end while latches; 

end \fn; 

2. Intervals, derived graphs, and live-dead analysis. 

Next we turn to study certain notions, useful in the analysis 

of program graphs, due to J. Cocke and F. Allen. An interval in 

a program graph is a sets of nodes, containing a distinguished 

node x called the head of s, such that there is no entry into s 

except through x, and such that when xis removed, sis free of 

ps (a loop is a closed path in a program graph). The following 

ure shows a typical interval. 
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exit 
branch 

backward 
branch 

forward 
branch 

exit 
branch 

Single entry regions of this kind serve to make specific the 

heuristic notion of "inner loop". They are very useful for 

program flow analysis, and systematic optimization procedures 

can be built upon them. 

It is a characteristic property of intervals that their nodes 

can be enumerated in such a way that, with the exception of b:r;anches 

terminating at the interval head, all branches between nodes of the 

interval are "forward" branches, i.1::. ,· go from a node x to a node y 

having a larger serial number in the enumeration of the interval. 

The interval of a node xis the largest interval with x as head; 

it may consist of x only. 

Here is an algorithm which determines the interval of a node x, 

and enumerates the nodes of this set in an order having the property 

noted abrive. It
0

also finds the set of all successors of nodes of 

the interval which do not belong to the interval; this will be 

needed below. 

definef interval(nodes,x); 

/* npreds, foZZowers and cesor are assumed to be global*/ 

/* count the number of predecessors of every node*/ 

npreds = {<x,O>, x E nodes}; 

Pix E nodes, y E cesor (x) ) 

npreds(y) = npreds(y) + l;; 

int =nul t; followers = {x}; count = { <y, O>, y E nodes}; 

count(x) = npreds(x); 

/* 'count' will be a count of the number of predecessors of 

a node which belong to the interval being constructed*/ 
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'•-•'lile {y E followers I npreds (y) ~ count (y)} is newin ne nt) 

(\f z E r:iewin) 

int(#int+l) = z; 

z out followers; 

(Vy E cesor(z) IY ne x) count(y) = count(y)+l; yin followers;; 

end '1/z; 

end while; 

return int; 

end interval·; 

An interval is called m~ximal if it is not contained in any 

larger interval. It can be shown that every program graph can 

be decomposed uniquely into a union of maximal intervals, and that 

distinct maximal intervals are disjoint. This decomposition, the 

so-called Cocke-Allen decomposition of a program graph, is quite 

useful in flow analysis. 

To find these maximal intervals, we proceed as follows. 

Take the interval generated by the entry node of the program graph; 

this is a first maximal interval. Then, iteratively having formed 
-

other maximal intervals, take any successor x of a point in these 

intervals not lying in any of them, and form the interval of x; 

this is a new maximal interval. 

The following SETL algorithm realizes this process. It also 

associates, with each maximal interval, the set follow(int) of 

all nodes which are successors of a node of the interval without 

belonging to the interval; and with each node b of the program 

graph the maximal interval intov(b) which contains it. 

definef intervals(nodes,entry); 

/* followers,· follow, intov are all assumed to be global*/ 

ints = nt; seen= {entry}; follow= nt; intov = nt; 

(while seen ne nt) 

node from seen; 

interval(nodes,node) is i in ints; 

follow(i) = followers; 

(1 ~ '1/k ~ #i) intov(i(k)) = i;; 

seen = seen + · {xEfollowers I intov (x) -~ Q}; 

end while; 
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return ints; 

·end intervals; 

The derived graph g' of a program graph g is defined as follows: 

the nodes of g' are the intervals of g; the successors of an 

.interval int are the intervals distinct from int containing 

successors of the nodes within int; the entry node of g' is the 

interval containing the entry node of g. The derived graph of 

a program graph gives a simpler, "coarsened" representation of 

its program flow; in. this representation "inner loops", i.e., 

intervals, appear as single points, and only "outer" loops are 

shown. If g contains any interval of.~ore than one point, g' will 

have fewer nodes than g. A program graph in which no interval of 

more than one point can be found is called an irreducible graph; 

fortunately, such graph~ arise· only rarely in connection with 

actual programs. In SETL, we may write the criterion of irreduci

bility very simply as follows; 

(#nodes) ~ #intervals(nodes,entry) . 

The definition of the derived graph in SETL is also quite trivial; 

here it is: 

definef dg(nodes,entry}; 

/* cesor, follow, intov, dent, pred are all assumed to be global*/ 

ints = intervals(nodes,entry}; dent= intov(entry); 

(Vi E ints) cesor(i) = intov[follow(i)];; 

(Vi E int~t pred(i) = {intEintsliEcesor(int)};; 

return ints; 

end dg; 

By forming successive derived graphs g', (g')', etc. of an 

original graph g, we look at an original program in a more and 

more global way. In cases in which this derivation sequence 

converges to a graph consisting only of a single node, we may 

claim that the method of intervals provides a decisive analysis 

of program flow. Graphs having this property are called even·tually 

reducible program graphs. 

Here is the SETL definition of the derived sequence of a grapn. 
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~-finef dseq(nodes,entry); /* dent is 'global' */ 
q = <<nodes, entry>>; <n,e> = <nodes,entry>; 

(while #(dg(n,e) is der) lt #n doing <n,e> = <der,dent>;) 

seq(#seq+l) = <der,dent>;; 

return seq; 

end dseq; 

Intervals have many uses in the optimization-analysis of programs. 

Generally speaking, the derivation sequence of a program gives a 

very useful guide to the order in which various optimizing processes 

can most effectively be applied. We shall now discuss one such 

application; more specifically, we shall study the so-called "live

dead" analysis of variables. 

A variable xis said to be Zive at a given point q in a program 

if from this point there exists a path Pin the program, not passing 

through any instruction which assigns a value to x, and such that P 

terminates in an instruction which uses the value of x. In the 

contrary case, xis said to be dead at q. It is clear that if x 

is live at given point in a program, its value must be saved in some 

known register or core location for later use. Conversely, when 

x becomes dead, the register containing it becomes available for 

other use. 

We shall now describe an algorithm, due to K. Kennedy, for 

efficiently deriving live-dead information for any eventually 

reducible program graph. Of course, to carry out such an analysis, 

we require that basic information concerning the use of variables 

within a program be available. We suppose that this informa-

tion is made available acco_rding to the following conventions. 

i. All the variables with which the program is concerned are 

collected into a set of vaPs; 

ii. With eac~ basic block bis associated a. set 

bZkuses(b) consisting of all the variables x in the set vaPs 

such that, starting at the entrance to b, a use of x within b will be 

reached before any assignment is made to x. 

iii. With each basic block bis associated a set thPu(b) , 

vv,1sisting of all the variables x in the set vaPs such that 

b contains no operation implying an assignment to x. 
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A path through the program which does not encounter any instrllc

tion assigning a value to a variable xis called an x-,-clear path 

We shall wish to associate certain sets with each interval intv. 

These are as follows: 

1. The set of all x such that there is an x-clear path in intv, 

starting at the entrance to intv (i.e., immedi·ately before any 

instruction in intv is executed) and terminating at a use of x 

within intv. 

2. For each block e of follow(intv), the set of all x such that 

there is an x-clear path through intv, starting at its entrance, and 

terminating ate. 

We shall call the first of these sets blkuses(intv) and the 

second thru(intv,e). The following observation allows these sets 

to be calculated easily. Leth be the head of intv and let b be 

a block of intv. If the blocks of intv are enumerated in the 

order defined by the basic interval construction function 

interval(x) described above, then, as has been remarked, all 

backward branches in intv lead to h. Thus all irredundant paths 

in intv from h to b · i.e., all paths not containing pointless 

repetitions, will involve forward branches only. Therefore the 

information we require can be developed by a simple scheme which 

propagates uses backwards and which considers forward branches 

only. In SETL, the algorithm we require is as follows: 

uaux = ni; taux = ni; head= intv(l); 

(#intv >V n > 1) b. = intv·{n); 

forward= {y E cesor{b) jintov(y) ~ intv and y ne head}; 

uaux{b)=blkuses(b)+ (:thru(b)*([+:yEforward] uaux(y)orm ni)); 

(Vintx E cesor(intv)) 

if intx(l) E cesor(b) then taux(b,intx) = thru(b); 

else taux(b,intx)=thru(b)*([+:yEforward]taux(y,intx)orm ni); 

end if; 

end 'r/intx; 

end 'r/n; 

blkuses (in tv) = .uaux (head) ; 

(Vintx E cesor (intv)) 

thru(intv,intx) = taux(head,intx) ;; 
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We may now observe that blkuses(intv) and thru(intv,inta) are 

ated to the interval intv in just the same way that blkuses(b) 

ana thru(b) are related to a basic block b. Thus the construc-

tion shown above can be repeated for the derived graph, and 

therefore, iterating, for all the graphs of the derivation sequence. 

We write the process that builds this information for all the 

graphs of the derivation sequence as a subroutine; except for the 

slight differences occasioned by the fact that intervals may have 

several exits while a basic block can have only one, we can use 

almost precisely the code which appears above. With the necessary 

corrections, we have the following algorithm. (Note the use of the 

auxiliary function a orm b which returns the value 'if a ne Q then a 

else b.) 

define builda(nodes,entry}; 

/* cesor,intv,blkuses,thru, seqd are assumed to be global*/ 

seqd = dseq(nodes,entry}; 

(1 < Vk ~ #seqd, intv E hd seqd(k}} 

uaux=nt; taux=nt: head=intv(l}; 

(#intv > Vn ~ 1) b = intv(n}, 

forward~{yEcesor(b} lintov(y} ~ intv and y ne head}; 

flow (k gt 2}? 

intcas, blockcas; 

<bloc:kcas. =>uaux (b) = blkuses (b) + ( thru (b} 

* ([+: y E forward] uaux(y) orm nt}}; 

(Vintx E cesor(intv}} 

if .intx(l} E cesor(b} then taux(b,intx} = thru(b}; 

else taux(b,intx}=thru(b} * ( [+:yEforward] taux{y,intx}orm nt}; 

end if; 

end Vintx; · 

<"intcas: > uaux(b} = blkuses(b} +( [+: y E forward) {thru(b,y} 

* .uaux{y}) orm nt);. 

{Vintx E cesor{intv}) 

taux(b,intx) = 

{if intx(l} E cesor(b) then thru(b,intx{l)) else nt) 

+( [+: yEforward] (thru(b,y) * .taux(y,intx)) ~ nt); 

end Vintx; 

end flow; 

end Vn; 
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blkuses(intv) = uaux(head); 

(Vintx E cesor(intv))thru(intv,intx)= taux(head,intx) ;; 

end Vk; 

return; 

end builda; 

We now define a new mapping uses(intv) for each basic block and 

interval of a program. Specifically, uses(intv) is the set of all 

variables v for which there exists a path in the program graph which 

starts at the head of intv and reaches a use of v without ever pass

ing through an assignment to v. Our calculation of uses(intv) is 

based upon the following observation. When the blocks b of an 

interval intv are enumerated in the order we have been considering, 

every backward branch passes through the head of intv. It follows 

therefore that a minimum length path from b through intv, to either 

a use of a variable or to an exit from intv, will either consist of 

forward branches exclusively or will contain one and only one back

ward branch. Next, suppose that we are dealing with a program graph 

g that is eventually reducible. Then the graph gn-l appenring at 

the next-to-last stage in g's derivation sequence consists of a 

single interval without any exits; hence the observation that we 

have just made gives an easy way of computing uses(b) for each 

block b of gn-i· But the blocks of gn-l correspond exactly to 

those blocks of g 2 which are interval heads; hence, working back-n-
wards iteratively, we can compute uses(b) for each block of 

g 2 ,g 3 , •.. , until g is reached. We will then know, for each basic n- n-
block bin our original program, whether or not there exists an 

x-clear path from the entrance of breaching a use of x; and this 

evidently tells us whether or not xis live at the entrance to b. 

We may write the routine which completes the construction of 

uses in SETL as follows: 

define builduse(nodes,entry); 

/* cesor, intov, blkuses, uses, thru, seqd are assumed to be global*/ 

builda(nodes,entry); 
(#seqd > Vk > 1, intv E hd seqd(k)) 

(#intv > Vn > 1) b = intv(n); 
backorexit={cEcesor (b) I intov(c) ne intv or c ~ intv(l)}; 
uses(b) = blkuses(b) + 

(if k ~ 2 then thru (b) 
*([+: cEbackorexit] uses(intov(c)) orm ni) 

else [+: c E backorexit] (thru(b,c) 
* uses(intov(c))) ~ ni; 
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end \In; 
end \lk; 

turn; 
d builduse; 

3. An algorithm for use-definition chaining. 

Various important optimizations depend on knowing which defini

tions in a program can affect the values of variables used at a 

given point in the program's control flow. 

As a further example of the applications of the interval method, 

we now present an algorithm for carrying out a 'use-definition 

chaining' process. 

Given a program flow graph, our algorithm will associate with 

each block b the set r~aches(b) of all definitions which can 

reach b, i.e. the set of all definitions D for which there exists 

a path, clear of all redefinitions of the variable defined by D, 

to the block b. The algorithm consists of two phases. In the 

first phase, beginning with information concerning· the operations 

occurring in basic program blocks, we collect interval-related 

information, processing each derived graph of an originally given 

flow-graph in sequence. In the second phase, once necessary 

global information has been gathered, we proceed in reverse order 

through the sequence of derived graphs, ultimately depositing 

appropriate live-dead information at the entry to every block. 

The following functions and sets are provided as input to 

our analysis: 

1. defs the set of all definitions in the program. 

2. var(defn) the variable defined by the definition defn 

3. varsthru(b,sb) the set of variables for which there is a 

definition-clear path through b to sb 

4. defsfrom(b,sb) the set of definitions D within b for which 

there is a path to an exit to sb from b 

5. initial 

&:. pred, cesor 

clear of redefinitions of the variable defined 

by D. 

the set of initial definitions, made before 

program entry (e.g., definitions made by DATA 

statements in FORTRAN). 

precessor and successor maps defining the 

structure of the program graph being analyzed. 

Note also that nodesof(intervaZ) returns the set of all nodes in an 

interval; the interval itself is a tuple. 
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Given the sets varsthru and defsfrom for basic blocks, we 

compute corresponding sets for all the intervals of the derived 

sequence. Three sets are used in an auxiliary way. 

1. varsreaching(b) - the set of variables for which there exists 

a defintion-clear path from the interval entry to b. 

2. defsreaching(b) - initially, the set of definitions within an 

interval which can reach b by a path_not containing a bacmards 

branch; later, the set of all definitions which can reach b. 

3. defhead - the set of definitions within the interval 

which can reach the head via a latch. 

A SETL algorithm for the first phase of the use-definition 

chaining process is presented below. Note that since nodes within 

an interval are processed in interval order, each of the assignment 

stat~ments occurring in our algorithm has a well defined outcome, 

in that all necessary sets are appropriately extended before they 

are used; also note the algorithm admits an efficient bit-vector 

realization (using "and" 

union(+)). 

for intersection (*), and "or" for 

/* first a group of three auxiliary macros*/ 

macro exits(int,sint); 

= {pb E pred(sint(l)) jpb E nodesof(int)}; endm exits; 

macro defsthru(pb,b); 

= {dEdefsreaching(pb) jvar(d)Evarsthru(pb,b)}; endm defsthru; 

macro latches(intv); 

= {nEnodesof(intv) jhead E cesor(n) }; endm latches; 

/* the argument to the routine which follows is a collection of 

intervals constituting one of the graphs in the derived sequence*/ 

define usedefpassl(intervals); 

/* aesor, pred, varsthru, defsfrom, var, defs, vars, nodesof, 

varsreaching, and defsreaching are all assumed to be glopal */ 

(~intv E intervals); 

head= intv(l); 

defsreaching (head) = _nt; varsreaching (head) = vars; 

(2 < ~i ~ #intv) /* process interval*/ 

b = intv{i); 

varsreaching(b) = [+: pb E pred{b)] 
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(varsreaching(pb) * varsthru(pb,b)); 

defsreaching(b) = [+: pb ~ pred(b)] 

(defsfrom(pb,b) + defsthru(pb,b)); 
ena \ti; 

defhead = [+: ia E latches(intv)] 
(defsfrom {ia ,head) + defsthru ( ia ,head) ) orm ?i; 

defsreaching(head) = defhead; 

( '1 sin t E cesor (intv)) 

sb = sint(l) /* head of successor interval*/; 

varsthru(intv,sint) = [+: ex E exits(intv,sint)] 

(varsreaching(ex) * varsthru(ex~sb)) orm ni; 

defsfrom(intv,sint) = 

{dEdefheadlvar(d)~varsthru(intv,sint)} 

+ [+:pbE· exits(intv,sint)] 

end 'If sint; 

end Vintv; 

return; 

end usedefpassl; 

(defsfrom(pb,sb) + defsthru(pb,sb))orm ni; 

The above routine will calculate varsthru and defsfrom for 

the intervals of a control flow graph and all its derived graphs. 

The second pass of the overall use-definition chaining process re

calculates the set defsreaching(b). for each block b, causing this 

set to include all definitions D w.hich can reach b by any path 

(free of redefinitions of the variable defined by D) in the 

program graph. This second pass is shown as part of the following 

SETL algorithm, which also represents the overall use-definition 

chaining process: 

/* the argument to this routine is the derivation sequence of 

an originally given graph*/ 

define. usedf (seqd) ;· 

/* ce$or, pred, varsthru, defsfrom, var, defs, vars, nodesof, 

varsreaching, defsreaching are assumed to be global*/ 

varsreaching = ni; defsreaching = ni; /* auxiliary functions 

are initially undefined*/ 

< \tn ~ #seqd) intervals= hd seqd(n); /* call passl */ 

usedefpassl(intervals);; 

/* assign defsreaching for final derived graph*/ 
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defsreaching (3 hd seqd ( #seqd)) = initial; 

/* proceed through second pass, in reverse order of derivation 

sequence*/ 

(#seqd > Vn > 1) 

intervals= hd seqd(n); 

('o'intv E intervals) 

defsreaching(intv(l))=defsreaching(intv)+defsreaching(intv(l)); 

/* process nodes in interval order*/ 

(2 < Iii < #intv) 

b = intv(i); 

defsreaching(b) = 

[+: p.bEpred(b)] (defsfrom(pb,b)+defsthru(pb,b)); 

end ,'o' i; 

end 'o'intv; 

end 'o'n; 

return; 

end usedef; 

Note that as it stands the algorithms which have just been given 

are valid only for program graphs which are eventually reducible. 

It is also worth observing that the set 

uses(entry) 

i.e. , the set of variables which are live immediately on entry to 

the program, is in fact the set of improperly initialized program 

variables, concerning which we would, in a total optimizing

compiler system, wish to issue a diagnostic message. 
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,, Node splitting; An algorithm for live-dead analysis 

including node splitting.* 

If no irreducible graphs (consisting of more than one point) 

are encountered, the derivation sequence of an originally given 

progr~ graph g can be used in the manner illustrated by the last 

few algorithms. Irreducible graphs are obstacles to the application 

of these algorithms as they stand. Fortunately, easy generalizations 

will handle irreducible graphs. To see what generalizations are 

necessary, note that the simplest example of an irreducible graph 

is ·as follows: 

If for the moment we think of the code represented by the node bas 

being duplicated into two copies, one of which, b 1 , is entered from 

a, while the other, q2 , is entered from c, then we see that there 

exists a program, equivalent to that having the flow depicted above, 

but having the fol~owing flow instead. 

In this graph {a,b 1 } and{c,b 2 } are intervals; so the derived graph 

of this graph consists only of two nodes, and itssecond derived graph 

consists only of one. This example shows that an abstract pro'cess 

of "node splitting" will allow the reduction even of graphs which 

originally are irreducible. Moreover, the phenomenon observed in 

this example is perfectly general. To see that this is the case, 

* Some of the material in the present subsection is adapted from ·an 
algorithm given in SETL Newsletter 38 by K. Kennedy. 
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we argue as follows. Let g be a program graph consisting of n 

nodes. Lets be a set of nodes withing, including the entry nod, 

of g, consisting of as few nodes as possible, and such that when 

sis removed, the remaining sets of nodes admits no loops; which 

is to say that at least one point of every loop belongs to s. Note 

that since every loop contains at least 2 nodes, .s will never 

have more than n-1 points. For each x Es, let f(x) be the set of 

all points ins reachable along a path starting at x, all the 

nodes of the path but x lying ins. We then construct a split 

graph, as follows. The points of this new graph are the pairs 

<x,ni> for x Es, together with the points <y,x> where y E f(x); 

these points represent multiple II split. copies II of y. · In this 

collection, we .define the successor relationship as follows: 

i. cesor(<x,nt>) is the set of points <y,x> for which 

y E cesor(x), together with the set of points 

<y,nt> for which y E cesor(x); 

ii. cesor(<y,x>) is the set of points <z,x> for which 

zEcesor(y), together with the set of points <z,ni> for which 

z E cesor (y). 

It is clear from this definition that, in the split graph, 

each of the points <y,x>, y E f(x), can be reached from <x,ni>; 

moreover, the set {<y,x>, y E f(x)} contains no cycles, since, 

if it di4 so woulds, which by construction we have ruled out. 

Therefore each of the sets {<y,x>, y E f(x)} with x is an interval. 

Hence our split graph can be covered by at most n-1 intervals, and 

its derived graph will therefore contain at most n-1 points. Thus, 

by applying the node splitting process whenever an irreducible 

gr~ph is encountered, we can construct a generalized derivation 

sequence which will always converge to a graph consisting of only 

one single node. 

To find, within a graph g, a sets of nodes of the kind required, 

we ~ay proceed as follows.* Arrange the nodes of gin sequence, 

using the ordering algorithm described in the first part of the 

present section. Then defines as follows: first put all the 

More efficient node-splitting algorithms have been designed bx 
J. Cocke and R. Miller. 
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~r~dominators of any node of g into s. Then take all backward 

mches whose origin node u does not belong to s; suppose that 

the target node of the branch is v. If every predominator of u is 

a predominator of v, put v ins. 

In SETL, this algorithm and the remaining parts of the constrµc

tion of the split graph appear as follows. (Note the use in what 

follows of the transitive closure function clo~ure, defined 

on page 119) . 

definef graphsplit(nodes,entry); /* cesor is assumed to be global*/ 

seq= graphord(nodes,entry); 

domsof = predoms(nodes,entry); s = [+: xEdomsof]x(2) orm n£; 

seq~o ={< seq(j) ,j>, 1 ~ j ~ #seq}; 

( #seq > \f j > 2 I n seq ( j) E s) - - -
u = seq(j); 

(\fv E cesor(u) I seqno(v) lt j) 

if domsof{v} incs domsof{u} then bins;; 

end Vv; 

end \tj; 

sbar = nodes - s; 
newg = {<x,n£>, xEs} + {<y,x>, xEs, yEclosure(cesor,{x},sbar)}; 

(\fx Es) 

cesor(<x,n£>) = {<y, if y ~bar then x else n£>, yEcesor(x)}; 

(\fy E closure(cesor,{x},sbar)) 

cesor(<y,x>) = {<z, if zEsbar then x else n£>,z .Ecesor(y) }; 

end \fy; 

end \fx; 

newent = <entry, n£>; 

return newg; 

end graphsplit; 
In regard to the use of a split graph for the type of analysis 

in which we will be interested, as for example in the derivation 

of live-dead information, we may make the following remarks. In 

the generalized version of the routine builda, each of the nodes 

<y,x> derived from y by splitting will inherit the· set uses of 

n=-riables used within it from y, i.e., we will have uses(<y,x>) = 
~ses(y}. Similarly, we will have thru(<y,x>,<y,x>) = thru(y,y) 

if y has the successor yin s, thru(<y,x>,.<y,nR,>) = thru(y,y) if 

y has the successor yins, etc. Then in the routine builduse, 
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we will obtairi use(y) for a node that must be split into nodes 

y 1 , ... ,yn as the union of use(y 1 ) , ... ,use(yn). 

We shall now describe a procedure for live-dead analysis 

alternate to that presented previously, and go on to indicate the 

generalizations necessary to handle irreducible graphs. 

A path in the control flow graph of a program is said to be 

definition-clear (or def-clear) with respect to a variable A if 

there is no definition of A between the beginning and end of the 

path. 

The algorithm to be described will provide live-dead information 

for each block in a program. This infqrmation will be provided by 

giving the set live(block) of variables which are live on entry 

to a block. The initially given information used by our algorithm 

will be as follows: 

1. For each block, we will be given the set of all variables 

which are live on entry to that block in virtue of the existence 

?fa definition-clear path from the block entry to a use within 

the block itself. We shall call this set blkuses(block), 

2. For each block, we will be given the sets thru(block,sblock), 

one for each sblock E cesor(block); thru(block,sblock) is the set 

of variables for which there is a definition-clear path, from the 

entry to block, through block, to sblock. (In the discussion which 

follows, cesor(b) denotes the set of all basic blocks which are 

immediate successors of block b, and pred(b) denotes the set of 

all immediate predecessors of b.) 

There is an important relation among these three sets (live, thru, 

blkuses),which can be explained as follows: a variable is live on 

entry to a block if it is live by virtue of a definition-clear path 

to a use within the block or if there is a definition-clear path 

through the block to a successor block at whose entry the 

variable is live. This relation can be expressed by the following 

set relation: 

(1) live(block) = blkuses(block) u 

( l_J (thru(block,sb) n live(sbl 
sbEcesor(block) 
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-- as a SETL "code fragment": 

,~') live(block) = blkuses(block) + [+: sb E cesor(block)] 

(thru(block,sb) * live(sb)); 

It is easy to see that, using this relation, we will be able to 

find out which variables are live on entry to a block if we know 

which variables are live on entry to its successors. This idea is 

the basis for our algorithm. 

The algorithm will proceed in two passes over the nodes 6f the 

control flow graph and all its derived graphs. 

1. The first pass will compute the thru and blkuses sets for 

intervals of the derived graphs. 

2. The second pass will compute the live set, first for the 

single node of the last derived graph, then for each node in the 

underlying interval.. It will continue in this manner · :ntil the 

live sets have been computed for each node in the control flow graph. 

The "thru" and "blkuses!' inform:ition for a basic block b can be 

derived by examining b. The essential work of the first pass lies 

in computing these sets for an interval, given the sets for each 

node in that interval. This can be done as follows. Suppose we 

have two auxiliary sets, path(block) and insidesofar. The set 

path(block) contains all variables for which there is a definition

cl~ar path from the interval entry to the entry of block. The set 

insidesofar is an accumulator set. When, in processing the blocks 

of the interval in interval order, the block bis processed, we add 

to insidesofar all variables for which there is a def-clear path 

from interval entry to band which are in the set blkuses(b). 

These are the variables which will be in the set b lkuses (interva.l). 

Hence to process b we execute 

(2) insidesofar = insidesofar u (path (b) n blkuses (b)) 

This equation is used ·tor all blocks in the interval. 

There is a def-clear path for a .variable from interval entry 

to a block b if there is such a path from interval entry to some 

predecessor of band if there is a def-clear path through the 

~decessor to b. Hence 

(3) path(b) = l_J (path(pb) n thru(pb,b)) 
pbEpr·ed (b) 



Note however that this relation does not hold for the head of 

the interval; since entry to the head is identical with entry to 

the interval, we have instead: 

( 4) path (head) = all variables 

Suppose J is an interval which is a successor of I and that j
1 

is 

its head. The node j 1 must be a successor of at least one block 

in I. We can therefore compute thru(I,J) as follows: 

(5) thru(I,J) = l J (path(b) n thru(b,j
1

)) 
bEpred1j 1 )nI 

As previously indicated, 

( 6) blkuses(I) = insidesofar 

where the right-hand side denotes the value of _insidesofa:r> after 

all nodes in the interval have been processed. 

The algorithm which follows represents the 'innermost' part of 

an overall live-dead analysis procedure. ·Given the values of 

th:r>u(a,b), it associates ·sets blkuses and path with all the nodes 

of an interval. It will process the nodes of the interval I in 

interval order, computing the sets path and insidesofa:r>. Because 

it uses interval order, the predecessors of a node are always 

processed before the node itself and the path sets required by 

equations (2) and (3) are available when needed. Note that we 

need not worry about the contribution of loops within the interval, 

because a loop cannot contribute any new paths. This is because 

path(head) is already as large as it can be. 

The final step of our algorithm will be to compute the th:r>u and 

blkuses sets for the interval, using equations (5) and (6). 

The following SETL algorithm, p:r>ocess(inte:r>val), performs the 

computations specified above. Its argument, inte:r>val, is assumed 

to be a SETL tuple of nodes, with. interval(l) equal to the interval 

head. 

define process(interval); 

/* p:r>ed, ceso:r>,blkuses, th:r>u, and allva:r>s are assumed to be global*/ 

path= nt, insidesofar = blkuses(interval(l)); 

path(interval(l)) = allvars; 

/* pass through the interval in interval order*/ 

-444-



f? <Vi~ #interval) 

b = interval(i); 

path(b) = [+: pbEpred(b)J (path(pb)*thru(pb,b)) orm ni; 

insidesofar = insidesofar + path(b) * blkuses(b); 

- end \ti; /* now calculate thru and b Zkuses sets for the interval * / 

blkuses(interval)= insidesofar; 

(Vy E cesor(interval)) 

preint = pred(y(l))*{nodes,nodes(j)Einterval}; 

thru(interval,y) = [+: b E preint] (path(b)*thru(b,y(l))) orm ni; 

end \ty; 

return; 

end process; 

The function orm u:=:ed above is, as before, defined by 

def inef a ~ b _; · return if a ne Q then a else b; end orm; 

Having described this basic process, we may now go on to explain 

the overall structure of the first pass of our live-dead analysis. 

In this pass, we process the elements of the derived sequence. of a 

program graph, starting with basic intervals, then intervals of the 

first qerived graph, and so on until a final interval, which is the 

fully reduced control flow graph. We merely call the routine process 

for each interval in all derived graphs, as is shown in the following 

code: 

/* seqd is the deriyation sequence of an initially given program 

graph*/ 

define passl(seqd) 

(1 <\ti< fseqd) 

process [hd seqd(i)J;; 

return; 

end passl; 

At the end of passl, we will have computed the hZkuses ~~d thru 

sets for each interval in the sequence of derived graphs, including 

final interval which reduces the program to a single node. Since 

cu1 exit block has no successors, the live set for an exit block is 
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equal to the blkuses set for that block. Since the single node 

occurring last in the derived sequence and representing the whole 

program is an exit block, its blkuses set is the set of variables 

which are live on entry to the program. This set is useful in 

two ways. First, it tells us which variables are improperly 

initialized in the program; second, it is used in computing the 

live sets for nodes of the underlying interval~ 

The overall structure of our dead v~riable trace is shown by 

the following code, in which seqd represents the derivation sequence 

of an initially specified program graph: 

define livevars(seqd); /* live and blkuses are global*/ 

passl(seqd); /* call preceding passl process*/ 

/* establish live set for the single node to which the 

derivation sequence ultimately reduces*/ 

live(3hd seqd(#seqd)) = blkuses(~hd seqd(#seqd)); 

pass2(seqd); 

return; 

end livevars; 

This 'driving routine' uses the pass 1 procedure which we ha•,1.e j1ust 

depicted to calculate the set of variables live upon program entry, 

and then calls pass2. The subroutine pass2, which we now show, 

simply applies the routine liveint (described _below) to each 

interval in the derived graph sequence, starting with the last 

derived graph and working forward. This order will insure that 

we always process outer intervals before we process inner intervals. 

define pass2(seqd); 

(#seqd >Vi> 1) liveint[hd seqd(i)]; 

return; 

end pass2; 

The routine liveint merely calculates the live sets for every node 

in an interval, given the live sets for the entry to the interval 

and for the entries to all successors of the interval. It does .s 
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hu processing the nodes of the interval in reverse interval order 

i calculating the Zive set for each node encountered. The formula 

used is (1). In order to use this formula, we must have Zive sets 

for each successor of the node we are processing. But in virtue·of 

the processing order used we do have these sets. I~deed, suppose 

that we are examining a node band a particular successor sb. There 

are three possibilities. 

1. If sb is not in the interval I containing b, it must be 

the head of some successor interval y. Since we have computed 

the Zive sets for.every successor interval and since entry to an 

interval is the same as entry to its head, we can use Zive(y) for 

Zive(sb). 

2. If sb is in I but is not the head, we must have already 

processed sb and so will have computed Zive(sb) already. 

3. If sb is the head of I, we can use Zive(intervaZ) since 

entry to I is the same as entry to sb. Recall that Zive(intervaZ) 

will always ~ave been determined before we process the nodes of 

that interval. 

Thus we are always in a position to apply formula (1). 

The routine Ziveint in SETL is as follows: 

define liveint(interval); 

/* cesor, pred, thru,bZkuses, Zive are all assumed to be global*/ 

/* pass through the interval in reverse order*/ 

live(interval(l)) = live(interval); 

(#interval~ Vi~ 2) 

b = interval(i); live(b)= blkuses(b); 

(\fsb E cesor(b)) 

live(b)=live(b) + (thru{b,sb) * 

(if 3yEcesor (interval) I sb ~ y (1). then live (y) else live (sb)); 

end \fsb; 

end Vi; 

return; 

end liveint; 

-447-



On completion _of pass2, this subroutine will have computed a Zive 

set for each block in the control flow graph. 

We shall now incorporate nodesplitting into the dead variable 

analysis procedure that has just been presented. The noqesplitt~ng 

technique used here is that sketched in the first paragraphs of 

the present subsection. If one of the derived graphs G. of a 
J 

cannot be reduced further, it is transformed to program graph G 

give a graph G. 
J 

in which several of the nodes of G. are split into 
J . 

that of G. in the 
J 

are SETL pairs, 

more than one copy. In this case, Gj replace: 

derivation sequence. The nodes of the graph G. 
J 

where the first item of each pair is a node of the original graph 

G. and the second item of each pair is either ni , in the case of 
J 

an unsplit node, or another node of the graph G. , in the case of 
J 

a split node. The successor function for the transformed graph G. 
J 

is as described earlier in the present subsection. To allow 

detection of split graphs, each index j for which G. has been 
- J 

replaced in the derivation sequence by G. is assumed to have . J . 
been made a member of a global set spZitgraphs. 

To modify the dead variable analysis algorithm appropriately 

we need to know: 

1. How to derive thru and bZkuse 8 sets for the nodes of G. 
J 

(this information is needed given these sets for the nodes of G. 
J 

in the first pass}, and 

2. How to derive the Zive sets for the nodes of G. given 
J 

these sets for the nodes of Gj (this information is needed in 

the second pass}. 

To answer these questions, consider the manner in which the nodes 
-of Gj are defined. Let band sb be nodes in Gj such that 

sb E cesor(b}. The node b represents a (possibly _split} 'copy' 

of the code in the block hd b; similarly, sb represents a 'copy' 

of the code in the block hd sb. If there is a definition-clear 

path, from the entry of hd b, to a use of a variable in hd b, 

there must be a definition-clear path from the entry of b to a 

use in b of the same variable. Therefore, 

(1) blkuse·s {b} = blkuses {hd b} ; 

This defines bZkuses(b). For the same reason, if band sb are 

nodes of G., we put 
.J 

( 2} thru(b,sb} - thru{hd b, hd sb}; 
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~h~se formulas are used if nodesplitting must be employed. The 

·responding formula to be used during the second pass is slightly 

more complicated. If b 1 ,b 2 , ... ,bn are nodes in Gj which all 

represent copies of the code within hd b 1 , then if a variable is 

live on entry to any of the nodes b 1 ,b 2 , ... ,bn it must be live on 

entry to the node hd b 1 in Gj. Therefore we have 

{ 3) 

This transformation will be used in the generalized routine liveint 

shown below: in calculating live{b) a flag isplit will tell us when 

we deal with a split graph; we will always execute the following 

SETL statement:· 

(4) if isplit then live{hd b) = live{b)+live{hd b) orm nt; 

This will ensure that the summation shown in (3) is performed, 

and that the correct value will have been assigned to live{hd b) 

for each node b of G. by the time processing of G. is terminated. 
J . J 

The transformations (1) and (2) will be applied in an initialization 

block at the beginning of the routine process. 

The modifications described above suffice to specify a correct 

live-dead analysis procedure for a program whose derivation sequence 

includes split graphs. 

The following SETL algorithm incorporates these modifications. 

The reader will note that it is identical to the algorithm presented 

earlier except for the insertion of the transformations described 

above. 

define process{interval); 

/* pred, cesor,blkuses, thru, allvars, ~split are global*/· 

path= nt; insidesofar = nt; 

path{interval{l)) = allvars; 

/* test for split cases*/ 

if isplit then 

(1 <Vi< #interval) 

b = interval(i); blkuses(b)=blkuses(hd b); 

(Vsb E cesor(b)) thru(b,sb) = thru{hd b, hd sb) ;; 

end Vi; 

end if; . 
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insidesofar =blkuses(interval(l)); 

/* pass through the interval in interval order*/ 

(2 2 Vi 2 #interval) 

b = interval(i); 

path(b) = [+: pbEpred(b)] (path(pb)*thru(pb,b)}; 

insidesofar = insidesofar + (path(b) * blkuses(b)); 

end 'ti; 

/* now calculate thru and inside for the interval*/ 

blkuses(interval)= insidesofar; 

(VyEcesor(interval}) 

preint:=pred(y(l)) * {nln(j)Einterval}; 

thru(interval,y) = [+: bEpreint] (pa~h(b) * thru(b,y(l))) orm ni; 

end Vy; 

return; 

end process; 

define passl(seqd); /*isplit and splitgraphs are assumed global*/ 

(1 < \ti < #seqd) 
isplit = (i-1) E splitgraphs; 
process[hd seqd(i)]; 

end \ti; - · 

return; 

end passl; 

define livevars(seqd) 

/* live, blkuses 

passl (seqd) ; 

are assumed to be global*/ 

/* set live set for the single node*/ 

live (3hd seqd(#seqd)) = blkuses(3hd s~qd(#seqd)); 

pass2(seqd); 

return; 

end livevars; 

define pass2(seqd) ;/*isplit and splitgraphs are assumed global*/ 

(#seqd ~ \fi > 1) 

isplit = (i-1) E splitgraphs; liveint[hd seqd(i)]; 

end 'ti; 

return; 

end pass2; 

-450-



~~~ine liveint(interval); 

cesor, pred, thru, blkuses, live and i·split are global */ 

/* pass through the interval in reverse order*/ 

live(interval(l)) = live(interval); 

(#interval~ Vi~ 2) 

b = interval(i); live(b)· = blkuses(b); 

(Vsb E cesor (b)) 

live(b) = live(b) + (thru(b,sb)) * 

(if 3yEcesor(interval) lsb ~ y(l) then live(y) else live(sb)) 

end \fsb; 

/* test for split nodes*/ 

if isplit then 

live(hd b)=live(b) orm nt+(live(hd b) orm nt); 
end if; - - - -

end \ti; 
return; 

end liveint; 

The above represents the complete live-dead analysis algorithm 

with node-splitting included, in a form which is suitable for 

implementation as part of an optimizing compiler based on interval 

techniques. 
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* 
5. An Algorithm for Redundant Expression Elimination and Code Mo~ion. 

We will now describe a redundant expression elimination algori 

This algorithm will include both 'profitability of motion' and 

'safety of motion' considerations. The approach used will be a 

new one: we shall handle all code motion and 'hoisting' by 

inserting computations at interval entries, allowing the common 

expression elimination routine to do the rest. 

'Safety' {see below) will be handled by a systematic analysis 

similar to that used in the live-dead trace algorithms_described 

in the preceding ppges. Profitability is handled using a 

somewhat heuristic scheme based on the assumption that it is 

profitable to move code·out of strongly-connected regions. 

To make the structure of our algorithm plain, we will now 

describe various of its aspects separately: first a simple 

calculation-redundancy algorithm will be described; then we will 

show how this algorithm can be generalized to handle code motion; 

and a final generalization will yield an algorithm incorporating 

safety considerations as well. 

i. Redundant Expression Elimination {availability computation) 

To accomplish redundant expression elimination, we compute sets 

avail(b) for each block bin the control flow graph. For a given 

block b, avail(b) is the set of expressions which are always 

available on entry to b. Note that we say that an expression is 

available at a given point in a program if, along every path leading 

to this point, there will be found a computation of the expression 

not followed by any reassignment of the value of one of its inputs. 

This implies that the computation is redundant, since a previously 

computed value of the same expression is immediately available for 

reloading. Once we have the avail sets we can determine those 

expressions which are redundant.within a basic block by a simple 

linear scan. 

How can we compute the avail sets? Suppose that an initial 

scan of the basic blocks produces the following sets associated 

* Most of the. material in this subsection is taken from 
SETL Newsletter 28 by K. Kennedy. 
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... .;-l:h a block band its· immediate successors sb. 

expdown(b,sb) the set of expressions which are "downward expo8ed" 

on a path through b to s9; that is, the set of expressioris 

which are computed on each path through b to sb and are not 

subsequently "killed" by a redefinition of one of their 

arguments. Note that expdown(b,sb) contains those sub
expressions whose values are always available on exit from 

b to sb, irrespective of the code preceding b. 

2. nokill(b,sb) the set of expressions which are available on· exit 

to sb from b whenever they are available on entry to b. 

Note that, since every element of e$pdown(b,sb) is uncondi

tionally available on exit to sb from b we have 

expdown(b,sb) c nokill(b,sb). 

Using these sets, we are able to state a xormula for the avail sets. 

If a subexpression is to be available on entry to block b, it must 

be available on exit from each of its predecessors pb. 

To be available on exit from pb, it must either be downwards 

exposed in pb or it must be available on entry to pb and not 

killed in pb. These conditions are expressed by the following 

SETL code fragment. 

(1) avail(b) = [*: pb E pred(b)] (nokill(pb,b)*avail(pb)+expdown(pb,b)); 

This formula expresses the avail set for bin terms of the avail 

sets for the predecessors of b. An expression of this kind implies 

that analysis should start at the beginning of the program and 

proceed forward through the basic blocks. However, the term 

"forward" means little in a graph with cycles unless we take 

advantage of the Cocke-Allen interval partition. We know that we 

can assign a total order to the nodes of an interval; therefore we 

compute availability within an interval conditionally on assump

tions which must be made concerning availability on entry to the 

interval. 

Suppose that comps is the set of all expressions under consider

ation. One of two extreme assumptions might be made about 

:il (interval): 
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i. all subexpressions are available on entry to the interval. 

ii. no subexpressions are available on entry to the interval. 

Corresponding to these two assumptions, we define two new sets: 

1. posavail (b) 

2. defavail{b) 

the set of expressions which are available on 

entry to b, assuming all expressions are 

available on entry to the interval containing b. 

the set of expressions which are available 

on entry to b, assuming that no expression is 

available on entry to the interval containing b. 

Then avail(b) can be expressed as a linear combination of these 

sets. An expression is available on entry to b if it is in 

defavail(b) or if it is in posavail(b) and is available on entry 

to the interval containing b. 

(2) avail(b) = avail(interval) * posavail(b) + defavail(b); 

The auxiliary sets, posavail and defavail; are easy to compute 

if we process the nodes of the interval in interval order, 

applying the appropriate analogs of equation (1) at each node. 

Interval order is important because equation (1) requires that 

we compute the posavail and defavail sets for all predecessors 

of a. node before processing that node. If we assume that each 

interval is the sequence of its nodes in interval order (i.e., 

interval(!) is the head of interval, etc.), then computation 

can proceed as follows. 

/* initialization first*/ 

posavail(interval(l)) = comps; 

defavail(interval(l)) = nl; 

/* pass through nodes in interval order*/ 

(2 <Vi< #interval) 

b = interval (i) ; 

posavail(b) = [*: pb E pred(b)] 

(posavail(pb) * nokill(pb,b) + expdown(pb,b)); 

defavail( b) = [*: pb E pred(b)] 

(defavail(pb) * nokill(pb,b) + expdown(pb,b)); 

end \ti; 
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'T'h i.s code is not enough, however, because it does not take account 

the possibility that, because of branches to the head from 

within the interval, a computation available on entry to the 

interval may not be available on entry to its head. Let headav be 

the set of all expressions which wilJ be available on entry to 

the head of the interval, on the assumption that all computations 

are available on entry to the interval. 

(3) headav=[*: pb E (pred(interval(l)) ,* nodes(interval))] 

(posavail(pb) * nokill(pb,interval(l)) 

+ expdown(pb,interval(l))); 

In a full computation of computation availability, we must modify 

each posavail set to reflect the fact that only the computations in 

headav can actually be available on interval entry. This can 

be done by applying the analog of equation (2) above, i.e., by 

using the following SETL code sequence. 

/* modify posavail sets*/ 

(2 <Vi< #interval) 

b = interval(i); 

posavail(b) =headav * posavail(b) + defavail(b); 

end Vi; 

(Note that interval orde.r is not crucial to this last oper_ation.) 

Finally, in order to be able to iterate the above-described 

process for higher order intervals, we must compute expdown and 

nokill sets for each interval. Suppose sint is an immediate 

successor of inte~val. An expression is in expdown(interval,sint) 

if, for every predecessor b of sint(l) in interval, either the 

expression is downwards exposed in b or the expression is 

in def avai.l (b) and is not killed in b. Hence the following code 

fragment: 

/* comp~te expdown for interval*/ 

expdown(interval,sint) = [*: bE(pred(sint(l)) * nodes(interval))] 

(defavail(b) * nokill(b,sint(l)) + expdown(b,sint(l).)); 

Similarly, an .. expression is in nokill(interval,sint) if, for 

:ry predecessor b of sint(l) in interval, it is either in 

fU~avail(b) and not killed in b or it is downwards exposed in b • 
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/* compute nokill for interval*/ 

nokill(interval,sint) = [*: b E (pred(sint(l)) * nodes(interval)) 

(posavail(b) * nokill(b,sint(l)) + expdown(b,sint{l))); 

The code fragments which have been shown will now be incorporated 

into a SETL routine redprocl(interval). To abbreviate this routine, 

which is shown below, we use a function transf which simply applies 

the transformation shown by equation (1). 

definef transf{pb,b,tset); 

/* expdown, nokill are global*/ 

/* compute linear transition*/ 

return (tset(pb) * nokill(pb,b) +expdown(pb,b)); 

end trans£; 

The routine redprocl accepts, as its only argument, a sequence of 

nodes (in interval order) constituting an interval. 

define redprocl(interval); 

/* cesor, pred, defavail, posavail, comps, nokill, expdown 

are all assumed to be global*/ 

/* initialize for processing*/ 

head= interval{l); 

defavail(head) = nt; 

posavail(head)= comps; 

/* define the set of nodes in the interval*/ 

intnodes = {interval(i), 1 ~ i ~ #interval}; 

/* the first pass to get defavail and an initial estimate of 

of posavail */ 

(Vb(i) E interval I i ~ 2) 

preds = pred(b); 

defavail(b) = [*: pb E preds] transf(pb,b,defavail); 

posavail(b) = [*: pb E preds] transf(pb,b,posavail); 

end Vb(i); 

/* compute the set of subexpressions actually available on entry 

to the head*/ 

headav= [*: pb E (pred(head) * intnodes)] transf{pb,head,posavai 

posavail{head) = headav; 
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I* recompute the posavail·sets */ 

> (i) E interval I i 2: 2) 

posavail(b) =headav * posavail(b) + defavail(b); 

end \fb ( i) ; 

/* compute expdown and nokill sets for the interval*/ 

(Vsint E cesor(interval)) 

preds = pred(sint(l)) * intnodes; 

expdown(interval,sint) = [*: b E preds]transf(b,sint(l) ,defavail); 

nokill(interval,sint)=[*:bEpreds]transf(b,sint(l) ,posav~il); 

end Vsint; 

end · redproc r; 

To calculate expression availability (i.e. redundancy) we apply the 

preceding routine, first to each interval in a control flow graph, 

then to each interval in the first derived.graph, and so on until 

we reach a highest order graph which·We assume reduces the program 
to a single interval I. Since no expression is available on 

entry to the program, we have 

avail(I) = nR.; 

as an initial equation. We use this fact and equation (2) to 

compute avail sets for the nodes of the highest order 

then for the next highest order and so on, making sure 

that the avail set is computed for each interval entry before the 

nodes of that interval are processed. This process will terminate 

when avail(b) has been computed for every block bin the program. 

The following algorithm, embodying the above observation, 

computes avail sets for the nodes of an interval, given the avail 

set for the interval. Its only input argument, interval, is a 

sequence of nodes (given in interval order). 

define optcess(interval); 

/* defavail, posavail, and avail are assumed to be global*/ 

/* apply equation (2) */ 

(Vb(i) E interval) 

avail(b) = avail(interval) * posavail(b) + defavail(b); 

Vi; 

end optcess; 
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To 'drive' the routines described above we use a routine csx (for 

~ommon ~ube~ression elimination) which accepts an input argument 

seqd; this argument is the sequence, o"f all derived graphs of a 

control flow graph. Thus seqd(#seqd) is the highest order derived 

graph, which we assume reduces the whole initially given flow to 

a single node. The routine csx, which follows, merely applies the 

routines process and optcess in an·appropriate order. 

define csx(seqd); 

/* avail is assumed to be global*/ 

/* inner-to-outer pass to compute posavaiZ and defavail */ 

(Vgraph(k)Eseqdlk ~ 2) (VintEhd graph)redprocl(int) ;;; 

/* nothing available on entry to program*/ 

avai1(;3hd seqd(#seqd))= nt; 

/* outer-to-inner pass to compute availability·*/ 

(#seqd ~ Vk > 1) (VintEhd seqd(k)) optcess (int);;; 

return; 

end csx; 

This completes our description of an initial, simplified, common 

subexpression elimination algorithm. The algorithm which we have 

just described will now be used as a framework into which an 

additional process of code motion will be hung. 

ii. Code Motion (with "Profitability") 

Motion of code out of loops will be accomplished by redundantly 

inserting, at interval entries, computations discovered to be 

movable. The 'redundancy' or 'availability' algorithm just 

described then allows us to remove the same computations from 

blocks within intervals. 'Code motion' will result from the 

combination of these two steps, i.e. will result from insertion 

followed by deletion. 

An expression e is movable out of a block b if it is upwards 

exposed on some path P through the block; that is, if e appears 

on P and is not preceded along P by a redefinition of ariy of 

its arguments. If in this situation we wish to refer to P, we 

will say that e is upwards exposed on P. Let sb be a successor 
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hiock of b. Then movable(b,sb) denotes the set of expressions e 

ich are upwards-exposed. in b on some path leading to sb. 

The second argument sb introduced here is used to take account 

of 'profitability' considerations. We make the assumption that, 

when motion is possible, it is profitable to move expressions out 

of the strongly-connected subpart of an interval, but not out of 

the remainder of the interval. The argument sb of movable(b,sb) 

helps us determine if an expression is in the strongly-connected 

region SCR associated with an interval; indeed, an expression in 

movable(b,sb) lies in SCR if sb is in SCR. We need to make use 

of a similar argument in all levels of processing since it might 

well be desirable to move; out of a high-order interval, an 

expression which it is not profitable to move out of the interval 

which directly contains the expression. 

Our code motion algorithm is structured into two passes. We 

compute the movable sets for each of the intervals of a sequence 

of derived graphs during a first; inner-to-outer pass. On the 

second, outer-to-inner, pass we compute sets insert(interval) 

containing the expressions to be computed on entry to interval. 

This second computation uses a heuristic: insert(interval) 

includes those expressions which are movable out of the interval 

and which appear along paths to every successor of the interval. 

Note that every movable expression in the strongly connected 

subpart of an interval satisfies this criterion: there is certainly 

a path from such a calculation to every successor interval (since 

from a node in the strongly connected part of an interval there 

is always a path to the interval head). 

In SETL notation, the set of expressions which our heuristic 

selects appears as follows: 

[*: sint E cesor(interval)] movable(interval,sint) 

As an example of the working of our heuristic consider the 

following interval I: 
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Interval 

sintl 

A*B 

B*C 

sint2 

Suppose that A*B and B*C are both movable. Then A*B is in both 

movable(interval,sintl) and movable(interval,sint2). Therefore 

a calculation of A*B will be inserted at the entry to I. However, 

B*C belongs only to movable(interval,sint2) so it will not be 

inserted at the entry to I. However, it may be inserted at the 

entry to a higher order interval containing I. 

Note finally that we will not wish to insert any expression 

at a point at which it is already available~ This consideration 

'leads us to the following formula for the set insert(interval). 

(4) insert(interval) = [*: sintEcesor(interval) ]movable(interval,sint) 

- avail(interval); 

We observe at this point that, in the algorithm which follows, 

program exits are represented by special ·pseudo-blocks which can 

never be incorporated into any interval. Consequently every 

interval appearing in the algorithm has at least one successor. 

By changing the routine optaess encountered above the 

calculation represented by equation (4) can be incorporated into 

the second pass of the skeletal availability calculation described 

in the preceding pages. In the algorithm which results, we compute 

insePt(interval) us~ng equation (4) before processing the 

individual nodes; the expressions belonging to this set are adde~ 

to those in avail(interval) to form a set newavail. The set new ~l 
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rnntains all expressions which are available on entry to the 

erval after the expressi,ons in insert(interval) have been 

placed in their new position. The new optcess routine is as 

follows: 

define optcess(interval); 

/* avail, posavail, defavail, movable, insert and cesor are global*/ 
' . 

/* compute insert set using equation (4) */ 

insert(interval) = ([*:sintEcesor(interval)]movable(interval,sint)) 

- avail(interval); 

/* add insert set to availability set for interval entry*/ 

newavail = avail(interval) + insert(interval); 

/* compute the avail sets for nodes of th'e interval * / 
(Yb(i) E interval) 

avail(b) = posavail(b) * newavail + defavail(b); 

end 'lb ( i) ; 

end optcess; 

We now turn to describe the manner in which movable sets will be 

calculated for intervals by an expanded version redproc2 of the red

procl subroutine. Expressions which are movable out of band are in 

posavail(b) but not in defavail(b) are candidates for code motion. 

Indeed, such expressions are redundant at b if and only if they 

are available on interval entry; by inserting them at interval 

entry we make them redundant a-t b. However, profitability enters as 

a complicating consideration. Let sint be an immediate successor 

of interval. We include an expression C in movable(interval,sint) 

if there exists a block b of interval such that C is in 

posavail(b) - defavail(b), and such that C is also in movable(b,sb) 

where sb is either the head of sint or a block from which sint can 

be reached by a path within interval. This formulation is most 

easily captured in SETL if we make use of an auxiliary set path(sb), 

defined to be the set of successors of interval which can be reached 

from sb along a path all but the last node of which is contained 

within interval. In terms of path, the SETL formula we require 

::1.s fol lows : 

movable(interval,sint) = 

[+: b(n) E interval) ((posavail(b) - defavail(b)) * 
[+: sbEcesor(b) I sb=sint(l)· or sintEpath(sb) ]movable(b,sb)); 
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The sets movable defined in this way c~n be computed iteratively 

within redproc2 during the second part of the first pass of an 

overall code-motion/redundancy algorithm (as seen previously, 

this same pass computes the posavail sets using the set Z'atch 

for this purpose). We use reverse interval order, convenient· 

in computing the path sets. At each node b we apply the analog 

of equation (5) above; the set path(b) is computed at the same 

time. In computing path(b) we make use of the fact that there 

exists a path from b to a successor interval sint of interval if 

there either is a path from some successor of b to sint or if the 

head of sint is a successor of b. Note that intnodes is the set 

of all nodes of interval, and that the.map intov gives the interval 

containing a given node. 

/* perform various intializations for interval head, which can be 

successors of later nodes in interval*/ 

sucintervals = cesor(interval); 

path(interval(l)) = sucintervals; 

/* initialize movable sets*/ 

(Vsint E sucintervals) 

movable(interval,sint) = ni; 

end \fsint; 

/* pass through interval in reverse order*/ 

(#interval~ Vi> 2) b = interval(i) 

/* recompute posavail set*/ 

posavail (b) = headav * posavail (b) + def avail (b) ; 

/* compute difference for code motion*/ 

diffmove = posavail(b) - defavail(b); 

/* initialize for computation of path set 

path (b) = ni; 

/* examine each successor of band determine the set sints of 

all intervals which can be reached from b */ 

( Vsb E cesor (b)) 

sints = if sb n E intnodes then {intov(sb)} 

else path(sb); 

/* update movable set for each successor interval that can 

be reached*/ 
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('o'sint E sints) 

movable(interval,sint) = 

movable ( inte.rval, sint) + (diffmove*movable (b, sb)) ; 

end 'vs.int; 

/* update path set*/ 

path(b) = path(b) + sints; 

end 'o'sb; 

end Vi; 

We will for the moment defer presentation of the entire rou~ine 

redproc2with movability included; before giving a complete 

algorithm,-we must deal with the knotty problem of 'safety'. 

iii. Safety of Code Motion 

Consider the following loop: 

A= some value; A*B 

In block. 3, variable A is set to some new value and A*B is 

recomputed. In block 4, A*B is computed also. The methods just 

outlined would cause the expression A*B to be inserted at the end 

of block 1 and eliminated from block 4. However, this ignores the 

possibility that the conditional branch to block 3 shown in the 

preceding .figure was deliberately inserted by a programmer antici

pating and wishing to. avoid a floating point overflow and 

an associated interrupt. By simply inserting A*B in block 1 

we run the risk of thwarting that purpose. What is therefore 

needed for a fully acceptable code motion algorithm is a systematic 

method to determ.i,ne when it is "safe" to insert an expression 

at a given point in a program. An expression is dangerous if, 

criven impropel'.' arguments, it can cause an error interrupt. 

is uns.afe to insert a dangerous computation at a point P · where 

it can cause an error interrupt that might not occur in an untrans-
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formed program executed with the same data. More specifically, 

it is unsafe to insert a dangerous expression at a point P if 

there is a path in the program from P to a program exit which 

does not contain an upwards-exposed instance of the same 

expression (with the same arguments). Such a path might allow 

an error interrupt inevitable in a transformed program to be 

avoided in the original program. 

We will compute unsafe(b) -- the set of all expressions which 

in the sense described above, it is unsafe to insert immediately 

preceding the block b. A kill of an., expression is either a 

redefinition of one of its arguments or a program exit. An 

expression C is in unsafe (b) if there is. a C-clear path (i.e., 

a path which contains no instance of C) to a kill of C. The kill 

may be located in the block b or beyond it. 

Let inskill(b) be the set of expressions for which there is a 

clear path to a kill within b. Let thru(b,sb), where sb is a 

successor of b, be the set of expressions for which there is a 

clear path through b to sb. An expression is unsafe at the entry 

of b if it is inskill(b) or if it is in thru(b,sb) and· unsafe at 

the entry of sb. This relationship is expressed by the following 

SETL code fragment. 

(6) unsafe(b) = inskill(b) + [+: sb E cesor(b)] (thru(b,sb)*unsafe(sb)) 

This equation is of exactly the same form as an equation used in 

the dead variable trace algorithm described previously, and methods 

like those already ·used can be employed·to compute the unsafe sets. 

The basic idea is this: if we have the unsafe sets for an interval 

and each of its successors, we can compute unsafe(b) for each block 

bin the interval by processing the blocks of the interval in 

reverse interval order. To apply equation (6) we must have the 

unsafe sets for each of the successors of b. (The sets inside and 

thru are initially available for basic blocks and are computed for 

intervals by a process to be described below.) In computing 

unsafe(b) we deal with a block band its successor sb; we meet one 

of three situations: 
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1 sb can be another node of the same interval I as b (but not 

the head of I), in which case we will have computed unsafe(sb) 

because we process I in reverse interval order {all successors 

of a node are treated before the node is treated). 

2. sb can be the head of I, in which case unsafe(b) is• 

unsafe(interval), because entry to an interval is identical 

with the entry to its head. 

3. sb can be the head of some interval successor sint of I, 

in which case we use unsafe(sint) for unsafe(sb) 

{same reason as above) • 

It follows that equation (6) can always be applied if we process 

each interval in reverse interval order. 

Now we will describe a way of incorporating the safety computa

tion that has just been sketched into the routine optcess described 

a few pages earlier. Let dangerous be the set of all dangerous 

expressions in the program. We will not insert· any dangerous 

computations at any point of which they are unsafe. This restric

tion leads us to reduce the set insert(interval) as follows. 

(7) insert(interval) = insert(interval)-{dangerous*unsafe{interval)); 

This leads to the following final version of the optcess algorithm: 

define optcess{interval); 

/* avail, posavail, defavail, movable, insert, dangerous, inskill, 

thru, unsafe, and cesor are assumed to be global*/ 

/* compute insert set using equation (4) */ 

insert(interval) = { [*: sint E cesor{interval)] 

movable{interval,sint)) - avail{interval); 

/* reduce insert set for safety {cf. equation (7)). */ 

insert{interval) = insert{interval) -

(dangerous* unsafe{interval)); 

/* add inserted subexpressions to avail set for interval entry*/ 

newavail = avail{interval) + insert{interval); 

I* compute avail and unsafe sets for nodes of interval*/ 

Lnterval >Yi> 1) b = interval(i); 

/* equation (6) */ 
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avail{b) = posavail{b) * newavail + defavail{b); 

unsafe{b) =inskill{b) + 

[+: sb E cesor (b)] {thru {b ,sb) * unsafe {sb)) ; 

end \fi; 

end optcess; 

Next we turn our attention to the changes to redprocl that 

are required to compute the sets inskill and thru on pass 1 of 

a final, overall, code motion algorithm. The problem is to 

compute these sets for an interval when we have them for the 

nodes of that interval. Let taux(b) be the set of subexpressions 

for which there is a clear path within.the interval from the 

interval entry to the block b. Clearly, 

{ 8) taux(interval(l)) = comps; 

since a null path can have no redefinitions on it. For all other 

nodes b, there is a C-clear path from interval entry top if 

there is such a path to some predecessor pb of band through 

pb to b . Th us : 

(9) taux(b) = [+: pb E predecessors{b)] {taux{pb) * thru(pb,b)); 

There is a C-clear path through interval to one of its successor 

intervals sint if there is a C-clear path to a predecessor pb 

of sint within interval and a C-clear path through pb to sint(1). 
Thus: 

(10) thru(interval,sint) = 

[+: pb E {pred(sint{l)) * nodes(interval))] 

{taux{pb) * thru{pb,sint{l))); 

There is a C-clea~ path to a kill within interval if there is such 

a path to b {within the interval) and C is in inskill(b}. 

(11) inskill{interval) =[+:bEnodes{interval)] {taux{b)*inskill{b)); 

The following final version of a revised version redproc2 

of the previously given redprocl includes the computations just 

displayed. Note once more that intnodes is the set of all nodes 

of an interval, and that the map intov gives the interval conta: .g 

a given node. 
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rlefine redproc2 (interv.al·) ; 

cesors, pred, defavail, posavail, comp.s, nokill, expdown, 

inskill, thru, movable, and path ar~ all assumed to be global*/ 

/* initial~ze fo~ processing*/ 

qead =interval(+); 

defavail{h~ad) = nt, 

posavail(heaq) = comps; 

taux{hea,d) = comps; inskill{interval) = nt; 

/* define the ~et of nodes in tne interval*/ 

i~tnodes ~ {nd$, nds{i) E int~rval}; 

/* the first pa$S to g~t 4efavail, :inskill(interval), taux, and 

an initial estimate of posavail */ 

(2 <Vi~ #interval) 

b = interval {i); 

preq,s == pred{p); 

/* equation (1) ~/ 

defavail{b) = [*: pb E preds] transf{pb,b,defavail); 

posavail(b) = [*: pb ~ preds] transf(pb,b,posavail); 

/* equatiop (9) */ 

taux{b) = [t; pb E preds] {taux{pb) * t4ru{pb,b)); 

/* equation {11) */ 

in~kill(interval) = i~ski+l{interval) + taux{b) * inskill{b), 

epd \ti; 

/* compute the set of expressions actually available on entry 

to head*/ 

headav= [*: pb E (pred{head) * intnodes)]transf{pb,head,posavail); 

posavail (heaq) .= h~adav; 

/* form set of su9cessor intervals*/ 

sucintervals = c~sor (int~rval); 

pa~h{intervql(l)) = sucinteryals; 

/* initialize mqvable $ets */ 

(\fsint E s~cintervals) 

!flOVable(int;erval,sint} = nt; 

eno \fsint; 

/~ pas~ through interval in reverse order*/ 

nterval > \fi > 2) . . -
b = interval.(i).; 
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/* recompute posavail set*/ 

posavail(b) = headav* posavail(b) + defavail(b); 

/* compute difference for code motion*/ 

diffmove = posavail(b) - defavail(b); 

/* initialize for computation of 'path' set*/ 

path(b) = n.R.; 

/* examine each successor of band determine which intervals 

can be reached (the set sints) */ 

(v'sb E cesor (b)) 

sints = if sb n E intnodes then {intov(sb)} else path(sb); 

/* update movable set for each successor interval that can 

be reached·*/ 

( v'sin t E sin ts) 

movable(interval,sint) = 

movable(interval,sint) + (diffmove *movable(b,sb)); 

end Vsint; 

/* update path set*/ 

path(b) = path(b} + sints; 

end ·vsb; 

end v'i; 

/* compute expdown, nokiZZ, and thPu sets for the interval*/ 

(Vsint E sucintervals) 

preds = pred(sint(l)) * intnodes, 

expdown(interval,sint)=[*:bEpreds]transf(b,sint(l) ,defavail); 

nokill(interval,sint)=[*:bEpreds]transf(b,sint(l) ,posavail); 

/* equation (10) */ 
thru(interval,sint)=[+: bEpreds] (taux(b} * thru(b,sint(l))); 

end Vsint; 

end redproc2; 

All that is left is to redefine the overall driving routine for 

the redundancy code-motion process. We shall rename this main 

routine asxam (common expression elimination-code motion). The 

steps needed to treat code motion are now clear; 

to incorporate safety considerations, we must compute the unsafe 

set for the outermost interval. Let exits be the set of pseudo· 

blocks which serve as program exits. At each exit, everything is 

unsafe, so 
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fl 2) (Ve E exits) unsafe (e) = comps;; 

Given this initialization, we can compute unsafe(intervaZs(#intervaZs)) 

using equation (6). The overall code for csxcm, whose single 

parameter is the derived sequence dseq of a program graph, is then 

as follows. (Note that, in accordance with our overall treatment 

of exit nodes, these nodes are assumed never to be absorbed into any 

interval; thus they remain in the final graph of dseq as the 

only successors of the unique 'program interval' to which an 

originally given program is finally reduced. 

define csxcm(seqd); 

/* cesors, avail, comps, inside, thru, exits, and unsafe 

are assumed to be global*/ 

/* inner-to-outer pass*/ 

(\fgraph(k)Eseqdlk ~ 2) (\fintEhd graph)redproc2 (int);;; 

/* nothing available on entry to program*/ 

avail (3hd seqd(#seqd) )= nt; 

/* everything unsafe at exits*/ 

(\fe E exits) unsafe(e) = comps;; 

/* equation (6) */ 

progin t= 3hd seqd ( #seqd) ; 

unsafe(progint) = inskill(progint)+ 

[+: e E cesor(progint)] (thru(progint,e) * unsafe(e)); 

/* outer-to-inner pass to complete optimization*/ 

(#seqd ~ \fk ~ l} (Vint E hd seqd(k)) optcess(int ) ;; ; 

end csxcm; 

This completes our description of the common subexpression elimina

tion code motion algorithm. The SETL algorithm just presented has 

been programmed for readability rather than efficiency. Various 

detailed changes improving efficiency can be contemplated. We leave 

consideration of such. improvements to. the reader. 
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* 6- Operator Strength Reduction 

i. Introduction. 

Operator strength reduction, sometimes simply called reduction 

in strength, is an optimization procedure generalizing optimization 

by code motion. Typically, strength reduction allows an 'expensive' 

operation like multiplication to be replaced within a loop by addi

tion, an operation which is ordinarily faster. Similarly, exponen-. 

tiation may in some cases be replaced by multipl~cation, and, more 

generally, calculations which can be performed incrementally 

replaced by their incremental forms. In the pages which follow we 

will confine ourselves to a discussion of the reduction to repeated 

addition: of multiplications occurring within a loop. Not wishing 

to extend the present section to a systematic treatise on optimiza

tion techniques, we will give only a simplified account of a 

central aspect of this potentially complex optimization. 

We begin with an example illustrating the significance and 

utility of strength reduction. Let a programming language (such 

as FORTRAN or ALGOL) providing arrays of fixed dimension be given, 

and-suppose that within such a language a loop 

(A) 

i = 1 
1 abe 1 : a ( i , j ) 

i = i+l 

b(i,j) 

if(i .le. 10) go to label 

is used to transfer values from one l0xlQ array to another. 

The code produced by naive compilation of this source (but 

assuming elimination of redundant.calculations) will be roughly 

* The material in the following 
SETL Newsletter 102~ entitled 
Temporaries. Like most other 
optimization, the basic ideas 

pages is adapted from K. Kennedy's 
Reduction in Strength Using Ha, 

things in the technique of code 
go back to John Cocke. 
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('R) 

label: 

. . . 
i = 1 

tl = i-i 

t2 = tl * 10 

t3 = t2 + j 

a{t3) = b{t3) 

i = i+l 

if{i .le. 10) go to label 

A reduction in strength algorithm like that shortly to be described 

will° eliminate the multipli~ation appearing in the foregoing code, 

transforming this code into something approximating 

(C) 

i = 1 

ti*lO = i*l0 

label: tl = i - 1 

tt *10 = ti*lO - 10 
1 

t2 = tt1*10. 

t3 = t2 + j 

a{t3) = b (t3) 

i = i + 1 

ti*lO = ti*lO + 10 

if (i • le. 10) go to label 

tn writing the code sequence {C), we have introduced a notation 

which reveals something of the method to be employed in the 

algorithms to follow. Specifically, the symbol ti*lO is used to 

represent an auxiliary variable which, at eacn moment, contains 

the current value of the expression i*l0. Simi~arly, tt
1

*l0 

represents an auxiliary variable which always contains the current 

va1·ue ·of t 1 *10. 
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A subsequent process, not now to be described, which 

combines variable names designating the same value, and which 

eliminates the computation of dead results, can reduce this code 

to a form which is essentially 

(D) 

label: 

i = l 

ti*lO = i * 10 

tt
1

*10 = ti*lO - lO 

t3 = tt· *10 + j 
1 

a(t3) = b(t3) 

i = i + 1 

ti*lO = ti*lO + lO 

if (i .le. 10) go to label 

Good hand-coding for this same loop would-be 

(E) 

or, still better, 

i = 1 

t4 = i * 10 

ts= j - 10 

t3 = t4 + ts 

label: a(t3) = b(t3) 

i = i + 1 

t3 = t3 + 10 

if(i .le. 10) go to label 
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(F) 

i = 1 

t4 = 10 

ts = j .. 10 

t6 = j + 90 

t3 = t4 + ·t .·5 

label: . a ( t3) = b (t3) 

t3 = t3 + 10 

if (t3 .le. t6) go to label 

Note, however, that whereas the transformation of (D) into (E) 

can be accomplished by an extension of the methods which we are 

about to explain, transform~tions like that carrying (E) into (F) 

require the use of optimization techniques which we shall not 

discuss at the present time (linear text replacement). 

On many large computers the loop in (F) will run 75~ faster 

than the code shown in (A). 

In applying reduction in strength, we consider some strongly 

connected.subregion scp of a program graph (as, for example, the 

strongly connected subpart of an interval).... A quantity is a 

region constant (relative to scp) if its value never changes 

within scP. Region constants can be detected (and their computations 

moved out of scP) by the code motion algorithms described in the 

preceding section. In what follows, we shall assume that this has 

been done; we shall denote region constants (relative to an assumed 

region scP) by the symbols c,c 1 , ... etc. As already noted, the 

idea of reduction in strength is to replace each multiplication 

X = i * C 

occurring in scP by an assignment 

X = t 

+e · t is a temp,orary which holds the current value of i * c over 

-··~ entire r'egion scP. We sh,all i,n general denote the temporary 
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" 
introduced for this purpose by 

t.* ; l C 

thus t.* will contain the value of i*c. 
l C 

To use this approach we must do two things to assure that t.* 
l C 

always contains the correct value. 

1) 

2) 

(1) 

An initialization of the form t.* + i*c must be inserted just 
. l C 

prior to entry to scr. For this purpose, it is useful to 

assume that each strongly connected region has a prolog --

a basic block which is always executed just prior to entering 

the region. New initializations will be inserted at the end 

of the prolog. 

After each instruction which modifies i we must insert an 

instruction which adjusts the value oft.* appropriately. 
l C 

This implies some slight complications since instructions 

of the following forms can occur. 

Instruction oeeration to be Inserted 

i + c2 t.* + t 
C *c l C 2 

i + -c t.* + -t 
C *c 2 l C 2 

i + j + c2 t.* + t.* + t 
ci*c l C J C 

i + j - c2 ti*c + t.* - t 
C *c J C 2 

This table shows that we must not only create temporaries for i*c 

but also for j*c and c 2 *c for every j and c 2 that can affect the 

value of i. In addition, we must insert initializations and 

modifications for all those temporaries. In what follows, we 

will describe a systematic procedure for doing this. 
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ii. Representation of the code to be Optimized. 

Since to optimize by reduction in strength we must involve 

ourselves with code details finer than those which have yet been 

considered, we shall now outline a hypothetical form of inter

mediate code representing the text to be optimized. We schematize 

this code, i.e. represent only its relevant aspects. Generally 

speaking, we take intermediate code to be a set of SETL blank atoms 

(each corresponding to one elementary instruction). A function next 

structures this collection of nodes as a list; a function op 

associates an instruction vector with each node. 

Let at be an atom of code. 

a. op(at) is the operation code for the instruction. The value 

op(at) is a-tuple, generally giving the input variables and 

output variables for an operation, but in some cases (and 

epsecially for transfers and conditional transfers) giving 

somewhat different information. The kinds of operation tuples 

provided, and the specific forms assumed for them, are as follows. 

Operat.ion Type 

No-op 

Halt 

Add 

Subtract 

Negate (x = -y) 

Transfer (x=y) 

Multiply 

Function-call 

Subroutine-call 

Indexed load 

Indexed store 

Branch 

Form of Corresponding Tuple 

<noop-opcode> 

<halt-opcode> 

<add-opcode, out-var, in-var
1

, in-var 2 > 

<sub-opcode, out-var, in-~ar 1 , in-var 2 > 

<neg -opcode, 

<sto·-opcode, 

out-var, in-var> 

out-var,in-var> 

< mul t-opcode , out-var , in-var 1 , in-var 
2 

> 

<fcall-opcode,out-var,in-var 1 , ... , in-varn> 

<scall-opcode, in-var 1 , ... ,in-varn> 

<ixt-opcode, out-var,array-name,index-var> 

<ixs-opcode, array-name, index-var, in-var> 

<branch-opcode> 

Branch conditionally <cbranch-opcode, in-var> 
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b. The function next maps each node n representing a 

non-branch instruction into its successor instruction in the 

body of intermediate code being processed. If n represents 

a conditional transfer, then next(n) is a pair <nl,n2>,. 

the two components of this pair being the two possible successor 

nodes. 

c. The operation code associated with an operation is 

always the first component of the tuple which describes the 

operation. The macro 

macro opn(at) = op(at) (1) endm; 

retrieves this code. 

d. The standard 'target variable' for an operation (such as 

an add, a store, or a function call) which produces an 

output will in each case be the second component of the vector 

op (at). Hence, the macro 

macro targ(at) = op(at) (2) enclm; 

retrieves this variable. 

e. The two arguments of operations like add and mult are 

retrieved by the macros 

macro argl(at) = op(at} (3) endm; 

macro arg2(at) = op(at) (4) endn; 

The first of these macros can also be used to retrieve the 

unique argument of the operations neg and sto. 

f. When applied to a node at, the auxiliary function args 

returns a tuple whose components are the input arguments of 

the operation represented by at. Code for this very simple 

function will not be given explicitly. 

Note that "store" (sto} moves the value of its argument 

to the target. "Negate" (neg) negates the value of its argument 

before moving it to the target. "Add" (add) adds its two input 

operands and places the result in its target variable; 

"subtract" (sub) and "multiply" (mul t) have equally obvious actions. 
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Our algorithms will occasionally insert instructions into 

i code contained within a strongly-connected program region, 

so we will need a subroutine to insert an instruction after 

another instruction. We will never insert code immediately 

after a branch instruction, so the complicated flow problems 

which such insertion would raise need not be dealt with. 

The insertion routine insert shown below has a rather 

trivial structure. It.inserts an operation optupl in codeset 

at a position immediately following the node nd. 

define insert(optupl, nd, codeset); 

/* op, next are assumed to be global*/ 

/* get new blank atom and insert it into the code set*/ 

node= newat; codeset = codeset with node; 

/* attach operation to new node*/ 

op(node) = optupl; 

/* make node the successor of nd */ 

<next(node) ,. next(nd)> = <next(nd), node>; 

return; 

end insert; 
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iii. Finding Induction Variables. 

One of the first tasks of the strength reduction process is 

to locate the induction variables appearing in a strongly-connected 

program region. In general, induction variables are those 

variables which are defined in terms of region constants and 

other induction variables by operations of the following form: 

X + ± y 

X + y ± Z 

where y and z are either region constants or induction variables. 

To locate induction variables ,a process of elimination is used. 

Specifically,we use the following scheme for finding variables 

which are not induction variables. Let indvars designate the set 

of all induction variables and let rconsts designate the set of 

region constants for our strongly-connected region. 

i. If xis the target of an operation whose code 

is not one of {neg,add,sub,sto}, then xis not in indvars. 

ii. If there exists a subroutine call instruction s 

in the strongly-connected region such that x E args(s), 

then xis not an.induction variable. This restriction 

removes from indvars all variables which could be modified 

by a subroutine side effect. 

iii- If xis the target of any operation one of whose inputs is not 

in indvars + rconsts, then xis not in indvars. 

The algorithm for finding induction variables proceeds by 

passing through the nodes of the set scr (the strongly-connected 

region), and by collecting all variables which are targets of 

{add,sub,sto.neg} into a set indvars while collecting all 

subroutine arguments into a set subargs. The difference between 

these two sets gives an initial approximation to the set of 

induction variables. We then pass through the code repeatedly 

applying restriction (iii) until no more variables can be 

eliminated from indvars. 

SETL as follows. 

The routine findivars is coded in 
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~~fin~l lindivars(sdr,r~oh§ts) j 

op is assumed to be global*/ 

/* sc1' is the set of nodes of the strongly-connected region, 

Peons ts is the set of region constants, 

indvaPs is the set of induction variables, 

subaPgs is the set of variables which are arguments 

ivnodes is the set of instruction nodes which 

assignments to variables in indvaPs */ 
<indvars, subargs, ivnodes> =<ni,ni,ni>; 

make 

to subroutines, 

/* pass through the region applying rules (i) and (ii) to get 

an initial approximation for indvaPs */ 

(Vn E scr) 

if opn(n) E {add,sub,sto,neg} then 

indvars = indvars with targ(n); 

ivnodes = ivnodes with n; 

else if opn(n) ~ scall then/* rule (ii) */ 

subargs=subargs+{(args(n)) (i), l~i~#args(n) }; 

else if opn(n) E {mult, fcall, ixs,ixi} then/* rule (i) */ 

subargs = subargs + targ(n); 

end if; 

end Vn; 

/* take the difference to form the approximation .* / 

indvars = indvars - subargs; 

ivnodes = {n E ivnodes I targ{n) E indvars}; 

/* we can now restrict our attention to ivnodes -- the set 

of instructions which modify p·otential induction variables. 

we pass through ivnodes, eliminating induction variables 

which do not obey reStrict~on(iii)*/ 

oldiv = ni; 

(while indvars ne oldiv) oldiv =· .. indvars; 

(V n E . i vnodes I argl (n) n E. (indvars+rconsts) or 

arg2{n) n E (indvars + rconsts)) 

indvars = indvars less targ{n); 

end Vn; 

/* reduce ivnodes */ 

ivnodes = {n E ivnodes I targ(n) E indvars} 

end while: 
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return ·<indvars,ivnodes>; 

end f indi vars ; 

Note that the value returned by the function fin di vars is a pair, 

consisting of the set of all induction variables and the set of 

all instructions which modify those variables. 

iv.Finding Candidates. for Reduction 

The algorithm given below 

tions of the form 

aims 

i * C 

to reduce all multiplica-

where i is an induction variable and c is a region constant. 

These multiplications can be found by·passing through the 

region and checking the arguments of all multiplications. 

The following routine findcands returns the set of nodes which 

represent operations of appropriate form having appropriate 

arguments. 

definef findcands(scr,rconsts,indvars) 

/* op is assumed to be global*/ 

/* scr is the region, rconsts is the set of region constants, 

indvars is the set of induction variab.les * / 
/k initialize*/ 

cands = n.R-; 

/* pass through scr looking at multiplications*/ 

(Vat E scr I opn(at) ~ mult) 

if argl(at) E indvars and arg2(at) E rconsts then -- . 
cands = cands with at; 

else if arg2(at)Eindvars and argl(at)Erconsts then 

/* switch arguments to establish canonical form*/ 

<argl(at) ,arg2(at)> = <arg2(at) ,argl(at)>; 

cands = cands with at; 

end if; 

end Vat; 

re turn cands ; 

end findcands; 
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v. The Temporary Table •. 

The idea of reduction in strength is to replace 

X = i * C 

by 

X = t 

where t is a temporary which holds the current value of i * c 

over the ·entire region. A variable ti*c will be generated 

for each multiplication operator which we reduce; this temporary 

contains the value of i * c. Initializations and modifications 

must be inserted for these temporaries. The various cases 

which will arise are sketched on page 315. 

To handle all the cases which can arise we shall use a routine 

which computes a set affect of ordered pairs 

<i,x> 

H.~>;e, i is an induction variable and .x is an induction variable 

or region constant which appears in an assignment to i. This 

routine makes a pass through the scr building an initial affect 

relation from instructions which appear in assignments to induc

tion variables. Additional items are then filled in using a 

transitive closure procedure. 
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definef findaffect(ivnodes,indvars,rconsts); 

/* op is assumed to be global*/ 

/* ivnodes is the set of nodes which set induction varibles, 

indvars is the set of induction variables, raonsts is the set 

of region constants*/ 

/* initiailize so that each induction variable affects itself*/ 

affect= {<~,x>, x E. indvars}; 

/* pass through ivnodes to get the initial affect relation -- any 

operands of an instruction which sets x must affect x */ 

(Vat E ivnodes) x = targ(at); 

if pair args(at) then 

affect{x} = affect{x} + {<x,argl(at)>,<x,arg2{at)>}; 

else 

affect{x} = affect{x} with <x,argl{at)>; 

end if; 

end Vat; 

/* now take the transitive closure: to affect{x}, add any 

variable which affects an induction variable in affect{x} */ 

n = O; 

(while #affect fil n) n = #affect; 

{Vx E indvars) 

affect{x} = affect{x}+ {<x,y>, yEaffect[indvars*affect{x}]}; 

end Vx; 

end while; 

return affect; 

end findaffect; 
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"--:ewe have the affect set we can accomplish strength reduction 

ry neatly using the temporary table. If i*c is a candidate 

for reduction, we must form 

t for all x E affect{i} 
x*c 

inserting appropriate initializations and modifications for 

these temporaries. 

In the SETL routine which follows we shall use a mapping 

t(x,y) which maps x and y to the unique compiler-generated name 

fort*. The initialization instruction required for each 
X y 

temporary will be.inserted at the end of the prolog when the entry 

for that temporary is inserted in the table. This will require 

a pointer plast to the last instruction in the prolog. 

define streduce(prolog,plast,scr,rconsts); 

/* op is assumed to be global*/ 

/* prolog is the initialization block whose last instruction is 

plast, scr is the region, and rconsts are the region constants 

which we assume are found in an earlier code-motion pass*/ 

/* find induction variables*/ 

<indvars, ivnodes> = findivars(scr,rconsts); 

/* find candidates for reduction*/ 

cands = findcands(scr,rconsts,indvars); 

/* calculate the 'affect' relation*/ 

affect= findaffect(ivnodes,indvars,rconsts); 

/* now pass through the candidates creating temporaries and 

inserting initializations and modifications*/ 

(Vat E cands) x = argl(at); c = arg2(at); 

/* create new temporaries as required*/ 

(Vy E affect{x} I t(y,c) = Q) 

t(y,c) = newtemp( ) ; 

/* the function newtemp, for which code will not be 

shown, is assumed to return a compiler generated 

variable name*/ 

/* insert initialization instruction in prolog */ 
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insert(plast,<mult,t(y,c) ,y,c>,prolog); 

/* avoid double entries in the const*const case*/ 

if y E rconsts then t(c,y) = t(y,c) ;; 

/* insert modifications to the new temporaries after 

instructions which set induction variables*/ 

(Vn E ivnodes I targ(n) ~ y) 

newargs = if pair args(n) then <t(argl(n) ,c) ,t(arg2(n) ,c)> 

else <t ( argl (n) , c) >; 

/* the inserted instruction has the target t(y,c), involves 

the same operation as n, and has newargs as its argument*/ 

insert(n,<opn(n),t(y,c) > + n.ewargs,scr); 

end \/n; 

end 'dy; 

/* now replace the candidate operation entry by a store operation*/ 

op(at) = <sto, targ(at), t(x,c)>; 

.end \fat; 

end streduce; 

This completes the presentation of our strength reduction algorithm. 

It is appropriate to note two of the limitations of this 

algorithm as presented. 

(1) The algorithm does not include a systematic clean-up 

of the code; i.e. it generates more temporaries than are minimally 

necessary and does not subsequently eliminate them. 

(2) The algorithm does not recognize the fact that generated 

temporaries are themselves induction variables. 

It is possible to develop more complex strength reduction 

algorithms in which these shortcomings are removed; however, 

we shall not do so now. 
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7. Some Packing Algorithms Useful in Register Assignment. 

Packing algorithms are used in optimizers to assign quantities 

to registers in a~ effective way. We shall conclude this section 

by giving two algorithms of this kind. In each case, we assume 

that the quantities to be assigned form a sets on which a map 

inter is defined; if x E inter(y), then x and y are "interfering" 

quantities and cannot be assigned to the same register. The 

algorithms to be described will establish a map rep on s; each 

y Es will then be assigned the same register as rep(y), so that 

only those x with rep(x) §:g_ n need be assigned registers to begin 

with,· and the other assignments will follow automatically. The 

number of registers required is then equal to #{xesjrep(x) §:g_ n}; 

we wish to reduce this quantity to a minimum. Naturally, if 

rep(x) and rep(y) are to be the same, x and y must be non-interfering. 

It should be noted that the problem we shall discuss is 

formally identical with that of coloring the nodes of a graph in 

such a way that no two adjacent nodes have the same color. The 

minimal number of colors required is the so-called chromatic number 

of the graph. The problem of finding a minimum coloring is now 

known to belong to an extensive class of mutually equivalent 

problems, all of which are strongly suspected of requiring 

exponentially many steps (in terms of their given data) for exact 

solution. The considerably more efficient algorithms which will 

be presented in the following pages are consequently algorithms 

which give a good, but not always the best, packing. 

The first algorithm, due to J. Cocke, begins by arranging the 

quantities x in decreasing order of #inter(x). The first quantity 

x in sequence is then removed, and the remaining quantities scanned 

in sequence to find quantities y for which rep(y) may be assigned 

as x without violating the interference condition. Whenever rep(y) 

is defined, y is removed from the sequence. This process repeats 

as often as necessary, as shown in the following SETL algorithm, 

wherein we presume that the sequence seq of quantities x arranged 

in decreasing order of #inter(x) has been pre-calculated. 

I 
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rep= nt; low= O; 

(while low< 3j ~ #seqjrep(seq(j} is x}~ n doing low= j;} 

rep(x) = x; 

interfere= inter(x}; k = j; 

(while k < 3kk ~ #seq! n(seq(kk) is y E interfere} 

and rep(y} ~ n doing k = kk;} 

interfere= interfere+ inter(y}; 

rep(y) = x; 

end while k; 

end while low; 

Suppose in the above algorithm that #inter(seq(j}} = n .. It is 
J 

clear that, if seq(j} is not assigned a representative before the 

k-th iteration of the outer while-loop in the above algorithm, then 

seq(j) interferes with at least k quantities preceding it in 

sequence; hence k < min(j-1,n.}. The maximum possible value of k, 
- J 

which is plainly also the maximum number of "registers" needed for 

the packing by the above algorithm of all quantities, is therefore 

at most 

( 1} max min (j ,n .+1} 
j J 

If j 1 > j 2 and n. > n. , we clearly reduce (1), or at any 
J 1 J 2 

rate fail to increase it, if we interchange n. and n .. With a 
J1 J2 

given pattern of interferences, (1) therefore takes on its smallest 

possible value if, before applying the SETL procedure shown above, 

we arrange the elements in decreasing order of number of interference 

We have presupposed such an arrangement. Suppose now that 

k is the value of the maximum (1). Then, for j ~ k, nj > k-1; hence 

the total number n of interferences is at least k(k-1). Reading 

this relationship backwards, we see that Cocke's algorithm allows 

a collection of registers to be divided into no more than In groups 

of mutually noninterfering registers if the total number of 

intP.rregister interferences is n. Tl1e worst case is tha.t in which 

there exists a sets of approximately In registers each of which 

interferes with all the other registers of s. 
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This line of thought suggests a more expensive but more powerful 

~king algorithm, suggested to the·author by A~ P. Ershov. Suppose 

that in assigning .representatives we decide to assign x and y 

the same representative, thus in effect identifying x and y. The 

interferences of the resulting ~dentification element are then 

inter(x) + inter(y). If we then choos~ y ~o that 

#(inter(x} .* inter(y)) is as large as possible, the l~rgest 

possible number of interferences will 

be eliminated by the identification of x and y. A SETL algorithm 

expresssing the procedure suggested by this obser·vation is 

as follows: 

/* quants is the total collection of quantities being considered; 

curq those to which no representatives have yet been assigned; 

curint the current state of intereferences, taking the assign

ment of representatives into account; we write y E repdby(x) 

if, as far as our calculation yet shows, y is to be represented 

by X */ 

curq = quants; curint = inter; repdby = {<x,{x}>, xEquants}; 

/* determine pair to identify, if any*/ 

loop: intno = O; /* initialize intersection number; then sear~h 

for noninterfering pair x,y with maximum number of common 

interferences*/ 

(Vx E curq) /*form the set of 'neighbors once removed' of x */ 

naybsofnaybs=curq*[+:zEcurq*curint(~)]curint(z)-curint(x); 

(Vy E naybsofnaybs) 

if #(curq*curint(x)*curint(y)) is n 9:.!_ intno then 

intno = n; bestpair = <x,y>; 

end· if; 

end '1/y; 

end Vx; 
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if intno ~ 0 then 

/* see if any pair of noninterfering elements exists */ 
if !!_3X E curq, yEcurql!!_ yEcurint(x) 

/* else prepare to 

bestpair = <x,y>; 

end if intno; 

identify x with y 

then go 

*I 

<x,y> = bestpair; /* and now identify x with y */ 

repdby(x) = repdby(x) + repdby(y); 

curint(x) = curint(x) + curint(y); 

to done;; 

(Vz E curq * curint(y)) curint(z) = curint(z) with x;; 

go to loop; 

done: rep= {<y,x>, x E curq, y E repdpy(x) jy ne x}; 
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Item 1 7. ADDITIONAL FEATURES OF THE SETL LANGUAGE. 

In the pages which follow, we will extend our account of SETL 

by describing several additional linguistic features which it 

provides. This will bring our account of the abstract language 

to completeness, except in regard to its extendability features, 

specifically the system of user-defined object types and object

type dependent operators which SETL provides. This important 

feature of the language will be discussed in a later section. 

Note also that the SETL data structure elaboration language (DSEL) 

is significant for the overall SETL concept, even though the DSEL 

is efficiency-oriented rather than expressivity oriented, and in 

this sense not part of the abstract SETL language. Discussion of 

the DSEL is postponed to Item 20 below. 

1. Supplementary discussion of generalized assignments. 

The generalized treatment of assignment statements presented in 

Item 13 above let us make any programmed function p(x) available 

for use on the left-hand side of an assignment statement by 

associating a procedure opstore(x,y) of one additional parameter 

witt- it. The procedure opstore and the function op must stand in 

a~ abstract 'storage-retrieval' relationship to each other. This 

requires that in the sequence 

y = op.(x); opstore(x,y); 

the second operation must be equivalent to a no-operation, etc. 

We shall now explore the issues relevant to this .relationship 

in greater detail than we did in Item 13, in this way completing 

our discussion of the 'sinister call' facilities of SETL. · 

Specifically, we shall present a family of mechanisms which allow 

storage-retrieval associations to be made explicit. 

In som~ cases, the storage operation corresponding to a retrieval 

can be deduced from the form of the latter. In other cases, this 

may be entirely impossible, since a storage operation may set in 

motion some special train of actions (such as a call to a 

ind-the-scenes 'allocate' function) impossible to anticipate 
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merely from the form of the associated retrieval operation. In 

either case, however, it is apt to be convenient to keep the 

storage and the retrieval code together, as a good deal of this 

code, if not all of it, is likely to be common to both situations. 

The syntactic conventions described in the following paragraphs 

are intended to conform to these principles. 

Note that, in the system to be described, code representing both 

the storage and the retrieval operations associated with a user 

defined function f occurs within a single, SETL function body 

i.e., between a 

(1) 

function-opener line 

definef f(x); 

and the closing line 

(2) end f; 

which corresponds to (1). The new basic features of the system to 

be described are load and store blocks. The relevant syntax is 

as follows: 

A. Explicit store and load blocks. A user-defined function 

which performs a retrieval operation is allowed to contain explicit 

store blocks and load blocks. The form of a load block is 

(3) (load) block; 

a load block may also be terminated in any of the styles 

(4) (load) block end; 

(load) block end load; etc. 

The form of a store block is 

( 5) (store name) block; 

which may also be terminated as 

(6) (store name) block end; 

(store name) block end name; etc. 

Here name is any legitimate SETL variable name. Code not belonging 

either to a store or a load block, which is of course allowed also, 

is called normal code. 

Whenever a function is called, a flag signifying whether the .1 

is a dexter or a sinister call will be transmitted. Normal code will 
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h= executed in any case. Store blocks will be bypassed if the 

11 is dexter; load blocks bypassed if the call is sinister. 

B. Return statements within lo~d blocks, store block§ and normal 

code. The form of a return statement within a load block will be 

that customary for return statements within a function. The form of 

a return statement within a store block will be of the form appropri

ate for a subroutine return. Within a store block (5), name will 

designate the quantity to be stored, which is available as an 

implicit argument of a sinister call, transmitted when a sinister 

call to a function is initiated, but appearing by syntactic conven-, 

tion in the store block header rather than among the arguments 

listed in the function header. 

Return statements in normal code will have the form appropriate 

for function returns, but will be expanded in a somewhat unconven

tional fashion. Each statement 

( 7) return expn; 

occurring in a normal code section will be syntactically analyzed 

and expanded into two blocks of code, the first being a load bloc~ 

the second being a store block. The ·1oad block corresponding to (7) 

has simply the form 

( 8) (load) return expn;; 

The store block corresponding to (7) involves a more elaborate 

transformation of (7). We explain this in 'top down' fashion. 

i. The store block corresponding to the normal-code statement 

( 7) .has the form 

(9) (store name) block; return;; 

where block is a code sequence determined, in a manner to be. 

explained, by the syntactic form of the expn occurring in (7). 

We call block the corresponding code of expn. 

ii. If expn has the conditional form 

(10) if cond
1 

then expn 1 else i;f cond 2 then expn 2 ~ .• el_se expnk 

then its corresponding code is 

.) if cond 1 then act 1 else if cond 2 then act 2 ... else actk ; 

where act. is the corresponding code of expnJ .• J . 
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iii. If expn is a call on. a programmer-defined prefix function

and thus has the form 

(12) f(expn 1 , ... ,expnk) , 

then the code corresponding to (12) is that obtained by expanding 

the sinister call 

( 13) 

here name is the variable appearing in the header of the store 

block in which (12) is imbedded. 

iv. Remark ~ii) applies also to programmer-defined functions 

of infix or prefix form, and also to programmer-defined functions 

with zero arguments. We extend it also to all those primitive SETL 

operations for which standard retrieval operators are provided. 

These are the following. 

hd a, tR. a, a(x), a{x}, a(x], t(i :j), 

and various related multi-parameter operations; together with 

<a 1 , ... ,an>, whose sinister correspondent is the SETL multiple 

assignment. 

v. If the principal operator in an expression is a primitive SETL 

operation which is not known to the SETL system as a retrieval, or 

is a constant, the expression is disqualified. The code corres

ponding to a disqualified expression is 

noop; 

vi. If the principal operator in an expression is an existential 

or universal quantifier, then the expression is disqualified. Note 

however that, as shown in detail below, storage sequences could in 

some circumstances be assigned even to expressions of this kind. 

vii. If an expression consists of a code block, i.e., has the 

form[; block], it is treated as if it were a call on a function 

f(p 1 , ... ,pn), f being defined by 

definef f(p 1 , ... ,pn); 

block 

end f; 

and where p 1 , ... ,pn is the complete list of variable names appe 

ing in block. (See subsection 3 below for additional detail.) 
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To give a composite example, we note that the store block corres-

1ding to the return statement 

(14) return if a~ 0 then progf(a) [progf(b)] else n; 

is 

(15) (store name) if a g!_ 0 then t = progf(a); tt = progf(b); 

·t[tt] = name; progf(a) = t;; 

Even though the standard SETL system will not do so, storage 

procedures can.be associated with a surprisingly large number of 

SETL operators. Thus many more operators than one might at first 

imagine can be used in sinister position: 

consider the membership operator 

(16) X € S • 

As a first example, 

A procedure standing in the appropr~ate 'storage' relationship· 

to the 'retrieval' (16) is 

(17) (store b) if b then s=s with x else s=s less x; end if;; 

The reader should convince himself that (16) and (17) do indeed 

form a storage-retrieval pair. This is by no means the only 

possible way of defining a storage operator corresponding to the 

retrieval (.16). For example, the procedure 

(18) (store b) if b then 

if s ~ nt then s =,. {x}; 

else x =3s;; 

else x = {s}; end if b;; 

might also be used. This serves to emphasize the fact that a 

retrieval operator does -not determine an associated storage 

operator uniquely; only consideration of the larger algorithmic 

context within which a storage-retrieval pair is to be used, and 

especially consideration of the collection of those other storage 

operators of which -a given operator is to be independent, will 

make firm the choice of storage operator which is to correspond 

to a given retrieval. 

Nonuniqueness of storage procedure appears even more plainly 

we consider the boolean or operation 

( 19) 
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A storage procedure corresponding to this retrieval is 

(20) (store b) if b then 

if not (x 9.E_ y) then x = !;, 
else x = f; y = f; end if;; 

Clearly, however, we could as well write 

( 21) (st<;)re b) if b then 

if not (x or y) then y = t .. _, , 

else X = f; y = f; end if;; 

The boolean operator 

(22) not X 

has the storage procedure 

( 2 3) (store b) x = not b;; 

Once storage procedures for the basic Boolean operators or and 

not have been chosen the general theory of nested storage

retrieval pairs presented, in Item 13 allows storage procedures 

to be deduced for all the Boolean operators: these follow from 

the expression of boolean operators in terms of or and not. 

We might of course write 

(24) definef x and y; return not (not x or not y); end and; 

definef x exor y; return x and not·y or (y and not x); 

end exor; 

definef x implies y; return not x or y; end implies; 

etc. The reader will verify that, if (24) is used to define and, 

while (21) is used to define the storage sequence corresponding 

to or, then in virtue of (24) and our general expansion rules 

the operation and inherits a storage sequence equivalent to the 

following: 

( 25) (store b} i'f not b then 

if x and y then y = f;; 

else x = !; y = t; end if;; 

Similarly, the operation implies inherits the storage sequence 

(26) (store b) if b then 

if not (x implies y) then y = -!ii 

else y = f; x = t; end if;; 
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Various set-theoretic operations such as intersection and union 

= also retrievals. Storage sequences (which are generally 

nonunique) may be assigned as follows: 

(2 7) 

( 2 8) 

(29) 

( 30) 

for X * y (intersection): 

(store z) y = y-x+z; x = x+z;; 

for x + y (union): 

(store z) x = x*z; y = y·*z+ ( z- (x+y)) ; ; 

for x - y (set-theoretic diff~rence)·: 

(s~ore z) y = y-z; x = x*y+z;; 

for x//y (symmetric difference) 

(store z) x = x*(z+y) + (z-(x+y)); y=y*(z//x); 

Storage sequences may be assigned to various important 

comparison and arithmetic operators. We have 

· ( 31) for x ~ y: 

(store b) if b ne (x ~ y) then <x ,y> = <y·,x>; 

end if;; 

Since the operators le, lt and 9:!_ can be expressed using~ and 

not, storage sequences for the remaining arithmetic comparisons 

can readily be worked out. We have also 

(32) for x max y: 

(store z) if x lt z then y = z; 

else if y lt z then x = z; 

else x = z; y = z; end if y;;; 

( 33} for. abs (x} : 

(store z) x = sign(x} * z;; 

(34} for -x 

(store z) x = -z;; 

Since min can be expressed in terms of x max y and -x, 

a storage sequence for min can readily be deduced. For the 

arithmetic addition, subtraction, and division operators the 

following storage sequences are available: 

i} for x + y: 

(store z) y = z-x;; 
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( 3 6) for x - y: 

(store z) y = x-z;; 

(37) for x/y: 

(store z) x = y*z;; 

Note that (36) is deducible from (35) and (34). This list of 

storage sequences can be extended. For example, the integer 

arithmetic operation x//y (reduction of x modulo y), the real 

multiplication operator, th~ ~nteger par~ function, and various 

other similar operators all may be assigned storage sequences. 

Next we consider the quite surprising case of the universal 

quantifier. If C(x} is an expression involving the free parameter 

x, then the quantified expression 

( 3 8) Vx c a I C (x) 

may be assigned the following storage sequence: 

(39) (store b) if b then 

(while 3x c alnot C(x)) C(x)=!;; 

else if (Vx ca) C(x) then 

C(3a) = f; end if;; 

Naively put, this storage sequence, when called upon to store the 

value!, corrects any violation of the condition C(x} ~!which 

is found, ·and iterates until all violations are corrected. (Of 

course, an. infinite loop may be implied.) A similar but more 

complex storage sequence can be assigned to more elaborate univers

ally quantified expressions such as: 

(40) Vx1 c e 1 , min(x 1 ) ~ x 2 ~ max(x 1 ), ... I C(x 1 , ... ,xn). 

Since de Morgan's well known law of duality allows the existential 

quantifier 

( 41) 3 x c a I C (x) 

to be expressed in terms of (38) and the boolean not operation, 

a storage sequenc~ for (41) can readily be deduced. This is 

( 4 2) (store b) if not b then 

(while 3X C a C (x) ) C(x) = f .. 
_I I 

else if not 3x C a I C (x) then 

C (3a) = t; end if; ; 
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• 

Tn a. suggestive number of cases, the combination of (39) with our 

1eral expansion rules generates sequences which force a desired 

condition merely from the assignment of 1 to an appropriate expres

sion representing the condition. This points, albeit from afar 

off, to a !prescriptive' as opposed to a 'procedural' style of 

programming. ·For example, the statement 

(43) ('!x cs I f (x) cs) = t; 

that the sets should be transitively closed under the mapping f 

expands into the sequence 

(44) ( wh i 1 e 3 x c s I f ( x) n e:: s ) f ( x) in s ; ; 

i.e., into a transitive closure routine. Similarly, the statement 

( 45) (1 ~ '1n < #tupltup(j) le tup(j+l)) = t; 

expands into 

(46) (while 1 ~3j < #tupltup(j) 9'..!_ tup(j+l))<tup(j),tup(j+l}> 

= <tup(j+l) ,tup(j)>;; 

i.e., into a version of the bubble sort. Other, still more complex 

procedures are seen to result from the expansion of sinister calls 

whose left-hand side is a condition to be 'forced'. It must be 

admitted, however, that until an attack is made on the substantial 

optimization problems which the suggested approach raises, the 

practicality of a prescriptive approach to programming like that 

which has just been described remains small. 

_The generalized treatment of assignment operations which SETL 

embodies rests on the abstract notion of storage/retrieval relation-

ship defined by the conditions of Item 13 (page 25) above. It 

deserve·s to be noted that this relationship is merely the simplest 

of a Vdriety of somewhat more general relationships which one is 

accustomed to exploit in programming. Among other si~ilarly used 

concept-pairs are the pair "stacking..:.operator/unstacking-operator" 

and the pair "eriqueing-operator/dequeueing-operator". We may,. 

for example, call° a monadic operator 2E. an unstacking operator if 

there exists a corresponding procedure opstack(x,y) such that 
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(47) (i) if-~ xis repeatedly evaluated after.a sequence of 

calls opstack(x,y 1 ); ... ;opstack(x,yn); then the 

sequence of values obtained will be yn,yn_ 1 , ... ,y 1 ; 

(ii} the operation 

opstack(x, ~ x); 

(i.e., unstacking followed by immediate re-stacking) 

is· equivalent to a no-operation. 

Relationships of this type, while more complex and less universally 

useful than the fundamental retrieval- 9torage relationship which 

has been discussed at length above, are nevertheless worth noting 

and exploiting in many situations. The SETL sinister call facilities 

which we have outlined. can be used for this purpose; note that the 

use of explicit load and storage blocks provides very considerable 

flexibility. 

For example, an enqueue-dequeue pair may be programmed as follows. 

(48) definef queue q; 

(load) if #q ne O then x=q(l); q = q(2:); 

return x; else return Q; end if;; 

(store x) q(#q+l) = 

end queue; 

X •• , , 

Using this function, elements may be enqueued and retrieved from 

a queue simply by writing 

(49) queue q = x; and queue q 

respectively. Queues involving more general disciplines, ·as for 

example priority queues, may be handled in much the same way. 

The treatment of stacks is just as simple. We can define a 

stacking operator by writing 

(50) 

called as 

( 51) 

definef topoff stack; 

(load) if(#stack)9.! 0 then x=stack(#stack); 

stack(#stack) = Q; return x; 

else return Q; end if;; 

(store x) stack(#stack+l) = x;; 

end topoff; 

topoff stack= x 
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~hls o~eration places x on a stack. If used in a dexter call, it 

:urns the top element of the stack, at the same time removing it 

from the stack. 

Still more general operators of this same type can be useful in 

connection with other data structures. Suppose for example that we 

take a binary tree to be represented by a triple <node,1,r>, 

where 1 is the left descendant function in the tree and r is the 

right descendant function in the tree. The following function 

will permit a new element x to be hung at the lowest-leftmost 

element below node simply by writing 

leftchild tree= x; 

The required definition is simply as 'follows: 

definef leftchild tree; <node,1~r> = tree; 

(while !(node) ne n) node= !(node); 

return tree(2) (node); 

end leftchild; 

Note also that the left-hand use of recursive functions will 

sometimes prove useful when inherently recursive data structures 

such as trees are to be treated. 

~499-

____j 



2. An extended example of the use of generalized assignments. 

The following extended example will show the manner in which 

multiple sinister calls may be used. We consider a hypothetical 

(systems-) programming situation in which names will be encountered, 

and in which each name may have one of a substantial number of 

attributes. In the 'typical' case, however, most attributes of 

most names will be undefined. We suppose for definiteness that 

all the attributes of a name are character strings. In what 

follows we shall describe a treatment of this assumed situation 

in which all attribute-representing character strings are main

tained 'locally' as long as the total number of characters which 

they involve does not exceed a stated limit. When this total 

exceeds its allowed limit, however, the attribute-representing 

character strings are assigned integer identifiers and are moved to 

a packed storage array. 

The preceding describes a moderately elaborate storage 

mechanism. We emphasize that our general sinister call conven

tions allow this whole mechanism to be hidden from a programmer 

using it, who need merely write 

(1) j attr name= x; 

to assign the j-th attribute of :name, and use the expression 

(2) j ~ name 

to fetch the value of this attribute. In this fact, and in the 

circumstance that these same conventions aid conceptually and 

pragmatically in the realization of storage schemes by clearly 

defined, modular structures, lies the claimed advantage of our 

system of sinister assignment. The reader, in scrutinizing 

the example which follows, can judge the extent to which this 

_claim is justified. 

The first layer of the storage scheme which we gave as an 

example explicitly 'hashes' the parameter name appearing in (1) 

and (2); note that the value of this parameter is a string. 

The hashtable scheme used is as follows: a comprehensive packed 
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~~~racter array string containing a single copy of each nalt).e 

used in conjunction with an array stack whose entries are 

tuples 

(3) <chain, firstchar, length, attribute entry> • 

In (3), chain links together all entries with a common initial 

hash reference, finally becoming zero; firstchar is the index in 

string of the first character of the name belonging to the item 

(3), and length is the length of this name; attribute entry 

contains the attribute information for the name. The entry 

chain in (3) is -1 for empty entries in stack, which might 

of course be examined in the first step of a hash search. 

definef m attr name; 

/* fetches and stores them-th attribute of a given name*/ 

I* we assume a function hash which computes an initial trial 

entry in stack for a given string *I 
/* the 'packed character array' string is assumed to be global, 

and will be used in several routines appearing 

present subsection*/ 

macro chain, firstchar, length, attentry; endm; 

loc = hash name; 

later in the 

(while chain(stack(loc}} s!_ 0 doing loc = chain(stack(loc}} ;} 

if chain(stack(loc}) lt O then quit;;/* since empty slot*/ 

if length(stack(loc}} is len ~ #name then' continue; 

else if string(firstchar(stack(loc}} :len} ne name then 

continue; 

else return matt attentry(stack(loc}}; 

end if; 

/* the operator att defines the next laye~ of the present 

storage system */ 

end while; 

/* on fall thru loop we may dea1•with a name being encountered 

for the first time*/ 
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if chain(stack(loc)) ~ 0 then 

chain(stack(loc)) = #stack+l; 

loc = #stack+l; 

end if; 

stack(loc) = <O, #string+l, #name, initial( ) >; 

/* here the function initial is assumed to return the 'initial 

setting' ~fan attribute entry, corresponding to the 'all 

attributes undefined' condition*/ 

string= string+ name; 

return matt attentry(stack(loc)); 

end attr; 

We must now describe the next innermost storage routine att. 

At this level of our storage system, various details hidden at 

the preceding level become visible. As already stated, the 

attribute values stored in an attribute entry will be character 

strings. If they all fit, these values are stored directly 

within a locally maintained string attrstring. If not, they 

are stored within the global 'packed character array' string 

mentioned in the attr routine; in this case, attrstring stores 

integers (decimally encoded as strings) which indicate substring 

starting positions within string. Each attribute entry contains 

a flag called lflag, which indicates whether attribute entries 

or integers referencing them are found within the attrstring 

portion of the entry. To enhance the efficiency with which 

our hypothetical storage system handles undefined attributes 

(and we imagine most attributes of most objects to be undefined) 

we provide each entry with a group of flags, equal in number 

to the maximum possible number of attributes. 

An attribute entry is therefore a triple 

<attrstring,lflag,deflags> 

consisting of a character string, a 1-bit flag, and a boolean 

string. Accordingly, the function initial called by the attr 

routine is as follows: 
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n~finef initial; 

turn <nulc,!_,nats·A-Ob>; 

end initial; 

here nats is the total number of attributes which could 

possibly be associated with an entry. 

The code for att is as follows. 

definef j att entry; 

macro attrstring, lflag, deflags; endm; 

/* the 'undefined' attribute value, which we assume is 

represented by the null character, is treated specially. 

the ·insertion of a value for a hitherto undefined 

attribute is signalled by transmission of a negative 

parameter to the lower-level attrval routine*/ 

negflag = l; /* standardize flag controlling transmission of 

negative parametrs */ 

(load) 

/* return nulc for und~fined attribute*/ 

if!!_ deflag(entry) (j) then return nulc;; 

end load; 

(store atval) 

if atval ~ nulc then 

/* no-op if attribute is already undefined*/ 

if~ deflag(entry) (j) then 

return; 

else/* one of the deflag flags must be dropped*/ 

deflag(entry) (j) = f; 

end if; 

else if n deflag(entry) (j) then 

/* a value is being set up for a hitherto undefined 

attribute*/ 

negflag = -1; 

deflag(entry) (j) = t; 

end if atval; 

l store; 
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/* now calculate the number of defined attributes preceding the 

j-th attribute, in order to get the appropriate 'internal 

address' of an item to. be retrieved (or stored) */ 

ndefd = #{k, 1 ~ k < j I deflag(entry) (k)} + l; 

/* now fetch or store from the appropriate part of the 

attstring portion of entry, noting the case in which 

a value is to be set up for a hitherto undefined attribute*/ 

return (negflag * ndefd) attrval entry; 

end att; 

The attribute store/fetch operator attrval reduces to one or 

the other of directattr, codedattr, depending on the setting of 

the Zflag in entry. 

define£ j attrval entry; 

macro lflag(x); x(2) endm; 

return if lflag{entry) then 

j codedattr entry 

else 

end attrval; 

j directattr entry; 

At this point we must specify still more of the inner structure 

of the attstring portion of an attribute entry, structure which 

will of course be reflected in the routines codedattr and 

directattr just encountered. We shall suppose attrstring to be 

a character string within which there occur blocks of information 

delimited by blanks. For dealing with a 'blank delimited string 

memory' of this kind, we introduce the following, relatively 

primitive, substring retrieval-insertion operator, called word. 

It retrieves or modifies the j-th word in such a string; if j is 

negative, it inserts a new word between the former (j-l)st and 

j-th positions. 
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n~~inef j word cstring; 

scan to the (j-l)st blank, and locate the j-th blank, if any*/ 

startloc = 0; 

jp = if j lt O then -j else j; 

( 1 < 'dk < jp) 

must= startloc < 3n < #cstringl cstring(n) eq 

startloc·= n; 

end Vk; 

I I • 
I 

if~ startloc < 3n ~ #cstringl cstring(n) eq ' ' then 

n = #cstring+ l;; 

(load) return cstring(startloc+l: n-startloc-1) ;; 

(store substr) 

if j lt 0 then/* a new word is being inserted*/ 

if jp ~ 1 then/* make insertion in first position*/ 

cstring = substr + ' '+ cstring; 

else if n S #cstring+l then/* insertion in last position*/ 

cstring = cstring +' '+ substr; 

else/* insertion in some middle position*/ 

cstring = cstring(l:startloc) + substr 

end if jp; 

return; 

end if j; 

+ ' '+ cstring(startloc+l:); 

/* here we treat the case in which an old word is being modified*/ 

if substr ~ nulc then/* an old word is being abolished*/ 

cstring = cstring(l:startloc) + if n lt #cstring 

then cstring(n+l:) else nulc; 

else/* an qld word is being modified*/ 

cstring = cstring(l:startloc)+substr 
end if; + if n le #cstring then cstring(n:) else nulc; 

return; 

end ·Store; 

end word; 
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Next we give code for the directattr s_torage-retrieval 

function. If called for retrieval, j directattr entry merely 

returns the j-th blank-delimited word of the attstring portion 

of en try. The consequences of a sinister call may be more"·' 

complex, since upon such a call overflow requiring restructuring 

of the contents of attrstring may occur. 

definef j directattr entry; 

macro attrstring(x}; x(l) endm; 

(load) return j word attrstring (entry} ; ; 

(store atstr} 

if j lt O then/* an entirely new e~try is being inserted*/ 

/ '-........._ lenchange = #atstr + l; 

else if atstr ~ nulc then/* an old entry is being changed*/ 

lenchange = #atstr - #(j word attrstring(entry}}; 

else/* an attribute is being dropped. 

use nominal le;iahange value * / 

lenchange = -1; 

end if; 

if(#attstring(entry}+•.lenchange} lt maxchars /* maxchars is the*/ 

maximum number of characters which will be accommodated 

locally*/ 

then/* simply modify attribute string*/ 

j word.attrstring(entry} = atstr; 

else/* an overflow occurs. change from directattr 

to codedattr representation * / r-oldattrstring= attrstring(entry); 

-"~. k = l; attrstring(entry)=nulc; lflag(entry)=!_; 

(while ( (k word oldattrstring (entry)) is kth attr 

doing k = k+ 1;) 

k codedattr entry = kthattr; 

end while; 

ne nulc 

/* now modify old attribute or insert new attribute*/ 

j codedattr entry= atstr; 

-end if; 

return; 

end store; 

end _directattr~ 
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Next we represent the codedattr routine in SETL, which 

10lves making still further details explicit. This routine 

will fetch and retrieve attributes, but proceed indirectly 

using integer 'addressesi represented as character strings. 

These addresses are assumed to reference substrings of the 

globally available packed character array string, which 

made its appearance in the first algorithm, attr, presented in 

the present section. Each 'address' is assumed to be a decimal 

coded, blank terminated, integer referencing a starting character 

position in string; the attribute field which begins at this 

position is assumed to be terminated by a blank. We will assume 

that it is impossible for an entry to have so many defined 

attributes that one cannot store all these attribute addresses 

locally. 

The storage part of the procedure shown below is somewhat 

more complex than the retrieval part, since a kind of overflow 

can occur on storage. Note that in the following routine string 

is assumed to be a quite long character string,· and that we 

structure the code so as to avoid shifting long substrings 

of string. 

definef j codedattr entry; 

/* string is assumed to be global*/ 

if J' art_ 0 then /* .L.:: locate start of old attribute string*/ 

charaddr = dee (j word attrstring(entry)); 

/* locate·blank which terminates attribute-representing string*/ 

must = charaddr 2, 3 m 2, # string I string (m) eq ' '; 
end if; 

(load) return string(charaddr: m-charaddr) ;; 

(store atstr) 

if j lt O then/* a new attribute is being inserted*/ 

j word attrstring(entry) = dee (#string+ 1); 

string= string+ atstr+' '; return; 

end if; 

/* else an old attribute is being modified*/ 

/* first determine amount of trailing blank space*/ 

if~ m ~ 3nonblklac~ #stringlstring(nonblkloc) ne ' ' then 

nonblkloc = #string+!; 
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avail= nonblkloc - charaddr-1; /*total available space 

for entry * / 

if (#atstr) le avail then 

string ( charaddr :#atstr) = atstr; 

else/* place the attribute-representing string at the 

very end of string*/ 

string(charaddr:avail) = avail*' I • , 

j word attrstring(entry) =#string+ l; 

string= string+ atstr + ' 

end if; 

return; 

end store; 

end codedattr; 

-508-

I • , 



Code-blocks within expressions. Inverted function, 

subroutine, and macro definitions. 

SETL allows any block of value-returning code to be used.within 

an expression. The syntactic form provided is 

(1) [.; functionbodyj 

Here, funationbody designates any block of code which could 

validly be the body of a defined function, i.e., which could 

appear in the context 

( 2) definef fcn(p 1 , ••• ,pk); 

functionbody 

end fen; 

Note that funationbody will therefore contain statements of 

the form 

(3) return e; 

e being an expression. The value of eat the ·moment at which 

a statement (3) is execut~d defines the value of the expression 

(1) .- Note therefore that an occurrence of (1) in an expression 

is precisely equivalent to an occurrence of the call 

( 1 I) fen ( p 1 , . . . , p n) , 

where p 1 , ... ,pn is a list of all the variables occurring in 

the funationbody (1). 

A variety of inverted constructions related to (1) are also 

provided. In the first place, these include 

( 4a) 

and 

( 4b) 

[; funationbody definef fnarne(p 1 , ... ,pn) ;] 

These forms are provided in response to the psychological fact 

that one generally recognizes the desirability of making a given 

code sequence available as a function or macro only after one 

has explicitly written a first instance of the sequence. The 

:m (4a) is precisely equivalent to an occurrence of the function 
__ 11 
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( Sa) 

where also the function definition 

( 6a) definef fname(p 1 , ••• ,pn); 

functionbo dy; 

end fname; 

appears in the same namescope as (4a). Similarly, the form (4b) 

is precisely equivalent to an occurrence of the macro invocation 

( Sb) 

where also the macro definition 

(6b) macro mname(p 1 , •.. ,pj); 

macro body; 

endm mname; 

appears in the same namescope as (4b). 

To make a sequence of statements available as a subroutine, 

the form 

(7) [; statementblock define subname(p
1

, ••. ,pn) ;] 

is provided. This is precisely equivalent to an occurrence 

of the subroutine call 

( 8) 

where subname is defined by 

(9) define subname(p 1 , ••• ,pn); 

statementblock; 

return; 

end subname; 

Occasionally one will find it convenient to define a subroutine, 

function, or macro in this inverted form, but to invoke it for 

the first time with parameters other than those appearing in 

th~ definition (for example, some of theparameters in the first 

invocation may be constant). To this end, the forms 
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11 ')a) [ ; functionbody definef fname (p 1 , •.• ,pn); q 1 , • • • ,qn l 

( 10b) [ ; macrobody macro mname (p 1 , ••. , Pn) ; q 1 , • • • ,qn l 

(10c) [; statementblock; define subname(p 1 , ... ,pn); q 1 , .•• ,qn 

are provided. Here, for example, (10a) is equivalent to an 

occurrence of th~ function call 

(11) 

where also the function definition (6a) appears in the same 

namescope as (11). Similar remarks, which the reader will 

readily deduce, apply in the case of (10b) and (10c). 

Note also that inverted macrodefinitions of either the 

form (4b) or the' form (10b) may involve not only ordinary 

macro arguments but also generalized arguments. 
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4. Additional discussion of the SETL· namescoping facility: 

the alias declaration. 

In the present section, we shall complete our account of the 

SETL namescoping scheme. Information concerning the most basic 

and generally useful names coping facilities provided by SETL was 

given in section 6 of Item 14 above. These facilities, whose 

description ·the reader is asked to review, may be summarized 

as follows: 

a. A system of nested scopes is provided. Scope boundaries 

are logical 'brackets' having the power t.o protect names occurring 

within them from identification with names of the same power 

occurring outside. However, such identification will occur if 

an item i occurring outside a namescope ns is 'transmitted to' 

or 'made known within' ns, and if an item with a corresponding 

name occurs within ns. 

b. Items i can be transmitted between nc!mescopes by use of 

either global or include declarations. A global declaration 

typically makes an item i known within most or all of the namescopes 

ms physically irnbedded within the namescope ns within which i is 

made global. An include declaration makes i known within the scope 

within which the declaration occurs. The include declaration also 

provides a mechanism allowing an item i having one name in the 

scope ns within which it first occurs to be known under another 

name within a scope ms to which it is subsequently propagated. 

c. Each item i which becomes known in a namescope ns is 

referenced there by some particular compound token 

(1) 

consisting of simple names separated by underbar symbols. 

The same item may also be referenced by using any initial subpart 

of the compound token (1). Two items i, i' both known in the 

same namescope are identified if one is referenced by a name 

constituting an initial part of the full compound name (1) 

which could be used to designate the other. 
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-----------

The propagation rules summarized above (and discussed in more 

tail in Section 6 of Item 14, in which section various restric

tions on the use of the global and include propagation mechanisms 

were also stated} are basic to our namescoping scheme. These 

restrictions are intended to elminate errors wh~ch might easily 

and inadvertently creep in if over-free use of these declarations 

were allowed. We shall now discuss a particular one of these 

restrictions, and present a mechanism which allows it to be relaxed. 

Specifically: By making distinct items i
1

,i
2 

etc. occurring 

within the proper text of one namescope ns available within another 

namescope ms, our namescoping scheme allows i
1 

·and i
2 

to be 

identified with items j 1 ,j 2 occurring within ms, and then 

recursively with items occurring within a third namescope ms', 
etc. We have r~quired that no identification made in consequence 

of the transmission of the distinct items i
1

,i 2 between name

scopes should lead to the identification of i 
1 

and i 2 within ns. 

The use of an explicit alias declaration, in a manner which we 

shall now describe, gives us a way around this restriction. 

The form of an alias declaration is 

( 2} 

or simply 

(3) 

alias namelist 1 , ... ,namelistk; 

alias namelist; 

The form of each namelist occurring in (1) or (2) is 

( 4} (name 1 ,name 2 , ... ,namek) 

If a declaration of the form (2) or (3) appears in a namescope 

ns, then all the names appearing in each namelist are understood 

to be synonyms for the same .item. Thus, for example, having refer

ence to the text (17) presented in Section 6 of Item 14 as a 

sample of SETL code containing a namescoping error, we see that 

this text may be corrected by the inclusion of an alias statement. 

When corrected, it will read as follows. 
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(5) scope routl; 

alias (u, v) ; 

u = O; V = l; ... 

end routl; 

scope rout; global y, routl; 

scope rout2; 

include u_routl[y]; 

end rout2; 

scope rout3; 

include v_routl[y]; 

ena. rout3; 

end rout; 

As remarked, this text becomes illegal if the alias statement 

appearing in its second line is deleted. 
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Tm~M 18. Internal Specification of the SETL primitives* 

.L • Introduction. Design issues and decisions . 

In the pages which follow, we shall use SETL to give an 

extended, and quite detailed, specification of. the 'run-time 

library' of routines which realize the SETL primitives in our 

current implementation. This extends, and carries to a much 

higher degree of detail, the information given previously as 

Item 6, SETL Implementation and Opt-imization. 

Before launching into the many details which will be 

required, let us summarize the main design issues and decisions 

which these details will reflect. (Cf. also Item 6.) SETL programs 

may be expected to make heavy use of the.following operations. 

(a) membership testing; 

(b) iteration over sets; 

(c) tuple operations, i.e., extraction and insertion of 

indexable components; 

(d) addition of elements to, and deletion of elements from, sets; 

(e) functional evaluation, in one of the three forms 

f (x), f{x}, or f [x] 9 f being a set; 

(f) multiparameter functional evaluations, in the appropriate 

multiparameter generalizations of one of the ·three 

preceding forms; 

(g) the sinister or storage operations corresponding to the 

retrievals (e) and (f). 

In addition, one should note the fact that SETL, as a value 

language, will often have to force copying of the compound objects 

occurring in programs. If the amount of copying forced is not 

to become excessive, some mechanism for detecting and bypassing 

logically redundant copy operations is required. 

The main design decisions to which these reflections lead have been 

summarized above in Item 6. The entire implementation makes use 

of a garbage-coliected heap area, a supplementary stack being used 

for argument passing and recursion control. The implementation 

~he material which follows is very largely the work 
>f Mr. Henry Warren. 
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presupposes that sets will be _sparsely populated, i.e., that 

many more objects will be_ generated, placed in sets, and removed 

from them than are typically present in a set at any one time. 

This supposition, together with a desire to represent sets in 

a form which also supports fast functional evaluation if these 

sets happen to be sets of pairs, is taken to exclude straight

forward repr,esentation of sets by bit-vectors, an approach that 

might otherwise be used if we assume some overall assignment of 

serial numbers to the elements of sets. Accordingly, in the 

present SETL implementation, fast membership testing is secured by 

maintaining sets as tables within which elements are accessed in 

terms of a calculated hash. 

The most vexing, and perhaps questionable, design decision in 

the present implementation_ reflects an attempt to ensure that both 

membership testing and functional evaluation will be performed 

efficiently in typical cases. Evaluation of f(x) or f{x} requires 

fast access to the set of all n-tuples with yiven first component; 

for this reason, tuples are located within sets by the hashes of 

their first components, and within a set the collection of all 

tuples of length n ~ 3 with given first component c is always 

collected together, the set Sc of all tails of such tuples being 

referenced explicitly by an entry in the hash table representing 

f. Ordinarily, tuples are represented by arrays of contiguous 

entries, some growth space generally being reserved. However, the 

representation of a tuple within a set is different, and much more 

list- than array-like (details will be given below). This is one 

of the weak points of the current implementation. Insertion of 

tuples of length~ 3 into sets, extraction of such a tuple from a 

set by the 3 operator, and iteration over a set of tuples all 

involve conversions that can be very time consuming if long tuples 

are involved. A design which explicitly reflected the fact that 

maps of more than two parameters are rarely used would probably 

have been less objectionable in this regard. 

Operations such as· with or f(x) = y; which require the calcuia

tion of 'slightly modified' versions of compound and possibly 

very bulky data items are implemented µsing routines which chai 

these data items rather than reconstructing them completely. 
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T- the final SETL system, these routines will be used when live-

ld analysis assisted by dynamic reference counting shows that 

no copying operation is necessary; in other cases a copying 

operation will be forced. In the preliminary SETLB system an 

explicit COPY primitive is provided and automati_c copying is 

never.performed. The great extent to which algorithms are 

insensitive to this variation of semantics is surprising. 

Equality testing is executed very frequently during typical 

SETL runs. This operation will be optimized as follows. Object 

types will be compared by a fast in-line ·test, and a FALSE response 

given if t:rpes differ. Equality of short objects will be deter

mined by fast in-line code. If neither of these fast in-line 

checks is decisive, transfer will be made to the library equality

test routine. This routine will normally be able to establish 

inequality quite rapidly (using a readily accessible 'number of 

elements' or 'number of components', and also a precalculated 

hash value stored with each set). However, establishing the equal

ity of compound objects will require systematic checking of every 

element or component of one against the other, and can be a much 

slower operation. 

Certain commonly occurring SETL equality checks, such as x ~ n 
or s ~ ni , will be treated as special cases and compiled to 

wholly in-line code. 

Some of the most significant routines in the run time library 

are recursive. It is interesting to observe that, while some of 

this recursiveness is an artifact resulting from the manner in 

which sets of n-tuples are handled, another part is inherent in the 

axioms of set theory. Indeed, one of the axioms of set theory 

states that two sets are equal if and only if each element of 

either is equal to some element of the other, so that recursion 

enters into the very notion of set equality. It may also be remarked 

that the specifications which follow make it clear that a rather 

c,omplex program libra~y is required to support the semantically 

transparent primitives of set theory in an efficient way. This seems 

to us to support the guess that those primitives are an appropriate 

rting point for the .construction of a highly expressive program

ming language. 
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An issue 'always significant in the semantic definition of 

a language is the manner in which calling sequences are handled, 

which is to say, the rules and conventions which allow the 

integration, into composite procedures, of individual calls upon 

semantic primitives. This important matter will be treated, 

not here, but in subsequent pages. Thus the specification to be 

given now represents only that part of the semantics of SETL 

directly associated with its data objects and with the primitive 

operations which combine these data objects. In our specification, 

the block of code corresponding to each of the SETL primitives is 

shown as a SETL function (or subroutine). For example, the code 

corresponding to the primitive invoked.by the source-SETL 

f{x 1 , ... ,xn} is shown as a routine ofan(f,x), whose first 

argument is the set (or procedure) to be applied functionally, 

and whose second argument is an n-tuple x whose n components 

correspond to then parameters x 1 , ... ,xn of the form f(x 1 , ... ,xn). 

This style of specification presupposes the ~xistence of a 

parameter~passing mechanism which gathers together the arguments 

f,x 1 , ... ,xn to be supplied to the library routine ofan, and 

passes them along to the ofan routine. Note that in the 

actual implementation the second group x 1 , ... ,xn of parameters 

will be gathered into a vector-lik~ implementation level,object 

(as for example a block of contiguous positions on a recursion 

stack), but not necessarily into the fully-fleshed out system 

of words and fields which represents a SETL vector. As stated, all 

details of the parameter-passing mechanism will be elided here 

and given later. 

following will 

In particular, our specifications 

not show how SETL recursions, f~nction calls, 

parameter modification and returns, or control transfers are 

actually implemented. 

SETL object representations at the machine level and 

at the level of this specification. 

A SETL object is represented in a machine, and in our 

actual implementation (written, as noted in Item 6, in the 

low level systems-writing language LITTLE) as a series of words 

that are broken up into fields. In the present specification, 
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-·- do riot descend to quite so low a level of description, but 

stead represent SETL objects (including sets) as n-tuples whose 

various components show the information associated with the object 

in the actual implementation. It may be remarked that the main 

purpose of this specification is to depict the more complex and 

novel algorithms in the run time library, particularly those 

dealing with sets. To keep the description at a reasonably 

high level, many fine details of the run time library as coded 

in LITTLE have been omitted. 

This omission applies in particular to most storage allocation 

and garbage-collector related details; which is to say that in 

the present specification we assume a garbage-collected universe 

of vectors, integers, and strings, and show how sets can be 

introduced as an additional form of compound object. Our specifi

cation does show the expansion and contraction of the hash tables 

used to represent sets, and the management of the extra 'growth. 

space' with which SETL tuples are provided. 

The actual LITTLE-written implementation library distinguishes 

(in order to avoid wasting space) between 'long' and 'short' items, 

which in effect adds five data types (short integer, short boolean 

string, etc.) to the system of types visible to the SETL user, 

which are also those which will play a role in this specification. 

Thes~ distinctions will however not be made here, and all the 

detail which. these distinctions imply will be omitted. Moreover, 

none of the inner details involved in the manipulation of the SETL 

atomic types (such as character strings and bit strings) are shown 

in this specification. For e~ample, in specifying the concatenation 

of two strings we completely ignore all necessary iterations 

over words and characters and all the details of packing and 

unpacking which are necessary in the actual library implementation. 

This operation is specified, in a way actually assuming the 

existence of the SETL concatenation operator, as 'sl+s2'. 

We aim bY, proceeding in this fashion to emphasize the most 

interesting aspects of the run time library, and to leave its more 

mundane details out of the way. Similarly, in describing the 

1catenation of tuples, we show the manner in which the length 

and 'reserved growth space' fields of a new tuple are formed, 
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and also show the tests which determine if a concatenated 

tuple can be formed in space already reserved contiguous to the 

body of the first of two tuples to be concatenated. However, 

the actual step of concatenating the two tuple bodies is merely 

represented as a calculation of 'tl+t2', which of course elides 

a data-move loop present in the actual LITTLE-written implementa

tion of the .concatenation operation. 

The true run time library includes multiprecision arithmetic 

routines for dealing with the indefinitely large integers which 

SETL provides. These routines are not shown here; it may be 

remarked that multiprecision algorithms of the type required 

are exhaustively discussed in the second volume of D. Knuth '•s 

celebrated :treatise. 

Recursion is awkward to code in LITTLE, and the execution 

of a recursive call is substantially slower than that of·a 

normal call. Therefore it is advantageous, in an efficiency

oriented package like the run-time library, to eliminate recur

sion whenever practical. This is done in the present specification. 

There are a number of routines (such as those for inserting-and 

removing tuples from sets) which are coded here without recursion, 

even though they would have been simpler if recursion were used. 

These routines generally perform some stacking operations, and 

accordingly routines 'push' and 'pop' are provided (the LITTLE run 

time library employs the run time recursion-control stack as an 

auxiliary stack). 

The intentions outlined above lead us to use the following 

conventions in the s·pecification which we are about to give. 

Every SETL object is represented by -3. pair (2-tuple) of the 

form: 

<type, value>, 

the type is an integer whose value is (symbolically) int, real, 

booZ, char, blank, Zabel, sub, fun, undef, tuple, or set. 

There is also an auxiliary type called 'special pair' whose 

use is discussed below. 
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The value field is: 

1. The value itself if the object is an atom; 

2. A triple of the form 

<length, space, tuple> 

if the object is a tuple: 

3. A 5-tuple of the form 

<#members,hashtable load,hashcode,hashtable size, hashtable> 

if the object is a set: and 

4. A pair of objects if the object is a special pair. 

Here length is the length of the tuple (greatest index of 

its defined components), space is the space allocation for 

the tuple (the number of components that could be contained with

out reallocating), and tuple is the tuple itself. 

For sets, #members is the number of members, hashtable load 

is the load on the set's hash table, hashcode is the hash code of 

the set itself, hashtable size is the size of the set's hash 

table, ~nd hashtable is the hash table itself (a tuple whose 

components are indexed by a hash code). 

Each entry in a set-representing hash table is either 

undefined (absent) or is a list of the set members tha.t occupy 

the same slot of the hash table (due to hash code clashing). 

In this spec1fication, chaining of list elements is represented 

by nesting of tuples. For example, the list which might be repre

sented diagramatically by 

~' _A~, B_.._I -------7'-I-- CID 

is actually represented by 

1----'),-jE, F J:><l 

<A,B,<C,D,<E,F>>> 

As noted above, SETL objects are shown in this specification 

as pairs whose components are object type and object value 

respectively. 
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Accordingiy, an object that is a member of a set may be 

represented either by a pair or by a triple, depending on whethe: 

it has a successor in the list of items sharing a hash entry with 

it. 

We give some examples showing the representation, in this 

specification, of various typical objects. The integer 2 is 

represented -as 

<0, 2> . 

The value true (a bit string of length one} is represented by 

<2, lB> . 

A character string is represented by a.pair such as 

< 3 , ' abcde' > 

the null tuple by the pair 

<9, <0, 0, < >>> 

The tuple whose components are the above three atoms would be 

represented as follows: 

<9, <3, 4, <<0,2>, <2,lB>, <3,'abcde'>>>> 

The null set has the following representation: 

<10, <0, o, 12345, o, < >>> 

(The null set's hash code of 12345 is arbitrarily chosen.) 

A set containing the above three atoms would be r~presented as 

follows in the conventions used in the present specification: 

<10, <3, 3, 27182, 4, <St, 

<3,'abcde'>, 

<0,2,<2,lB>>, 

St>>> 

In writing the above representation we have supposed that the hash 

table size required for our set of three elements is four, that 

the string 'abcde' has a hash code whose last two bits are 01, and 

that 2 and lB both have hash codes ending in 10. This leaves slots 

. 0 and 3 ( 00 and 11) of the hash table empty, as shown by the pr,- - - --LC 

(in the hashtable-representing vector) of two undefined component: 

The set's hash code of 27182 is· entirely ficticious. 
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As remarked above, a nest of triples culminating in a pair 

used to represent a list of _several set members all sharing one 

single hash table entry. 

The hashtable load component of a set is the number of items 

attached to the hash table. It is used to determine when a hash 

table should be expanded or contracted. F~r many sets, hash table 

load is• equal to the number of members. However, for sets 

containing tuples of length three and up, hashtable load may be 

considerably less than the number of members. This is because 

of the fact that when tuples of size three and larger are added to a 

set they are broken up in a manner that facilitates locating 

subcollections of such tuples all of which have the same first few 

components (this is necessary for fast functional evaluation 

in the general case). 

When a tuple of length three or more is put in a set, a 

special pair is formed whose two components are the tuple's first 

component and a set containing the tuple's tail. 

More specifically, the hashtable entries for a set Sare lists 

containing: 

1. non-tuple members of S, 

2. zero-, one-, and two-tuple members of S, and 

3. special pairs of the form <a,sa>, where a is the first 

component of an n-tuple (n > 3) member of s, and 

sa is a set containing the tails of those n-tuples 

that begin with a. 

To put a tuple <a,x,y, ... ,z> of length greater than 3 into 

a set in whose representation a special pair (a,sa) is already 

present, one puts its tail <x,y, ... ,z> into sa, a process which 

may involve additional, recursive, decomposition of <x,y, •.. ,z>. 

We illustrate the scheme of representation which results from 

this convention by considering as an example the set 

s = { a,<a>,<a,b>,<a,<b,c>>,<a,b,c>,<a,<b,c>,d>, 

<a,b,<c,d>>,<a,b,c,d>}, 

in which a,b,c and d are arbitrary objects. 

m,__ internal representation of this set is shown in the following 

gram. 
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hashtable (s) 

hash (a)---'?""~ a,<a>,<a,b>,<a,<b,c>>,(a,sa) 

hash table (sa) 

hash (b) _ __,>- <b,c>,<<b,c>,d>,<b,<c,d>~(b,sab) 

hashtable (sab) 

hash (c)--->" <c,d> 

Showing still more detail, and in particular showing values 

for the 'number of members' and 'hashtable load' parameters always 

associated with the internal description of a set, we can repre

sent these same sets by the three following hashtables (shown 

as tuples). 

-524-



s = <l0,<8,5,6789o,4,<n, 

n, 
a,<a>,<a,b>,<a,<b,c>>,(a,sa), 

n>>>; 

sa = <10,<4,4,13579,4,<n,. 

<b,c>,<<b,c>,d>,<b,<c,d>>,(b,sab), 

n, 
n >>>; 

and 

s ab = < 10 , < 1 , 1 , 2 4 6 8 0., 1 , < < c , d> > > > . 

To evaluate <a,b> for the above set, the set·s must be 

searched for tuples of the following forms: 

<a,b,c,.~.>, 

<a,b,<c, ... >>, 

<a, <b, c, ... > > , 

<a,<b,<c,. -~ >>>. 

but not for a tuple of the form <a,<b,c>, •.. >. This stems from the 

fundamental SETL definition of functional evaluation for more 

than one argument: 

f{x,y} = (f{x}) {y} . 

It would be intolerably inefficient for the run time library to 

work directly from this definition, as that would require building 

the intermediate set f{x}, which might very well be quite large. 

The tuples of the desired form are not all found in the same 

place. Those that are pairs (of the forms 

<a,~b,c, ... >> and <a,<b,<c, ... >>>) are found in the primary 

hashtable, the triples (of the form <a,b,<c, •.. >>) are found 

in the secondary hashtable, and those of greater length 

(<a,b,c, ... >) are found deeper in the structure. 

The breaking up of n-tuples when they _are put into sets 

is a considerable complication to the algorithms 

(with,. less, arbitrary elemE:nt of, iteration, and functional 

luation) that deal with sets. These algorithms are probably 

ce as large in terms of lines 

-525-



of code as they would otherwise be, and several times more complj

cated conceptually. The procedure used is predicated on the ass, 

tion that a set of n-tuples is probably going to be used as a 

function, and furthermore that the usual way to build a set-function 

of n variables is as a set of (n+l)-tuples (i.e., tuples such as 

<a,b,c,d> rather than <a,<b,<c,d>>>, or some such thing). In 

particular, .the assignment 

f(a,b,c) = d; 

causes the 4-tuple <a,b,c,d> to be added to the set f. 

3. Special conventions concerning n. 
One of the purposes of this specification (though not its main 

purpose is to define the meaning of SETL operators in detail, 

particularly in those marginal cases which escape attention in 

broad-brush accounts of operation semantics. Many particularly 

elusive marginal cases of this sort involve the usage of the 

'undefined atom' n. Principal facts concerning these cases are 

swnmarized here for quick reference. 

The rules concerning n are usually derived from the following 

principle. If a set or tuple is referenced in a way that requests 

a member having certain properties, and no such member exists, 

then the value of the expression is n. On the .other hand, execution 

is generally terminated if a SETL operation is called with incor

rect data types, or with 'obviously' incorrect values (including n), 

such as a zero divisor. 

Thus the main sources of n are those cases of certain retrieval 

operations (f(x), arb, s, hd t, tupl(n), string(n)) in which the 

item to be retrieved is not defined (i.e., does not exist). 

An essential exception to the above is that n is allowed to enter 

into the~ and ne operations, so that it may be tested for. As 

a convenience, n is dlso allowed to be the argument of the SETL 

~, atom, and pair functions, since the use of these indicates 

that there is some doubt about the status of a_SETL object. Again 

as a convenience, n is allowed in hd, ti, and assignment operations. 
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Q is allowed to be a component of a tuple, but it is not 

Lowed to be a member of a set. As a component of a tuple, it 

serves as a 'place marker'. Let 

tl = <l,Q,3,Q>, and 

t2 = <l,Q,3>. 

Then: #tl= #t2 = 3; 

tl ~ t2 is true; 

tl ( 0) = tl ( 2) = tl ( 4) = tl ( 5) = Q ; 

t1(4:) = tl(S:) = n; and 

t1(4:2) = tl(S:2) = Q. 

Ar~uments are not checked unless they are actually used. For 

example, in x ~ s , if sis ni, a value of false is returned 

even if xis Q. Similarly, in f{xl, ... ,xn}, if no tuple inf 

begins with xl, a ni result is returned and x2,x3, ... ,xn are not 

examined for legality. This is a result of the way sets of tuples 

are implemented, and may be considered to be a departure'from 

'true' SETL ('true' SETL is not at this time defined to quite 

such a degree of precisiori). 

Q is generated or propagated by: 

1. x = Q; (assignment) 

2. 3ni, 3nulb,, 3nulc, 3nul t 

3. hd Q, hd < >, hd <Q, ... > 

4. ti Q, ti<> , ti <x> 

5.'random ni 

6. tupl(n) if n is nonpositive, or greater than #tupl, or 

if then-th component is missing (undefined) 

7. string(n) if n is nonpositive or greater than,#string 

8. f(x), if x ~E hd [f] {but f(Q) and Q(x) are invalid) 

9. 3x ~st c(x), if no such xis found 

10. [op: xe:s] expr, if s is nt , nulb, nulc, or nul't 

11. '~ Q 

12. f(nt], f(nulb], f(nulc], f[nult] 

13. NPOW{n,S), n > #S 
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n behaves·as follows, where 'invalid' causes termination 

of execution: 

1. atom n is true 

2. #S1 is invalid 

3. n ~ n is true; n ne n is false 

4. n E s and n nE s are invalid 

5. X E n. and x nE n are invalid 

6. n with X and s with n are invalid 

7. n less X and s less n are invalid 

8. s lesf n is valid, and tuples beginning with 

n (sparse tuples) are deleted 

9. 3S1 is invalid 

10. n{x} and f{n} are invalid 

11. n{xl, ... ,xn} and f{xl, ... ,n, ... ,xn} are invalid 

(although the latter is valid if the result is ni 

based on the arguments preceding the undefined one). 

12. f(x) and f[x] are similar to (10) and (11) above 

13. pair n is false 

4. Keypunch conventions used in the specification 

In order to allow it to be kept current with the actual run 

time library, the specification which will be reproduced below 

is maintained as a computer file. As the full SETL character 

set is not available for computer output, lexical conventions 

essentially equivalent to those of SETLB are used in the speci

fication text. 

(SETL characters 

1. { 

2. { 

{ 

< 

3 

} 

> 

< 

< 

These 

above 

[ 

~ [ 

> < 

> < 

conventions are as follows: 

and SETLB characters below) 

] E n 3 'rJ 

] t -+ OM. ARB. V 

> # 
> + 

SETL underlining, as in ni, is represented in SETLB by an 

affixed dot, as in NL .. 
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~- Table of Contents, Index of Routines in this Specification, 

with an Account of Call-Caller Relationships. 

a. Table of contents 

6.1 Initialization data and utility routines 

6,1.1 Type codes 

6.1.2 Fields of objects 

6.1.3 Hashing parameters 

6.1.4 Tuple parameters 

6.1.5 Set parameters 

6.1.6 Searching ·sets 

6.1.7 Special SETL constants 

6.1.8 Miscellaneous variables 

E.1.9 Stacking routines 

6.2 Input/output 

6.2.l External representation of data 

6.2.2 Input routines 

6.2.3 Output routines 

6.3 Error routines 

6.4 Hashing routine 

6.5 Atom routine 

6.6 Number of elements routine 

6.7 Equality test 

6.8 Element test 

6.9 Augment (with) 

6.10 Diminis (less) 

6~11 Dimf (lesf) 

6.12 Arbitrary element 

6.13,Iteration 

6.14 Functional application, retrieval 

6.15 Functional application, storage 

6.16 Copy routines 

6.17 Head and tail routines 

·6.18 Plus routines 

r ~9 Minus routines 

0 Multiplication routines 

6.21 Division routines 
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6.22 Double ilash routine 

6.23 Absolute value routine 

6.24 Parallel boolean operations 

6.25 Type and pair routines 

6.26 New atom routine 

6.27 Min and max routines 

6.28 Bot and top routines 

6.29 Substring routines 

6.30 Dec and oct routines 

6.31 Bitr routine 

6.32 Relational operators le and lt 

6.33 Power set routines 

6.34 Random routines 

6.35 Exponential routines 

6.36 Miscellaneous routines 
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b. Index of routines in this specification, with call-caller 
relationships. 

Section Name 

6 .1. i type (x) 

value(x) 

nextm (x) 

ncomps(t) 

space ( t) 

tup(t) 

nmembs(s) 

load (s) 

hcode (s) 

htsize (s) 

hashtable(s) 

6.1.4 ncompallo(n) 

toodense(s) 

toosparse(s) 

6. 1.6 ini tm (x ,s) 

Description 

type code of SETL object x 

value of object x 

next member after x in a set-list 

number of components in tuple t 

space allocation existing for tuple t 

actual tuple part of tuple t 

number of members of sets 

loading of sets 

hashcode of sets 

hash table size of sets 

hash table of sets 

initial space allocation for a tuple 

true iff hash table of sis overused 

true iff hash table of sis underused 

gets first member of sin set-list 

(hash table entry) for x 

search(x,s,m) a macro: aids in searching a set-list 

6. 1. 9 · 

6.2.2 

6.2.3 

push (x) 

pop(x) 

stlread(f,R,) 

stacks x 

pops x 

parser for reading input 

printer(o,f,m) main routine for printing 

printc(o,R-,f,m) prints an object o with label R, 

charout(o,R-,f,m) converts an object o to a character 

string, and prints it 

post(f,x) prints an arbitrarily long character 

string X 

6-3· errimp(m,x) error exit for impossible type code 

err type (m, x) 

errval (m ,x) 

errmsg(m) 

errimpl (m} 

errmix(m,x,y) 

error exit for invalid type code 

error exit for invalid data value 

error exit, prints message m 

error exit for implementation error 

error exit for mixed type codes 
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6. 4 

6-5 

6.6 

6.7 

6-8 

6.9 

hash (x) 

atom(x) 

nelt(x) 

equal(x,y) 

calculates the hash code of x 

SETL atom x 

SETL #x (number of elements) 

SETL x ~ y, main routine, 

calls eqbasic, eqtupnt, and subsetnt 

eqtupnt(x,y) SETL x ~ y for non-trivial tuple comparison 

subsetnt(x,y) SETL x ~ y for non-trivial set comparison 

(same as a subset test) 

eqbasic(x,y) utility routine used by equal, eqtupnt, 

and subsetnt 

elmt (x,s) 

elmtbst(x,s) 

elmtcst(x,s) 

elmttup (x, t) 

elmtset(x,s) 

elssmp(x,s) 

elstup(x,s) 

augment(x,s) 

augaok(x,s) 

augsimp(x,s) 

augtup(x,s) 

SETL x Es, main routine, 

calls elmtbst,~lmtcst, elmttup, and elmtset 

SETL x Es for s a boolean string 

SETL x Es for s a character string 

SETL XE t fort a tuple 

SETL x Es for s a set, calls elstup 

and elssmp 

SETL x Es for s a set, x not a tuple 

of length~ 3, calls equal 

SETL x Es for s a set, x a tuple, 

calls equal 

SETL s = s with x, main routine, calls augaok 

SETL s = s with x, arguments OK, 

calls augsimp and augtup 

SETL s = s with x, x not a tuple of length 

~ 3, calls equal, toodense, and expand 

SETL s = s with x, x a tuple, calls equal, 

push, pop, augsimp, tupsplt, and replace 

. replace(x.,s,y) replaces x in sets by y, used only by 

augtup and dimtup, calls equal 

tupsplt(t,i,j) builds up tuple t from component i to j+l, 

calls setlsmp 

setwthl (x) · 

setlsmp(x) 

expand(s) 

SETL · {x}, main routine, calls setlsmp and 

tupsplt 

SETL {x}, x not a tuple of length> 3 

doubles the size of the hashtable of s, 

calls hash 
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h 10 

6.11 

6-.12 

6.13 

6.14 

diminis(x,s) 

diminok(x,s) 

dimsimp(x,s) 

dimtup(x,s) 

contrct(s) 

dimf(x,s) 

dimfaok(x,s) 

arb(s) 

arhbstr(s) 

arbcstr (s) 

arbtup(t) 

arbset(s) 

arbsimp (s) 

next(c,s) 

nextbit(c,s) 

nextchr(c,s) 

nextcmp ( c, t) 

nextmem(c,s) 

of (f ,x) 

ofbstr ( f, x) 

ofcstr ( f ,x) 

oftuple (f ,x) 

of set ( f ,x) 

SETL s = s less x, main routine, calls 

diminok 

SETL s = s less x, arguments OK, 

calls dimsimp and dimtup 

SETL s = s less x, x not a tuple of 

length> 3, calls equal, toosparse, and 

contrct 

SETL s = s less x, x a tuple, calls 

dimsimp, equal, push, pop, and replace 

halves the size of a hash table 

SETL s ~ s lesf x, main routine, 

_calls dimfaok 

SETL s = s lesf x, arguments OK, 

calls equal, toosparse, and contrct 

SETL 3St main routine, calls arbbstr, 

arbcstr, arbtup, and arbset 

SETL 3S, s a boolean string 

SETL 3S, s a character string 

SETL 3t, t a tuple 

SETL 3S, s a set, calls arbsimp, 

tupaddl, and concatt 

SETL 3s, s a set, tuples of length > 

not rebuilt 

3 

SETL iteration Vx Es, main routine, calls 

nextbit, nextchr, nextcmp, and nextmem 

SETL Vx Es, s a boolean string 

SETL Vx Es, s a character string 

SETL Vx Et, ta tuple 

SETL Vx Es, s a set, calls tupaddl 

and concatt 

SETL f(x), retrieval, main routine, calls 

ofbstr, ofcstr, oftuple, and ofset 

SETL f(x), retrieval, fa boolean string 

SETL f (x) , retrieval, f a character string 

SETL f (x) , retrieval, f a tuple 

SETL f (x) , retrieval, f a set, calls 

equal and arbset 
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6.15 

ofn(f,x) 

ofa(f ,x) 

ofan(f,x) 

ofb(f,s) 

ofbbool(f ,~) 

ofbchar (f, s) 

ofbtup ( f, t) 

ofbset(f,s) 

ofbn'(f ,s) 

sof(f ,x,r) 

SETL f(xl, ... ,xn), retrieval, calls 

ofan and arbset 

SETL f{x}, retrieval, calls equal, augaok, 

and aunion 

SETL f{xl, ... ,xn}, retrieval, calls equal, 

augaok, augsimp, tupsplt, aunion, push, 

and pop 

SETL f[s], retrieval, main routine, calls 

ofbbool, ofbchar, ofbtup, and ofbset 

SETL f[s], retrieval, s a boolean string, 

calls ofset, ofbstr, and plus 

SETL f[s], retrieval, s a character string, 

calls ofset, ofcstr, and plus 

SETL f[t], retrieval, ta tuple, calls 

ncompallo and ofset 

SETL f[s], retrieval, a a set, calls 

nextmem, aunion, and ofa 

SETL f[sl, ••• ,sn], retrieval, calls ofbset 

SETL f(x) = r ('storage of'), main routine, 

calls sofbstr, sofcstr, softupl, and sofset 

sofbstr(f,x,r) SETL f(x) = r, fa boolean string, 

calls okindex 

sofcstr(f,x,r) SETL f(x) = r, fa character string, 

calls okindex 

softupl(f,x,r) SETL f(x) = r, fa tuple, calls okindex 

okindex(x) verifies that xis a reasonable index 

sofset(f,x,r) SETL f(x) = r, fa set, calls dimfaok 

sofn ( f, x, r) 

sofa(f,x,r) 

sofan(f,x,r) 

so fb ( f , s , r) 

sofbn(f ,s,r) 

and augsimp 

SETL f(xl, ... ,xn) = r, calls dimfn, 

tupaddl, and augtup 

SETL f{x} = r, calls dimfaok, nextmem; 

and augsimp 

SETL f{xl, •.. ,xn} = r, calls dimfn, space, 

nextmem, and augtup 

SETL f[s] = r, calls nextmem, dimfaok, 

and augsimp 

SETL f[sl, ... ,sn] = r, calls nextmem, 

dimfn, tupaddl, and augtup 
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6.16 

6.17 

6.18 

6.19 

6.20 

6.21 

6.22 

6.23 

6. 24 

6 .. 25 

6 • 26 

dimfn (f ,x) 

copy (x) 

copyl (x) 

head(x) 

tail(x) 

plus(x,y) 

Alters f by removing a minimum number 

of members to make f{xl, ... ,xn} null. 

Calls equal, push 9 pop, toosparse, 

and contrct 

Copies~ to its full depth. Calls copy 

Copies x, but only one level deep 

SETL hd x 

SETL tl x, calls ncompallo 

SETL x = x + y, main routine, calls 

aun1on and concatt 

concatt(tl,t2) SETL tl = tl + t2, tuples. Calls ncompallo 

aunion(x,y) 

minus(x,y) 

setdiff(x,y) 

pminus(x) 

SETL x = x + y, sets, calls nextmem 

and augaok 

SETL x = x - y, main routine. Calls setdiff 

and pminus 

SETL x = x - y, sets, calls nextmem 

and dimaok 

SETL -x (prefix minus) 

mult(x,y,r) SETL r = x•y, main _routinej calls intsect 

intsect(x,y,r) SETL r = x·*y, sets, calls nextrnem, 

elmtset, and augaok 

divide(x,y,r) SETL x = x/y and r = x//y, main routine. 

symdiff(x,y) 

dslash(x,y) 

abs (x) 

booland(x,y) 

boolor(x,y) 

boolex(x,y) 

boolimp(x,y) 

boolnot(x) 

setltype (x) 

pair (x) 

newat (r) 

Calls symdiff 

SETL x = x/y, sets (symmetric difference), 

calls intsect, aunion, and setdiff 

SETL x = x//y, calls boolex 

SETL abs x (absolute value) 

SETL X = X and y 

SETL x = x £!: y 

SETL X = X exor y 

SETL X = X implies y 

SETL X = not X 

SETL ~ x, calls type 

SETL pair x 

SETL r = newat 
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6-27 

6.28 

6.29 

6.30 

6.31 

6. 32 

6 . 33 

6 • 34 

6-35 

6.36 

min ( x·, y , r) 

max(x,y, r) 

bot(x) 

top(x) 

substr(s,i,l) 

ssubstr(s,i,l,r) 

dee (x) 

oct(x) 

bitr(x) 

le(x,y) 

lt(x,y) 

pow (s) 

npow.(n ,s) 

nexpow(c,s) 

SETL r = X min y 

SETL r = X max y 

SETL bot X 

SETL top.x, calls pminus and bot, .. ' 1 

SETL s(i:l), retrieval, calls ncompallo 

SETL s(i:l) = r (storage substring) , 

calls substr 

SETL dee X 

SETL oct X 

and plus 

SETL bitr x (numeric to/from boolean 

string conversion), calls bot 

SETL x le y, ca.lls nextmem and elm ts et 

SETL x lt y, calls le 

SETL pow(s), calls nexpow and augaok 

SETL npow(n,s), calls nexnpow and augaok 

Computes 'next' subset of s, calls nexnpow 

nexnpow-(c,n,s) Computes 'next' subset of s of size n, 

calls nextmem and augaok 

random (x) 

ranint(n) 

ranreal (r) 

ranbool (b) 

ranchar(c) 

rantupl (t) 

ranset(s) 

ranbase(n) 

exp(x,y) 

expii(x,y) 

tupaddl ( t ,x) 

SETL random x, main routine, calls ranint, 

ranreal, ranbool, ranchar, rantupl, and ranse 

SETL random n, nan integer, calls ranbase 

SETL random r, r a real, calls ranbase 

SETL random b, b a boolean string. 

Calls ofbstr and ranint 

SETL random c, ca character string. 

Calls ofcstr and ranint 

SETL random t, ta tuple, calls oftuple 

and ranint 

SETL randoms, s a set, calls ranbase 

and nextmem 

Generates a non-SETL integer uniform 

on [0 ,n-1] 

SETL x ~ y, main routine, calls expii 

SETL x exp y, integers 

SETL t(#t+l) = x, calls space and ncompallo 
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6. DETAILED SPECfF'ICATIONS er THE SETL ?~IMit1ves 
-------·-~---~----------------------------~---

6.1. INITIALIZATION CATA AND UTILITY RO~TiNE~ 
------------~------~--------------------

6.1.1 TYPE .coces 
----------

INT = 0; I•. INTEGER. *I 
REAL = u I• REAL <F'LOATINO POINT). •I 
BOOL = ?J I• BOOLEAN STF<ING. •I 
.CHAR = 3; I• CHARACTER STRING. •I 
BLANK = 4: I• BLANK ATOM <RETURNED QY NEWAT. ROUT t NF.·, . •I 
LABEL = 5; I• LABEL VARI.ABLE, •I 
SUB = 6: I• SUBROUTINE VARIABLE. •I 
F'UN = 7; I• F'UNCTION VARIABLE, •I 
UNDEF = a; I• ·TYf'E CODE LSEO FOR OMEGA. •I 
TUPLE = 9; I• TUPLE. •I 
SET = 10; •I I• :SET·, 
SPECPAIR = 111 ·/• TYPE CODE LSED FOR THE !!iPECiAl PAtR ( NOT . A 

SETL OBJECT), *I 

6 .1. 2 FIELDS' OF' OBJECTS 

/* THESE FUNCTIONS HAY BE USED IN EITMER nEXTER OR ~iNt~TER 
MOOE. •I 

·DEF'INEF TYPE(OBJ)J RETURN OEJ(1)J ENDJ 
DEFINEF VALUEtOBJ)J RETURN CBJ(2>; END:· 
DEF' I NEF NEXT~ C OBJ> J RETURN ,cs.JC 3 >; END; 
DEFINEF NCOMPS(T)J RETURN <VALUECT>>~i~: ENDJ 
CEF'INEF SPACE(T)J RETURN (VALUE<T>><2>J · ENOJ 
DEFINEF TUPCT~J RETURN CVALLE<T>><3>J E~o, 
DErINEP NMEMBS(S~J RETURN CVALUE<S~><i~J EN~J 
DEFINEP LOADCS)J RETURN CVALUE<S>><2>J ~NDJ 
,DEFINEr HCODEtS~J RETURN CV-LUE<S~>CJ~J ENDJ 
DEF'INEF HTSlZ&(S~J RETURN CVA~UECS>><4~J ENDJ 
DEFINEr HASMT~BLECS>I R6TUR~ <VALUE<S~~<ij>a ENDJ 
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6. 1. 3 HASHI~G PARAMETERS 

-----·-~----------
HASHNLB = 662561 /'If ;QR MLLL ·BOOLEAN STRiNa. •I ... \ 

HASHNLC = 27182J I• l='OR NLLL CHARACTE~ STRING, •1 
HASI-INLT = 314161 I• roR NLLL TUPLE. •I 
HASHNLS = 123451 I• F'OR NLLL SET. •I 
HASHBLNK = 67447J I• F'OR BLANK ATOMS. *I 
HAS)-IUNOF. = 68421J I• F'OR U~DEF"INED ATt,~. •I 

6,1,4 TUPLE PARAMETERS 

-----~----~-----
NCOMPSMALT • 2J I• SMALLEST SPACE PARAMETER. •I 

DEFINEF NCOMPALLO(N)J I• INITIAL SPACE A~LOCATION F'O~ AN 
N-TUPLE. •I 

RETURN NCOMPSMALT MAX, <CC5•~)/4) + 1): 
END NCOMPALLCJ 

6,1,5 SET PARAMETERS 

-----~--------
HINHTSI7.E = :2J I• MINIMLM MASH TABLE SIZE, •I 
MAXI-ITSIZE = 'J2768J I• MAXIMU1 MASH TABLE SIZE, •I 

DEF'INEr TOODENSE(S)J I• RETLRNS -TRUE.- tTME META•t,BJEcT. NOT 
THE SETL OBJECT> IF THE MAqM TABLE Or 
s rs TOO DENSELY useo. •I 

RETURN <LOADCS) GT, 2•HTSIZE<S>)J 
END TOODENSEJ 

DEF' I NEF' TOO SPARSE ( s)' I• RETURNS ~TRUE. it Ir TMFl" MA!;M TABLE Or 
·s rs Too SPARS=LY useo. · •, 

RETURN <2•LOAD(S) LT, HTSlZE<S>>; 
ENC TOOSPARSEJ 
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----••••••••-w 

I• TO ACCURiTELV REFLECT THE LITTLE con~._e~c~ ENTRV IN A HAS~ 
'TABLE Is TREATED AS A LIST I~ THIS S?ECl~ICATION. TH8S~ vSET 
LfSTSv ARE SCANNED USING A v~EXT MEMBER~ fUNCTION N~XTMCM>, 
IN THIS SPECirICATION, SET•LISTS ARE IM?L~MENTEO BY A"DtNG A 

'THIRD COMPONENT TO EACH MEMBER, AS EXPLAINED iN SECTinN 2. 
NEXTM<M> IS ;SJMPLV M(J), AS SHOWN IN SEC!TTON !S.L2 ABiiVE, iN 
THE LITTLE CODE NEXTM IS IMPLE~ENTED WIT~ CHAIN POINTeRs, *I 

DEfINEF INIT~(OBJ~ S)J I• GETS FIRST ME~~ER OF S l~ THF HASH 
T~BLE SLOT IM:,LIED BV OB.I, •I 

RETURN CHASHTABLE(S>)(HASH(OEJ)//HTSIZECS> • 1)1 
END INITM; 

'/* BECAUSE SET SEARCHING IS so UBIQUITOUS~ THE roLLnWJNG 
MACROS ARE PROVIDED. •I 

BLOCK SEARCH(OBJ, S, M)J 
M = INITM<OB,,{, S)J I• !NITTALIZE M. •I 
(WHILE M NE, OM, DOING M = ~EXTMCM>;> 
END SEARCHJ 

BLOCK CONTSEARCH(M)J 
CONTINUE WHILE M NE. OM. 
:END CONTSEARCMJ 

BLOCK auITSEARCH(M)J 
QUIT WHILE M NE, OM, 
END QUITSEARCMI 

BLOCK ENOSEtROH(M)J 
END ·wHILE M 1~E, OM, 
·END ENDSEARCl"i J 
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I• LOOPS THRCUGH SET•LISTS M~Y BE COOED AS roLLOWSI 

SEARCHCOBJECT, SET, M> 
I I I 

CONTSEARCH<M>; 
I I I 

au ?TSE ARCH ( M): 
I I I 

ENDSEARCM(M); •I 

6.1.7 SPECIAL SETL CONSTANT~ 

----·--·---------~----
TRUE= <BOOL, 1B>J 
rALSE = <BOOL~ OB>J . 

/+ NOTEI THIS IMPLEMENlATION WILL J~~ TME SETL eONSTANT 
iTRUE,_ rOR THE META•LA~GUAGE CONSTANT, AND -T~UE
<WITHOUT THE PERion, rU~ TME OBJECT ~ANGUAGE ~nN9TANT 
(ANO SH'ILARLY rOR F'ALSE), THE SPECirtCATJON tNOLUDES 
MANY E~PRESSIONS SUCH AS ~Ir (X EQ, TRUE> ••• -. W~ICH Is 
NOT EQUIVALENT TO ,nr ()().,,;it, •I 

NULLBSTR = <BOOL~ NULB,>J I• NULL BOOl~EAN STRiN11, *I 
NULLCSTR = <CMAR~ NULC,>J I• NULL C~A~AtTER STRtNn, •I 
UNDEFWD = <UNDEr~ O>J I• UNDEFINEn ATOM (OM~GA). •I 
NULL T U PL E = : c TUPLE , < 0 , 0 , W. LT , > > ; / • Nu LL TU PL E , • I 
NULLSET = <SET, <0, 0, HASHNLS, 0, NULT,>>: I• NULL ~ET, •I 

6,1.8 MISCELLANEOUS VARIABLES 

-------------~---------
BL.ANKATOM = <BLANI(, O>J I• LSED BY NEWAT, ROUTtNE, •I 
RANDSEED = JO•DB • 1BJ I• LSED BY RAN(>JM ROUTINE, •I 
MAXRNPl = 2 EXP, 31J I• ·t--AXIMUM RANDJM NUMBER• 1 <~EE 

f;QUTINE ,i1RAN3ASE.e·,, •I 
STACK = NUL T ti I• 'LSEO BY STACKiNG ROUTIN~S 

<PUSH, POP>, !I 
MAXLINESZ = 130J I• '"U~BER or CM4RACTERS TI-IAT WILL F' Ii' 

CN ONE LINE <ASSUMED TO ee THE 
·SAME FOR ALL ;ILES>, •I 
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6.1.9 STACKING ROUTINES 
-----~----~------

OEF'INE PUSHCX>J 
STACK(1STACK • 1) • XJ 
RETURN; 
ENO PUSH; 

DEF'INE POPCX)J 
X = STACK<~STACK~J 
STACKt•STACK) ; OM,J 
RETURN; 
END POP; 

I• NOTE: STACI< IS. INITIALIZED IN SECTIO\J •~;.1.8, •I 
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6,2 INPUT/OUTPUT 

------------
6,2,1 EXTER~AL REPRESENTATICN or DATA 

----------~------~-------------
THE FOLLOWING DATA TYPES ~AY BE READ TN WITH A RP.An 

STATEMENT: 

INTEGERS 
REALS 
BOCLEAN ·STRINGS 

CHARACTER STRINGS 
TUPLES 
SETS 

IN ADDrTtON~ TME DATA TYPES OF BLAN~ AtOMS~ LA~ELS, 
SU8R0UTINES, ANO tUNCTlnNS M~Y BE PRJNTeO. 

BELOW !SA BRtEr DESCRIPTION or THE ~HARACTER qT~ING, 
OR EXTERNAL, REPRESENTATION er EACH OATA TYPE, THI~ . 
DESC~IPTION APPLIES BOTH TO INPUT AND OUTPUT OPERATIONS. 
HOWEVER, THERE IS GREATER tLEXIBILITY IN rORMATTJNO STRINGS 
FOR INPUT. 'THESE ALTERNATE FORMS ARE OESr.RIBED BELnw roR 
EACH CASE. 

ON BOTH INPUT AND OUTPUl, SUCCESSJv; ITEMS ARE SSPARATED 
BY BLA~KS. 'TME SLASH(/, IS A~ OPTIONAL ~EPARATOR THAT MAY 
BE USED To MARK THE END or T~E EXTERNAL ~~PRESENTATION ar A 
COMPLICATED 'TUPLE OR SET, 11 IS USED ON iNPUT TO C4ECK f"OR 
POSSIBLE MISPARENTHETIZATION OR ILL•FORM=fi DATA, THE USUAL 
DELIMITERS ARE USED: <AND> FOR TUPLES~ ANO~ AND>. rOR SETS. 
THE INPUT STREAM MAY NOT CONTAIN CCMMEN~S. END•OF•rtLE IS 
INDICATED BY T~E DOLLAR SIGN CHARACTER (ii, 

THE EXTERNAL REPRESENTATION or THE ViRious DATA TYPES iS: 

1, INTEGERS~ DECIMAL, OPTION.LL~ ~~E~ED~D 8V A MINUS 
SIGN, NO EMBEDDED ·ELANl<S OR COMMAS ARE ALLOlt/EO, 

2, REALS: NOT !MPLEMEI\TED YET. 

3. BOOLEAN STRINGSi !I\ BINARY OR J~T~~ roRM, OR TN A 
MIXTURE OF BOTM, TrE 8INARY PORTION PRECEneq THE 
OCTAL PORTION, AND IS SEPARATED rROM IT BV THE LETTER 
8. IF THE EXT&RNAL FCRM IS ~uR;~y OOT~L~ T~~ LETTER 
O tS APPENDED TO THE STRING. 0~ O~TPUf, TME LONGEST 
POSSIBLE OCTAL PORTION IS USED~ ~ITM ONLi (N MOD, ~> 
BITS IN THE BINARY FORTION, EXAM~LESI 1B, 187, 
1011001018, 770~ NULB, , 

4. CHARACTER STRINGSI ENCLOSED IN ~INGLE QUOTE MARKS 
(A~OSTROPHES), WITH EMBEDDED QUOtES REPRESeNTEn BY 
TWO SUCCESSIVE QUOTES, ON INPUT~ TME ENCLnstNG 
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QUOTES MAY BE OMfTTED IF ~ME ST~iNG 8EGINS WIT~ A . 
LETTER AND DOES NOT CCNTAIN ANY nELIMITERS, SUCH AS 
A BLANK, EXAMPLES: ilfABCiit, ABC, NULC., ,__, --~t, 

5, BLANI< ATOMSI COUTPLT ONLY>. R=.PRESENTED qy A STRtNr. 
OF 'THE F'ORM BLl<N, ~HERE N IS A·\J INTEGER InENTTF'YING 
THE -SERIAL NUMBERt OF THE BLAN~ ATOM. EXAMPLES: 
BL1<1 ·, 8LK98?, 

6. LABELS, SUBROUTINES, AND tUNCTiJNS: (OUTPUT nNLV>, 
THE· IDENTirIER LAB, FUN, OR SUB, FOL(OWED AV A . 
PERIOD, F'OL.LOWED BY ThE SUBROlJTINEll!S NiME toqTAINEO 
FRO~ A SVMBOL TABLE). EXAMPLES: LAB.LOOP, F'UN.F'. 

7. TUPLESI IF El, E2, ••• , EN ARE THE EXTERNAL 
REPRESENTATIONS OF" THE COMPONENTS OF' TME T!JPLE. THEN 
THE EXTERNAL REPRESENTATION OF' T~E TUPLE I~ 
<E1,E2,,,,,EN>. THE ~ULL TUPLE TS WRITTEN<~ nN 
OUTPUT, AND EITHER<> OR NULt. ON tN~U~. 

8 . S E T S 'i I F' E 1 , E 2 , . . • , EN A RE T ~ ~ E )(TERN AL 
REPRESENTATIONS OF THE MEMBERS J~ THE· SET, TAKEN IN 
AN ARBITRARY ORDER, ThEN THE E~T~RNA~ FORM or THE 
SET IS $E1,E2,.,.,E~~- THE NULL SET IS wRttTEN s~ 
ON CUTPUT, AND MAY EE WRITTEN~~ OR NL. ON INPUT, 

9, UNDEFINED ATOM: OM. <EITHER IN?~T OR OUTPUT), 

THERE ARE ABBREVIATING .CONVENTION~ roR TME O~TPUT rORM 
OF DEEPLY NESTED TUPLES AND 5ETS. THESE ARE OESCRlREn IN TME 
SPECIFICATIO~ or THE OUTPUT ·~OUTINES, BE~~w. 

THE TABLE BELOW SUMMARIZES THE SPECliL VALUES THAT MAY 
BE WRITTEN l~ PERIOD•DELIMITED FOR~. 

VALUE PERIOD F'ORM ALTERNATE r:"ORM 

TRUE TI 1B 
FALSE F' I OB 
NULL BOCL, NULR. <NONE!> 
NULL CHA~, NULC. --NULL TUPLE NULT, <> 
NULL SET NL, ~~ 
UNDEFINED OM, <NONE> 
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6,2,2 INPUT ROUTINES 

---------•'!II•--

THE INPUT ROUTINES roRM THE FOLLOWi~n HIERARCHICAL. 
ORGM~IZATIONI 

1, A LEXICAL. SCANNER, ~TOl<READit. W-4ICH EXTRACTS SUC
CESSIVE TOKENS rROM THE INPUT STREAM~ iND ~R~OUCES 
SETL CHARACTER STRF~GS FOR EACM, TMESE STRI~G~ 
CONTAIN EITHER CEL.H' ITERS OR TM:: EXTERNAL roqM OF 
ATO~S, -TOKREACII! CftLLS: 

2, A SET or CONVERSION RCUTINES FO~ ATOMSi INTCMA~, 
BSTCMAR, AND RELCHA~, WHICH PRODGCE SEjL I~TSGERS, 
BOOLEAN STRINGS, AN[ REALS. RES~~CTIVELY, F'RnM THE 
CORRESPONDING CMARACTER STRINGS. CHARACTER qTRINGS 
THE~SELVES ARE CONVERTED (STRIP?~D OF ENcLnsrNn 
QUOTES, AND WITH EMEECDED DOUBLE 080TES RE~~,c~o wtT~ 
SINGLE ONES) BY TOK~EAO ITSELF, 

3, A PARSING ROUTINE #STLREAD-, W8IijH .ASSEMBLFS TME 
TOKENS INTO COMPOSliE OBJECTS (TUPLES ANO qETS>, 

THE LEXICAL SCANNER 

THE LEXICAL SCANNER CONSISTS OF THE MAIN ROUTINE 
-TOKREAD-AN£ THREE AUXILIAR~ SUBROUTINES CMRNEXT, ~UTCMAR, 
AND FULLTOI<, 

THE LEXICAL SCANNER IS [ESIGNED FRO~ THE IDEA nF A TABLE
DRIVEN ATOMATON, roR EACM C~ARACTER, A N~MER!CAL ATTRl~UTE 
(CHARTVP) IS OBTAINED, ANO TrIS IS USED T~ DRIVE A TRANSITION 
TABLE, HOWEVER, FOR EFFICIE~CY IN THE iGfUiL RUN TtMe 
.LIBRARY ROUTINE, WE DON-T ACiUALLY INTER~RET A TABLE AT 
EXECUTION Tl~E. INSTEAD, THE ROUTINE CO~$ISTS OF A seRtES OF 
IF AND GO TO STATEMENTS WHOSE STRUCTURE ~IRRORS THAT nr THE 
TRANSITION Tj8LE, 
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fH~ CH4RACTER TYPES AND T~EIR NUMERI~A( ATTR!BUT~S AREi 

CHARACTER -CHARTY?~ 

0 1 
B 2 
LETTER ,OTHER ·THAN C~ 8 3 
INTEGER 4 
QUOTE 5 
BLANK 6 
PERIOD 7 
DELIMITERS COMHA,<,>,~,2 8 
OTHER SPECIAL CHARACTER~ 9 

THE STATES or THE ATOMATO~ ARE: 

1. STARTTOl<'1 BEGINNING OF' A TOKEN <NO CMARAOTER R~An). 
2 . BIHJUMl SCANNING AN n TE GER, REAL, OR BOOLEAN STRING~ 
3. BITEXACT1 SCANNING A BOCLEAN STRINQ iN OOTAL F"nRM, 
4. BITTRAil.1 SCANNING A BOCLEAN STRINQ TN BiNARY OR MIXED 

F'ORM, 
5. REALNUHI SCANNING A REAL NUM86FL 
6. CHRBLANKI SCANNING A CHARACTER STRI\Jtl OELIMITEn ~y 

BLANKS, 
7. CHRQUOT i. SCANNING A CHARACTER STR!\Jn DELIMITEn qy 

QUOTES, 
8. OUOTQUOTa CHARACTER IS ft QUOTE WITMIN A QUOTED C~ARACTER 

STRING, 
9. ERRORD: UNRECOGNIZABLE STRING.· 
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THE TRANSrTtON TAi:,LE TAKES ThE FOLLOWiNri F'ORMi" 

0 B ALPHA !NT, QUOTE BLANI< ?ER, DELIM OTHE 

i,STARTTOK CFLAG ·CF'LAG CrLAG GO CFLAG GO GO RETD~LTM GO 
GO 6 GO 6 GO 6 2 GO 7 1 9 9 

2.BITNUM GO GO GO GO GO RETJNT GO BACKnNE GO 
3 4 9 2 9 5 RETINT 9 

~.BITEXACT GO GO GO GO GO RETBIT GO BACKnNe GO 
9 9 9 9 9 9 RETBIT 9 

4.BITTRAIL GO GO GO GO GO RETBiT GO BACKON~ GO 
9 9 9 4 9 9 RETBtT 9 

~.REALNUM GO GO GO GO GO RETREAL GO BACl<nNF: GO 
9 9 9 5 .9 9 RETREAL 9 

6,CHRBLANK GO QC GO GO GO RETCMAR GO BACl<"'NF! GO 
6 6 6 6 9 6 RETC~Aq 6 

?,CHARQUOT GO GO GO GO GO GO GO GO GO 
7 1 7 ? e 7 1 1 7 

A,QUOTQUQT -GO GO GO GO GO RETCMAR GO BAC!<rrnr:; GO 
9 9 9 9 7 9 RETC4A~ 9 

9,ERRORD 
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THE ACTIONS LISTED IN T~E ABOVE TABL~ ARE: 

crLAG: SET PLAG -REAOFLAG- TO I~DjCiTE TH~T A C~ARACT~R 
STRING IS BEING SC-NNED. 

R E T DE L It(a THE TOKEN I S· A OE L I M t TE R , RE TUR N I T , 

RETINT~ THE TOKEN IS A~ INTEGER, CiL~ THE CONVeRSION 
ROUTINE -lNTCMAR~ -NC RETURN. 

RETBITI THE TOKEN IS A BOOLEAN STRING, CALL ~eqTeHAR~ 
ANC RETURN, 

RETREALI THE TOKEN IS~ REAL NUMBER. CALL ~RSLOHAR~ ANn 
RETURN, 

BACKONEI THE LAST CHAR-CTER R~AD is THE BEGINNING or A 
NE~ TOKEN, RETURN IT TO THE;~~juT STRING, 4Nn 
BACKSPACE THE CHAR~CTER POINTE~ BY ONE, 

ERRORDi THE STRING"OOE~ ~OT CORRes~~Nn TO A VALID 
DATA TYPE, P~!NT IT, TOGETHER WITH THE P.Jl'IJT RECORn 
rRCM WHICH IT WAS ~EAD, ANO ABORT, 



SiLREAD 

DEFINEF STLREAD<rtLE, L>J 

/• THE PARSt~G ROUTINE -STLREAC- OBTAINS SUCCESSIVE T~KENS 
FROM iT0KREAt- ANO ASSEMBLES T~EM INTO ~E!S AN TUPL~S. IT _ 
IS DRIVEN BY A NUMERICAL ATT~IBUTE tTOKt~n- OBTAINE~ rOR EVERY 
TOKEN, FROM 'TME TABLE 1'SETLDEL1, TOKENS ARE EITHER ATOMS (~Op 
WHICH TOKIND = 8) OR DELIMITERS. 

A STACK -PARTSTACK- IS LSED TC ST0R~ PARTLY BUILT 
COMPOSITE 0B~ECTS, THE VARIABLE iCURRDEl~ CONTAINS T~E 
-TOKINDt CORRESPONDING TO THE LAST 0PENt~G DELIMITER 
ENCOUNTERED, WHEN A CLOSING DELIMITER rs rouND~ A MATCMtNG 
OPENER HAS TC APPEAR IN OURR[EL, AT THiS POINT TME cnMPOSITE 
lTEM BEING SCANNED CTHE CURRENT TOP OF PARTSTACK) IS OOMPLETE. 
THIS COMPLETED ITEM IS flTHEF RETURNED r~oM -STLREAn- (tr IT 
IS THE ONLY ITEM PRESENT IN 'F ARTSTACIO 0~ IT IS_ ADOeD Tn THE 
NEXT LOWER ELEMENT ON PARTSTACK, WHIC~ BE~0MES THE ~uqRENT. 
COMPOSITE ITEM BEING BUILT, •/ 

/• SET UP A 'CONSTANT TABLE fCR DELIMITER TYPE NUMBERS. •I 
SETLUEL= <TUFLE~ ~CHAR,i$->,.<CHAR.-<~>,i:~AR,~~~>,<~MAR,_>_>, 

<CHAR,-~i>;<CHAR,~/t>,~C~AR,~Si>>J 

·PARTSTACK = NULLTUPLEJ 
STARTI TOK= TOKRE~CCFILE, L>J 

(1 <= vK <= ~COMPS<SETLDEL>> 
IF TOK EQ, SETLDEL(K) THEN QUIT vK:;J 

I• 0 N FALL • T 1-i ROUGH~ K I $.. E Q U ~ L TO 8 • • I 

TOKIND = K; 

FLOW 
SPECIALS 

STARTNEW $ 
STARTIT, TERMIN S 

MATCMES S 
FIRSTS ERROR, 

RETFIRST, ENCIT~ 

SPECIALS: TOKIND LT, 8J 

STACKEMPTY:=PARTSTACK EQ, NULLTUPLE; 

RETURNIT: R~TURN TOKJ 
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STACl<EMPTV $ 
RETUR~iT, ENTERTT, 

COMMA s 
STACK~M~T~ ~ 9LASM $ 

ERROR, TO START~ 
STACKEMPTY $ CRAS~, 

TO STiRt~ ~RRPRlNTJ 



ENTERITI IF CUR~OEL EQ,1 THEN ALG~ENT(TOK,TJ~P<PARTSTACK>): 
ELSE TLPAD01(TOPP(~ARTSTACK),TO~):J 

STARTNEW:= TOKIND LE, 21 

TERMIN:= ToKIND LE. 4J 

MATC~ES:: CURRDEL EQ, <TOKIND•2>; 

STARTIT: TtJPADDl<PARTSTACK,lF TCKIND EQ,1 T~FN NULLSET 
ELSE NULLTUPLE)J 

CURRDEL=TOKINDJ 

rtRSTI= NCOMPS(PARTSTACK) ea. 1J 

RETfIRST: RETURN (TUPCPARTSTACK>><1>; 

ENDIT: GOMPOSITE=TOPP(PARTSTACK>JTOPPCPARTSTACK>=UNO~fWD: 
Ir TYPE(TOPP(PARTSTACK)) ea. SET T~~N 

AUGMENT(TOK, TOPP(PA~TSTACK>>: :8RRDEL = 1J 
ELSE 

TUPACOl(TOPP(PARTSTACK), TOK>: C8RRDEL = 21J 

SLASMI= TOK EQ,<CHAR,-/->J 

CRASM: PRINT, •END or FILE ON ATTEMPT TO ~~AD-• ORAS~, 

ERRORI X = TO~READCrl~E, L)J I• SKIP TO I OR/, •I 
(WHILE X NE, <CHAR~ ~~1> AND. X ~F. ~CHAR~ ~/~>> 

X = ·ToKREAD<FILE, L>;; 

ERRPHINT: PRINT, -ILLEGAL CONFIGLRATION DETECTED ON ATT~MPTF.D -
• -f?LE READ.-• 

RETURN UNDEFWDJ 

·ENO rLOWJ 

GO TO STARTJ 

OEfINEF TOPP(X)J RETURN CTUFCX>><NCOMPSC~>iJ END TOPP: 
ENO STLREADJ 
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6,2,3 OUTPUT ROUTINES 

----~----------
SETL OBJECTS ARE WR!TTE~ ON FILES A:COROING TO T~E 

·roRMAT DESCRIBED IN SECTION ~.2.1. HOWeV~R. A SPEC!AL rORMAT 
IS USED To PRINT DEEPLY NESTED SETS AND TUPLES, TO tM~ROVE 
READABILITY, Ir TH~ OBJECT IS NESTED MO~~ DE5PLY T~A~ ~OME 
USER-DEFINED PARAMETER (MAXDEPJ, TPEN TMOSE ITEMS I~ TH~ 
OBJECT ijHICM ARE AT A GREATEF DEPTH ARE A~BREVIATEO. TME 
ABBREVIAT)ON CONSISTS or AN ASTERISK FOLLOWED BY A nEelMAL 
NUMBER, IN THE EXTERNAL REPRESENTATION. THIS IS PRJNTEn IN 
PLACE UF THE OBJECT IN THE O~IGINAL TUPLE OR SET, ANO 
SUBSEQUENTLY THE AB~REVIATIO~ LABEL AND T~E OBJECT JT9ELF A~E 
PRINTED. ABBREVIATION ALSO TAKES PLACE Ir THE EXTEqN4L r □ RM 
OF A TUPLE OR SET IS VER¥ LO~G (MORE THA~ A CERtAIN N!JMRER 
OF LINES). 

FOR EXA~PLE~ IF MAXCEP = 2, THE SET 

WOULD BE PRf~TED AS: 

SA,B,<C~•1~F>,G~ 
•1 SC~E~ 

IF MAXCEP IS ZERO, NO AEBREVIATING TAKES PLACE. 
AT PRESENT TME INPUT ROLTINES ONLY Ar.CEPT UNABRR~VIATED 

. REPRESENTAT~CNS. THERErORE, WHEN WRITINJ ON A rrLE T~AT IS 
TO 8E SUBSEQUENTLV READ IN, '~AXOEP MUST 3e SET TO ZERO, 

A SET OF ATOM CONVERSIO~ ROUTINES tNnT SPEotrI~D HFRE) 
TRANSFORMS l~TEGERS, REALS, ·EOCLEAN STRi~~S. CMARACTEq 
STRINGS, ETC,, INTO THEIR RE~PECTIVE EXTE~NA( roRMS. 
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I* PF< I~ T.ER 

·DErINE PRINTER(OBJ,rILE,MAXDEP)J 

/* THIS IS T~E MAIN ROUTINE FOR THE OUTP~i PAOK~GE, IT 
INITIALIZES P~RAMETERS roR T~E RECURSIVE ~outiNES -PRINTC~ 
AND ;tCHAROUTl!I~ 

OBJ IS THE SETL OBJECT TO EE WRITTEN. 
rILE IS THE rIL~ ON WHICH TO WRlTE IT. 
MAXDEP IS THE MAXIMUM DEPTr Cr NESTING, ABOVE WHI~H ITEMS 

ARE ABBREVIATEU, •I 

DEPNOW = o; 

·DEPTH = Q; 

POSITN = o: 

LINES= 3; 

LINENO = OJ 

LINNOW = o; 

/• DEPTH OF NESTiNG ~~ACHED WHILE SCANNIN~ 
AN ITEM. •I 
/• UEPTH OF A88REVIATTON. •I 
/• CHARACTER POSITIO~ roR THE BeGtNNING 
or THE NEXT LINE. SJr.CESSIVE L~V~LS Or 
ABBREVIA1ICNS ARE INDENTED 2•DEPT4 
SPACES, •I 
/• HAXIMLM NUMBER or LINES, ABOVE WHICH 
THE roLLCWING ITEMS ARE ABBREVIAT~D. •/ 
I• NUMBE~ CF LINES us~n so ~AR roR AN 
ITEM, •I 
/• NUMBEF CF LINES USF.D BEFORE ~E~INNING 
TO SCAN ~N ABBREVIATEn ITEM. •I 

PRINTC<OBJ,NULLCSTR,rlLE~MAX[EF>J 
RETURN; 
END PRINTERJ 

I 
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PFI~TC 

DEFINE PRINTC(OBJ~ALABEL,FILE,~AXDEP>: 

/• THE SECONC ARGUMENT OF PRJNTC. IS THE ~iBEL TMAT tNOlCATES 
THE LOCATION FROM WHICH OBJ ~AS ABBREVIiT~O. ON FIRST ENTRY Tn 
-PRlNTCt THAT LABEL IS THE NLLL STRING. AS AN OBJEeT IS 
BEING SCANNEC FOR PRINTING, ~ TUPLE CONTAjNING succ~sqivE 
ABBREVIATED ITEMS IS BUILT. THE COMPONE~TS or THIS TllPLE, 
-TABBR~, ARE SUBSEQUENT INPU1 PARAMETERS rOR PRiNTC. TMIS 
ROUTINE IS TrEREFORE rULLY RECuRSIVE. •I 

TABBR = NULLTUPLEJ 
DEPNOW = o; 
MAXD = MAXDEPJ 

POSTCFILE, ALABEL~J 
POSTCFILE, <CHAR, -
LINNOW = LINENCJ 
CHAROUT<OBJ, FILE~ 

MAXDEP = MAXCI 
LINES~ J; 

DEPTH= DEPT~• 11 

I• INITl~LIZE. •I 

I• SAVE FARAMETER TMAT MAY BE M~CIFIED iN 
CHAROUT. •I 

/• POST ·1HE LABEL <MAV BE NULL). •/ 
,>)J 

HAXDEP>J I• POST TM; ITEM ITSELF •. IN TH~ 
PROCESS, TABBR WILL BE ~UILT, •1 

I• RESTOFE PARAMETER. •I 
I• RESTO~E. •I 

POSITN = <2•CEPTH)//(HAXLINESZ/4): I• EA:M SUCCESSIVE LEVEL 
OF ABBREVIATION IS t~nENTED 2 SPA~Es, UP 
TO~ HAXIMLH or 1/4 or THE PAGE SIZE. •I 

(1 S vK· S NCOHPS(TABBR)) 

/• BUILD Ti~E LABEL CORRESPCNCING TO EACM COMP. or TABAR, •I 
LABELK = <CMAR, -•- • VALUF.<LABEL> + D:~.K>J 

I• PRINT EAOH COMPONENT Or TABBR. •I 
PRJNTC(<TUF(TABBR))(K)~ LAEELK, FILE, ~iXDEP)I 
END v1; 

DEPTH= DEPTH• 1J 
POSITN = OJ 
RETURN; 
END PRINTCJ 
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CI-AROUT •1 

DEfINE CHARO~T(OBJ,ALABEL,fILE,MAXDEP)J 

/• CHAROUT CALLS THE ATOM CO~VERSICN RO~TiNES~ ANO HANDLES tH~ 
RECURSION FOR THE CHARACTER CO~VERSION 0~ TUPLES ANn SETS. IT 
ALSO CHECKS FOR TME NEED OF ft88REVIATING, ANO ADDS TT~M~ TO 
•TABBR• WHENEVER REQUIRED. •I 

IF·TYPE<OBJ) LT, TUPLE THEN I• ATOM. •I 

ELSE 

IF TYPE<CBJ) EQ. INT TI-E~ POSTCFILE~CHARINT~OqJ))IJ 
IF TYPElCBJ> EQ. REAL Tl-EN POSTCFILE,CMARREL<O~J>);J 
IF TYPE(CBJ> EQ, BOOL TI-E~ POST<FILE~CHARBST<OAJ>)1J 
IF TYPE~CBJ) EQ. CHAR TI-E~ POST<FILE~CHARCSTCORJ))JJ 
IF TYPECCBJ> EQ, BLANK TI-E~ POST<FIL;~CHARBLK<O~J>)JJ 
IF TYPE(CBJ) EQ, LABEL TI-E~ POSTCFI~E~CHARLBL<ORJ))JJ 
IF TYPE~CBJ) EQ. sue Tl-EN POST<FILE~CHARSUB(ORJ))JJ 
IF TYPECC9J) EQ. FUN TI-E~ POST<FJL;~CHARf8N(OqJ))JJ 
IF TYPEtCBJ) EQ. UNDEF Tl-EN POST<FILE,CHARUNDC))JJ 

I• THE OBJECT IS COMPOSITE. CHECK FOR THE NEED or 4BRREV.•; 

IF MAXOEP EQ, 0 ·THEN QO TO SKIP;; 

/• THE NULL TUPLE AND SET tRE NEVER ABB~EVIATED, •I 
IF <OBJ EQ,NULLTUPLE> OR, <OBJ EQ. NULLSET> GO TO SKIPABBRJJ 

M = LINENO - ~INNOWJ I• ~U~BER or LlN~S TMAT THe PRESENT 
ITE~ HAS FILLEO SO tAR, •I 

IF<DEPNOW •GE.MAXOEP) OR. <t-.GE.LINES> TMEN l•ABBRf=VIATE.•I 
/• If oe~ IS A LONG TUPLE ANO WE ARE ~CANNING A S~T. IT I~ 
NECESSARY TO COPY OBJ, AECAUSE NEXTMEM DESTROYS ITS FIRST 
ARGUMENT.•/ 
I F C C F L ~ G SE T E Q • TRUE ) A ~ D • < T Y PE < OB J°> E Q • TU PL F. ·, AND . 

C~COMPStOAJ> Jt.J)) iHEN· 
OBJ :i :CONCA TT< NULL TUPLE, OBJ>: J 

/•PUT TME OBJECT IN THE .'TUPLE OF ABBR~ViATIONS AN" POST 
ITS LABEL lNSTEADi*/ 

TUPAOD1fTABBR~OBJ)I 
POSTCFIWE~ ALABEL>J 
POSTCFILE~ <CMAR, -•- ►); 
RETURN; 
END IF ~CEPNOW GE. MAXDEF); 
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i•CHECK ne~stT~ OF ABBREVIATIONS,AND tN~REASE ~A~. ALLOWABL~ 
VALUES Or PARAMETERS IF' NECESSARY.•/ 

SKIP: IF M GT, 0 AND, CCNCOMPS(T~BER)/M) GT. A> THEN 
MAXDEP • MAXDEP • 4J 

LOOP: 

OUTI 

LINES= LINES·+ 211 

DEPNOW: DEPNOW + 1J I• EEGIN SCAN o; A COMPOSITE O~JECT•; 
IF TYPE<OBJ> EQ, TUPLE THE~ 

FLAGSET=f'ALSEJ 
(1 ~ YK ! NCOMPS(OBJ)) 

IF K EQ, 1 THEN POST(FTLE, <CHAR, tci>)I 
ELSE POST(FILE, <CMAR, t~i>~IJ 

CHAROUTCTUPCO8J)(~),ALABEL,FlLE,MAXnEP)I 
ENO "Kl 

POSTCFILE~ <CHAR, _,_>); 
ELSE 

I• OBJECT IS A SET. •I 
FLAGSET • TRUE; 
C = 0; 

IF C EC. 0 THEN POST(F!LE, <CHAR, t~->)I 
ELSE POST(FILE, <CHAR, t~i>~IJ 

M = NEXTMEMCC, OBJ)J 
IF M EQ. UNDEfWD T~EN ·Go TO OUTJJ 
CHAROUTC~, ALABEL, FILE, MAXDEP>; 
GO°TO LOOPJ 

POSTCFILE~ <CHAR, -~->); 
END IF TVPECOBJ> EQ. TUPLE; 

DEPNOW = DEPNOW • 1J 
END IF TYPECOBJ) LT, TUPLE; 

RETURN; 
END CHAROUTJ 
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PCST 

SUBR POSTcrILE,X)J 

/• THIS S~BRCUTINE·PLACES THE CMARACTER STRI·NG X ON T~E LIN; 
TO BE PRINTEt, ANO PASSES C0~PLETED LIN~S TO TH~ LOWER~LEVEL 
ROUTINE -OUTSTRt ~OR PRINTINC, 

THE VALUE X • 0 (NOT A CHARACTER ST~iNG) IS us~o A~ A 
SIGNAL rQ START A NEW'LINEa 

., 

THE VARIABLE -P0SITNt, ~HICH IS SET iN PRINTER AND 
PRINTC, IS A~ INPUT TO POST, WMENEVER A NEW LINE I~ ~EGUN IT 
IS INITIALIZED TO -POSITN- BLANKS, •I 

Ir X EQ. 0 T~EN 
OUTSTRCflLE,LINE); /•PRINT PRESENT BUfrER,•/ 
LINE= <CMAR, P0SITN•- i>;; 

COPYLT: OJ 

(WHILE COPYLT LT, •VALUE(X) TOING COPYLT=r.OPVLT•LPIECEJ) 
IF ~VALUECX~ EQ, HAXLINESZ ThEN 

OUTSTRCFILE,LINE)J 
LINENO ~ LINENO + 1J 
LINE= <CMAR, P0SITN•i t>;; 

LPIECE= (4VALUE(X>•COPVLT> MIN.<MAXLINE~Z-•VALUE(Lt~E>); 
tr LPIECE ·EQ,•VALUE<X> THE~ PIECEX = ~; 
ELSE PIECEX = X(C0PVLT•1ZLFIECE);; 
VALUE<LINE) : VALUE<LINE) ~ VALUE<PIF.CE1>J 
END WHILE COPVLTJ 

RETURNi 
END POST; 
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6,3 ER~OR RCUTINES 
---------~----

DEFINE ERRIMF<MESSAGE, OBJECT); 
PRINT. t•-•·• IMPLEMENTATION ERROR. UN~SEfi TjPE coo~ nETECTEDi 

+ t BY - ·• MESSAGE, OBJECT; 
.EXIT; 
END ERRIMPl 

DEFINE F.RRTVFE<MESSAGE, OBJECT>J 
PRINT. t•-••• INVALID TYPE CCDE FOR ROUTINE - + MESSAOE. 

OBJECTJ 
EXIT; 
.END ERRTYPEJ 

DEFINE ERRVAL(MESSAGE, OBJECT); 
PRINT. t•-••• INVALID DATA V~Ll~ FCR ROUTiNE - • ME~SAGE, 

OBJECTJ 
EX 1T; 
END ERRVAL; 

DEFINE ERRMSG<MESSAGE)J 
PRINT. -•p••• - + M~SSAOEJ 
EXIT; 
END ERRMSG; 

DEFINE ERRIMPL(~ESSAGE)j 
PRINT. t•-••• IMPLEMENTATION ERROR, t + ~~SSAGEJ 
EXIT; 
END ERRIMPLJ 

DEFINE F.RRHIX(MESSAuE, OBJl, OBJ2>; 
PRINT. t•-••• INVALID (MIXED> DATA TYPES roR ROUTIN~ ~ 

+ MESS.GE, OBJ1, OAJ2; 
EX 1T; 
END ERRMIX; 
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\· 

-------------~-
DEFINEF HA~~lOBJECT)J 

/• THIS ROUTiNE tALCULATES A~D RETURNS t~~ HASH cone FO~ THE 
GIVEN SETL OEJEOT, THE MASH CODE RETURNE6 ei TMIS qouTTNE tS 
AN INTEGER PRQM:ZERO.TO THE' ~AXIMUM HASM +ABLE_SIZE MINUS ONE. 
IT IS ALWAYS USED MODULO THE SIZE or THE MASH TABLE !NVOLVEO 
(SEE INITH, SECTION 5,1,6), - ~ 

THE HAS~ CODE or A TUPLE IS THE. HAi~ COD~ or ITS fIRST 
COMPONENT, "THE HASH CODE OF A SET I~ MiI~TAINEO WITH THE S~T 
(ANO THIS ROUTINE MEREL~ RET~IEVES IT). *I 

X = OBJECT; 

/• THE HASH CODE OF A TUPLE IS THE MASH :~OE OF ITS FIR~T 
COMPONENT, •I 

(WHILE CTYPE(X) ea, TUPLE A~D. NCOMPSCX~ NE, 0) 
OR. "TVPE(X) EQ, SPECFAIR> 

X = (VALUE(X)) (1)J 
END; 

Ir TYPECX> EG, SET THEN RETU~N HCODECX>J: 
IF X EQ. UNDErWO THEN RETURN HASHUNDF;: 
IF X EQ. NULlTUPLE THEN RETUFN HASHNLT:1 

I• X IS NOW KNOWN TO BE AN AiOM, FOR TMI~ ALGORITHM WE 
ASSUME THE EXISTENCE OF AN tLNSPEc, ROUtlNE WM16H~ Ll~E THE 
PL/I UNSPEC, CONVERTS ANV AT(M INTO A BIT STRING THAT RF.• 

-rLECTS THE OEJECT-5 INTE~NAL REPRESENTA~l~N. roR LABSLS, 
'SUBROUTlNES, ANO ruNCTIONS, lHE BIT STRtNn MAV BE TME 
ADDRESS OF THE ROUTINE Ir IT IS UNHOVEABL~, OR tr MA~ BE 
THE ROUTINEis CODE 1, IT DOE~ NOT MOOIF~ irseLr. •I 

.~ . 

BITS= UNSPECCVALUE<X))J 

·1• NOW rORM 'TME EXCLUSIVE OR OF ALL THE airs or x~ T~~ING 
THEM 60 AT A TIME, FIRST INllIALIZE TO ~JRCE ~ LAOK OF 
-CORRELATION BETWEEN THE INTEGER ZERO ANO NULL OBJECTS, ETC, •1 

HASHX = OBJ 
IF TYPE<X> ec, BOOL THEN HA5HX = UNSPEC<MASMNLB>JJ 
IF TYPE<X> EC, CHAR THEN HASHX = UNSPEO<~ASHNL61JJ 
IF TYPE<X> EC. BLANK THEN HASHX: UNSPEO(MASMBLNK)JJ 

HASHX = HASMX // BITS<1:(48fTS//60>>: l*~BtTS<i:O) : < >>,•I 
K • iBITS//60 • 11 
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(WHILE K LT, •BITS) HASMX ~ -~ASMX//BITSt!(°i60)1 K ■ 1<•61U END· 

I• AT THIS PCtNT MASHX IS A -fO-BIT MASH cnoE or TME t~PUT 
ARGUMENT, T~IS IS NEXT REDUCED TO LOG2tMAXMTSitE> qjTS BY 
FIRST roRMING "THE EXCLUSIVE CR or THE ~E~+ AND RIGHT ~ALVES, 
AND THEN DIVIDING THE 30•BIT RESULT BY MAiHtstze-1. ~H~ 
REMAINDER IS THE F'INAL MASH :coce RETURNED BY THIS FMUTINE. 

THE REASON F'OR FIRST RE[UCING TO 3b jJTS IS tHAT OIVISiO~ 
or FULL WORD QUANTITIES rs A~KWARD ON TME CDC•66O0, THE 
REASON FOR T~E FINAL OIVISIO~ IS TC CAU~E ALL BiTS nr TME 
ORIGINAL OBJECT to CONTRIBUTE TO EACH eir or T~E REqULT (IN 
SOME OBSCURE WAY), . 

FOR A DISCUSSION or THE MERITS OF CJMP8TtNG HA9M CODES B~ 
REMAINDERING~ SEE -KEY•TO•AD[RESS TRANStJ~MiTtON TECM~InUES, i 
FUNDAMENTAL 'PERFORMANCE STUDY ON LARGE exiSTINQ FOR"iATTED 
FILES~, COMM~NICATIONS or THE ACM, VOLUMt 14 NUMBER 4 
(APRIL 1971), •I 

HASHX = HASHX(l:30) // ~ASHXC31t60)J 
RETURN cHASH)C AS, INT,)// <'t-'AXHTSIZE-1): 
END HASH; 
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Ii 

6.·5 ATOM ROLTINE 
-------4!11••·-

DEFINEF ATQM(A)J I• ENTRY PCI~T FOR SETL ATOM.A, •I 

RETURN <BOOL, (TYPE<A> LE, U~DEF)>J I• ~OTE THAT OMEnA !S 
CONSIDEREC ·ro BE AN ATO~. •I 

END ATOM'J 

6. 6 NUMBER ,er ELEMl::NTS ROUT 1 NE 

DEFINEF NELT(A)J I• ENTRY PCI~T FOR SETL •A 
(4,, 11 NU~BER SJQN). *I 

IF TYPECA> EC, SET THEN RETU~N <INT, NME~~S~A)>JJ 
IF TYPECA> EQ. TUPLE TH6N RETURN <INT, NCOMPSlA)>JJ 
IF TYPECA> EC, CHAR THEN RETLRt\ <INT, ,vALUE(A)~;J 
IF TYPE<A> EQ, BOOL THEN RETLR~ <INT, ,VALUE(A)~;J 
ERRTYPE<~NE~T<A>, A IS~, A); 
END NEL r; 
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6,? EQUALITV TEST 
---------··-· 

DEFINEF EQUAL(A, B)J I• ENT~Y POINT FOR TME SETL A E~, B. ~/ 

I• TWO SETL OBJECTS ARE CO~SIDERED EQUAl iF T~EV MAVE THE 
SAME TYPE ANC THE SAME VALUE, OR BOTH 08J~CTS ARE UNDFFINED 
(OMEGA). TH~S, A REAL IS NEVER EQUAL TO iN INTEGER, A AOOLEA~ 
STRING I~ NS~ER EQUAL TO A C~ARACTER STRI~G. A TUPL~ IS NEVER 
EQUAL TO A SET, ETC, ANY TWC SETL OBJECT~ MAY BE C~MPARED, 
AND THE RESULT IS ALWAYS EIT~ER TRUE OR riLSE, IN PARTICULiR~ 
(OMEGA EQ, O~EGA) IS TRUE, A~D <OMEGA EO, ANYTHiNG FLqE> IS 
F'ALSE. 

TO BE ECUAL~ STRINGS, TLPLES, AND SETS MUST HAVE TME SiMF 
NUMBER OF ELEMENTS. STRINGS A~D TUPLES ~UST MAVE cnR~ESPON
DING ELEMENT.S EQUAL, FOR SETS, IT IS SU~~ICIENT THAT EVERY 
MEMBER OF EACH SET BE CONTA[~EC IN ·THE OT~ER. 

THlS FtRST LEVEL ROUTINE IS NCN•RECJRSiVE, 
NOTE: 'THERE IS NO.ROUTINE F'OR A NE, B, INSTE.\D, TT IS 

ASSUMED THAT THE COMPILER WILL USE EQUAL, AND REVER9E ITS 
TEST-AND-BRA~CH LOGIC. •I 

/* MAKE A QUICK OETERMINATIO~ WITHOUT INVOLVING CALLS 0~ 
RECURSIVE RO~TINES~ Ir POSSIELE, •I 

K = EQBASICCA~ B)J /• K • 1 IF A NE, 8~ 
2 IF A EO. 8, 
3 IF A AND B 4RE NON-NULL TUPLES or 

ECUAL LENGT~~ OR ARE s~e~IAL 
PAIRS, -

4 IF A AND BARE NON-NULL qETS or 
EQUAL SIZE AND HASM COME9, •I 

GO TO <NEQ, EQ, TUPLES, SETS>CK)J 
NEQ: RETURN rALSEJ 
eo: RETURN TRUEJ 
TUPLES: RETURN EQTUPNTCA, E>; 
SETS: RETURN SUBSETNT<A, B)J 

END EQUAL; 
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EQTUPNT 

DEFINEF EQTUFNT<A~ B)J 

/• RECURSIVE ROUTINE FOR NON~TRIVIAL TUPLE COMPARtSnN. A AND 
8 ARE KNOWN 'TO BE NON•NULL ~ E Ql,; Al L ENGT.,. TUl'LES OR ~P~C I AL 
PAIRS. THE 'TUPLES ARE COMPAi:;EC WITHOUT ~AKING A REr.URSJVE 
CALL UNLESS j COMPONENT IS A TLPLE OR A S~T. •I 

IF TYPE<A> EG, TUPLE THEN 
T1 = TUP(A)J 
T2 = TUP(B)I 

·ELSE I* SPECIAL PAIRS, •I 
T1 = VALUE(A)J 
T2 = VALUEC8)J 
END !F; 

I·= i; 
(WHILE I LT, ~T1) 

K = ErJBASl'C(TlCI>, T2<1)); 
GO TO <NEC, EQ~ TUPTUPLES, TLPSETS><~~J 

NEQ: RETURN FALSE; 
EQ: CONTINUE WHILE I; 
TUPTUPLESi IF EQTUPNTCT1<1>, T2<I>> ;~. TRUE TH~N 

CONTINUE WHILE I: 
ELSE R~TURN F~LSE;; 

TUPSETSi IF SUBSETNT(Tl(l), T2<I>> EQ. TRUE T4EN 
CONTINUE WHILE J; 

ELSE RETURN F~LSE11 
END WHILE IJ 

RETURN TRUEJ /• ALL COM~6NE~TS ARE EOUAL. •I 
.END EQTUPNT J 
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SLBSETNT 

DErlNEF SUBSETNTCA, B>J 

/* RECURSIVE ROUTINE F'OR NON-TRIVIAL SET ~0MPARtSON. SETS iR~ 
KNOWN TO BE ~0N•NULL, OF' EQU,ti L SIZE, AND TO MAVE EQIJAL MASH' 
CODES. FOR 'TMIS CASE THE E0'~ALITY TEST Is EQUIVALErJT Tn A 
SUBSET TEST, I,E.~ THE R0UTI~E CHECKS TO SEE rr EAC~ MEMBER 
OF A IS IN 8, Ir SO, THE SETS MUST BE EQ~AL, 

FOR, ErrlCIENCY REASONS, Tl-:E MEMBERS-I IP TEST ROUTINE 
(ELMTSETSMP> IS NOT USED TO CETERMINE WM;THER OR NOT ~ACM 
O~JECT IN A IS A MEMBER OF B CTO DO SO WJULD MAKE ELMTSF.TSMP 
A RECURSIVE ROUTINE, AS IT C•LLS E0UAL). INSTEAD, THE LOGIC 
OF THE MEMBERSHIP TEST IS DUFLICATED HER;. 

THE SETS ARE COMPARED WITr0UT MAKiN3 A RECURSIVE CALL 
UNLESS A MENEER IS A TUPLE 0~ A SET. •I 

/* SCAN THE SLOTS OF' THE HASf-TABLE-OF' A. •I 
(vSL0T ~ HAS~TABLECA)) 

/• SCAN THE MEMBERS IN THE CURRENT SLOT or HASHTARLe(A) .• , 
MA :: SL0TJ 
(WHILE MA :~e, OM, DOING M,b = NEXTMCMA) 1) 

I• SEAR0~ SET B rOR MEMBER MA. •I 
SEARCH(MA, B~ MB) 

K = EQSASICCMA, MB)J 
GO TO ·cNE0~ E0, SETTUPLES, SETSETS>~K)J 

NEQ~ CONTSEARC ► C~8>: 
EQ: CONTINUE ~HILE MA NE. nM.J I• G~T NEXT 

~E~BER or S~T A TO TEST, •I 
SETTUPLES I If" EQTUPN1 C ~A, t-18 > EQ, TRUE THEN 

CONTINUE W~lLE MA NE. OM.I 
ELSE C0NTSEARCHCMB);J 

SETSETSI Ir SUBSET~TCMA, MB> EJ. TRUE TMEN 
CONTINUE WHILE MA NE. 0M,J 

ELSE CONTEEARCHCMB>:J 
ENDSE4RCHCMB)J 

I• MEMBER MA WAS NOT r0U~D IN SET 8. •I 
RETURN F'ALSEJ 
ENO WHILE ~A NE, 0M.J 

ENO "SLOT J . 
RETURN TRUEJ 
END SUBSETNTJ 
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ECBASIC 

DEF"INEF EQBASIC<A~ B)J 

/• THIS NON•RECURSIVE ROUTINE COMPARES A ANO BAND RETU~NS 
WITH AN INTSGER CODED AS fOLLOwS: 

li OBJECTS ARE NOT ·EQUAL, 
2~ OBJECTS ARE EQlAL, 
31 OBJECTS ARE NU~-~ULL TUPL~S 0~ EQUAL ~ENGTH OR 

.ARE SPECIAL PAIRS <TH6 COM0 nNENTS HAV~ NOT REEN 
EXAMINED). 

41 OBJECTS A~E NO~-NULL SETS 0~ EQUAL SIZE ANO 
EQUAL HASM CODES (THE MEMBERS HAVE NOT ~EFN 
EXAMINED), •I 

IF TYPECA> NE, TVPE<B) THEN FETURN 1:; 
IF ATOM<A> EC. TRUE TMEN 

IF VALUE(A) ea. VALUE<B> T~E~ RETURN 2: 
ELSE RETURN 111 

END Ii:" ATO~J 

/• OBJECTS ARE BOTH TUPLES D~ 80TH SETS. ~/ 
IF TYPE<A> EC. TUPLE THEN 

(IF NCOMPS(A) NE. NCOHPS(B) THEN RETUR~ 1: 
ELSE ( IF" ~COMPS CA) E<J, 0 THEN RETURN 21 ELSE RETIIRN 3JJ) J > 1 

/• TYPE MUST BE SETS, •I 
IF NMEHBS<A> NE, NMEMBS<B> T~EN RETURN i: 
ELSE err NME~BS(A) EQ, 0 THE~ RETURN 2: ELSE RETURN 4JJ)J 
END EQBASICJ 
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6.8 ELEMENT TEST 

------------

DEFINEV ELHT(X, S)J I• ENTR~ POiN! roR T~E SET( X ◄ q, ., 

/* THE SETL MEMBERSHIP res, RF.SULTS tN AN ERROR e~rr IF 
EITHER X IS ;LNDErINED, OR IFS IS A NON•STRING ATOM (INCLUDIN~ 
OMEGA), OR rF s IS A STRING ~NC X TS NOT A STRING or LENGTH 
ONE of T~E S~ME TVPE AS s. IN ALL OTHER ~ASES, EiTHE~ TRUE 0~ 
FALSE IS RETLRNED, •I . 

IF X EQ. UNCEFWO THEN ERRTVPE(-ELMT<X,S~. X, UNDErINEO, IS-. 
X ) ; ; 

IF TYPECS> e,, BOOL 
IF TYPE<S> EC, CHAR 
IF TYPE(S) ec. TUPLE 
IV TYPE<S> EC, SET 

THEN RETURN ELMTBST<X,S)JJ 
THEN RElURN ELMTCSTCX,S)JJ 
THEN RElURN ELMTTUP<X,S)JJ 
THEN RFlURN ElMTSET(X,S)JJ 

ERRTYPEciELMTCX,S)·, 
.END ELHT; 

S, NOT A SET, TUPLE~ ~OR STRING, rsi, S>J 

I• ELHTBST *I 

DEFINEV ELMTEST(X,S)J 

I• THIS ROUTINE PERFORMS THE ELEMENT TEST F~R BOOLEAN STRINGS. 
s IS KNOWN TC BE A BOOLEAN SlRING. X Mus+ BE A stNO(~ RIT, ., 

IF TYPECX) NE, BOOL OR. •V~LUE<X> NE. 1 THEN 
ERRTYPE(-ELMT<X,S), s rs A BOOLEAN stRINO, suT· x. NOT -

• -A BOOLEAN STRI~G or LENGTM 6NE, IS_, X)J END rr, 
(vBIT ◄ VALUE<S)) If BIT EQ. VALUE<X> TMEN RETURN T~UEJJJ 
RETURN FALSEJ 
END ELMTBSTJ 
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ELMTCST 

DEFINEF ELMTCSTCX,S>J 

I* THIS ROUTINE PERFORMS THE ELEMENT -TEST fOR CM~RAr.teR 
STRINGS. S IS KNOWN TO BE A C~ARACTER STiJNG, X HUST RE A 
SINGLE CHARACTER, •I 

IF TYPE<X> NE. CMAR OR, 4VALUE<X> NE. 1 THEN 
ERRTYPE(-ELMT<X,S), S !SA CHARACT~R STRING, RUT x, -

• iNOT A CHARACTE~ STRING Of ~~NGTM ONE, IS-, X)JJ 

(vC~VALUECS)) IF C EQ, VALUE<X> THEN RETJRN TRUEJJJ 
RETURN FALSEJ 
END ELMTCSTJ 

ELMTTUP 

DEFINEF ELMTTUP<X~T)J 

/* THIS ROUTINE PERrORMS THE ELEMENT TEST rOR TUPLES, T TS· 
KNOWN TO BE A TUPLE, X MAY EE ANY OBJEtT EXCEPt OMe~A <WHICH 
WAS CHECKED 'FOR IN ELMT> • •I 

(vCOMP ◄ VAWUE(T)) 
IF EQUAL(OCHP,X) EQ, TRUE THEN RETURN T~UEJJ ENO~, 

RETURN FALSEJ 
·ENO ELMT TUP J 

·ELMTSET 

·DEFINEF ELHiseT(X~S)J 

/* THIS ROUTINE PERFORMS THE MEMBERSHIP T~ST ~OR SETS. SI~ 
.KNOWN TO BE A SET, X MAV BE ANY OBJECT OTHER TMAN nM~GA 
(WHICH WAS··CMEC~ED roR BV EL~T). *I 

IF TYPE<X> SQ. TUPLE THEN RETURN ELSTUP~X~S)J 
ELSE RETURN ELSSM?fX~S~JJ 

END ELMTSETJ 
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I* ELSSMP 

DEFINEF ELSS~P(X,S)I 

/* THIS ROUTINE IS THE SAME -S ELMTSET, E~CEPT THAT X IS KNOW~ 
NOT TO BE A TUPLE or LENGTH~ 3. •I 

IF X EQ. NULLSET THEN RETURN FALSEJ: 

SEARC~CX, S~ M) 
IF E~UAL(X,M) EQ. TRUE THE~ RETURN TRU;a: 
ENDSEARCHC~)J 

I* X IS NOT IN THE SET s. •I 
RETURN FALSEJ 
END ELSSMP; 

ELSTUP 

DEFINEF ELST~P(X~SJJ 

/• THIS ROUTINE IS THE SAME AS ELMTSET, EiCEPT THAT X IS KNOWN 
TO BE A TUPLE, 

IF THE 'TUPLE IS OF LENGTH TWO OR LESS, TMEN EL~SMP IS 
CALLED, OTMERWISE~ AFTER A 'CHECK TO SEE fr SIS TH~ NULL SET, 
THE LOGIC IS AS FOLLOWS, THE GIVEN SET CS) IS SEAReH~D roR A 
SPECIAL PAIR THAT BEGI~S WIT~ THE FIRST C~MPONENT or~. IF 
FOUND, THE SECOND COMPONENT ·CF THE SPEciiAL PA~R (WHICH JS· A 
NON-NULL SET) IS SEARCHED FOF A SPECIAL ~iIR THAT B~GINS WITH 
THE SECOND COMPONENT OF X, IF FOUND, TME SEARCH CONTINUES 
DEEPER INTO 'TME STRUCTU~E, lF AT AN~ POI~T TME SPEC!iL PAIR 
IS NOT FOUND, THEN EVIDENTLY THE TUPLE !SNOT IN THE SET, AND 
A vFALSEv RETURN IS. MADE, IF ALL SPECtiL PAIRS AR8 F~UND, 
THE SEARCH STOPS AFTER TME r~•2)TH COMPO~~NT MAS BEEN PQO• 
CESSED, WHERE .N • 4VALUE(X). AT iHI~ ~OI~T, TME fINAL ~ET 
IN THE CHAIN IS SEARCHED FOR A 2-TUPLE CJNTAINING XwS LAST 
TWO COMPONENTS, AND A TRUE 0~ FALSE RET~Q~ ts MiOE ACOORDING 
TO. THE OUTCO~E, •I 

LENGTH= NCO~PSCX)J 

IF LENGTH LE. 2 TMEN RETURN ·ELSSMP<X,S)JJ 

IFS EQ. NULLSET THEN RETURN FALSE;J 

-566 



SEf: s: I• I.~I+tiLIZF CURRENT SET, •I 
l ~ 11 I• INITiiL!Z~ CC~PON(NT NUMBrR cnF x,. •I 
lLIM: I • LENGTH - 2j 
(W~IL~ l LT, TL!M DOING I = I + 1;~ 

SEARCH<<TUP<X>)C!l, s.:T, f1) 
IF' TYPECM) FQ, SP~C 0 AIR T~E~ 

I F' [ C '··' A I_ ( < TI JP C X > ) ~ l ) , C \/ A i , U E C t-1 ) ·, ( 1. ) ) E Q • "'R !_: E T i:, E ~-' 
1-. .\ D II A ~-JC r:; ! N t; l P L E • .,, / 
I = I • 1 J 
SET: (VALUF(M)~(2)1 
CO f\ TH! U i: t-J H tu: T LT• TL f M; 
E :-J[ I r r:= Q I J A l." ; 

E~JD l~ TVPc;.1 

H.IOSF:,~R~H<M>i 
I• SEARC~ o~ ~ET ts EXHAU~TF~: •I 
fff T lJ R ~J F' A I. s e: ; 
EMO WHILE I J 

~ • NO l-/ I = T L T M • CHE Ci< F I NA L Sr= T F ii R A 2 •Tl! PL E CC ~J TA T I\ TN r, THE 
L. A S T T w C ~ C •1 P r., N I= l'J T S OF" ;{ • * / 
SEARC~{(TUFCXl)CI), 3~T. ~) 

1 F' r v p E c i". , c: Q • r u;., L F A ~Jo • ti r o 1•1 p '."' < M , 1: c • 2 r !J E i j 
I !=" [ Q U A L ( C T I J P C X , ) C I > , C '! U P C 1,1 > ) C 1· ) ) T H E N 

I~ ~ G ·.J A I_ ( ( Tl IP < X ) ·, l I + 1 ) , ( TU r., ( I,'. ) ·, ( ? ) ) TH r= M 
-{ f. T U R \' T R U E I 
i:NC Ir f:QllAi; 

E~~D If FQIJAU 
E'•lD Ir :Y!=IE I 

E~DSE.ARCHM,: · 
/• FINAL 2•TUCLF IS Nnt IN THF ~ET, •I 
RE?URt--1 F'ALS;J 
ENO ELSTUP; 
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6,~ AUGMENT CWIT~) _____ .. _______ _ 

DEFINE AUGHE~T(X,S)J I• ENTFY POINT FOR~ W!TM. X. •I 

/• THIS ROUTINE AUGMENTS S BY ADDING X TJ IT, IT IS ~QUIV• 
ALENT TO S = S WITH, X, S IS ~OT COPIED ~NLESS IT tS TwE NGLL 
SET. IT IS ASSUMED THAT THE COMPILER Will CONVERT~ WITM. ~ 
TOI 

T :1 COPV(S)J 
CALL AUGMENT(T,X); 

IF IT IS NECESSARY TO PRESERvE S, 
NOTE TMjT AUGMENT IS A ~UEROUTINE ~A~O NOT.A FUN~TION), 

S IS BOTH AN INPUT AND AN OUlPUT ~UANiITY, TMIS tS T~ ~EMIND 
THE USER TH,T THE ROUTINE MO[IFIES ITS i~GUMENT, 

THE COPY ROUTINE IS NOT I~CLUDED IN TMIS SPECirioATION,•1 

IF TYPE<S> NE, SET THEN 
ERR TYPE Hf A Li GM ENT • S , NOT A SET , I S ;it , S ·, J 
END IF; 

IF X EQ. UNDErwo THEN 
ERRTYPE(~AliOMENT, X <UNDEFI~ED> IS~, X>: 
END IFJ 

AUGAOK(X;S)J 
RETURN; 
END AUGMENTJ 

DEFINE AUGAO~CX,S)J 

ALGAOK 

/• THIS ROUTINE IS THE SAME AS AUGMENT, AROVE~ EXCE~T THAT TH~ 
ARGUMENTS ARE NOT VALIDITV•CrECKED. •I 

IF TYPECX> EC, TUPLE THEN AUGTuPCX,S); 
ELSE AUGSIMP(X,S)J 

END IF; 
RETURN; 
END AUGAOKJ 
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ALGSIMP 

,DEFINE AUGSl~P(X,S)J 

'/• THIS ROUTINE IS THE SAME ~s AUG~ENT~ Aeove~ exce~, TMAT tH~ 
FOLLOWING IS KNOWN ABOUT THE ARGUMENTSi 

X IS A VALID SETL OBJECT, AND IS NOT A TU~CE or LENGTH? 
3, fT MAY BE A SPECl~L PAIR. 

S IS A SET, POSSIBLV NULL, •I 

IF s EQ. NULLSET THE~ s. SEllSMP(X); ReTURNJ END irJ 

HSH = HASHCX)J I• COMPUTE A~D SAVE HASM ~ODE FOR LAT~R USE.•1 
FIRST= (HAS~TABLECS))CMSH//~TSIZE<S> + l~J 
/* SEARCH LIST STARTl~G WITH FIRST, •I 
M = FIRST; J 

(WHILE M NE, OM, DOING M = ~EXTM(M~:> 
IF EQUAL(M,)() ea. TRUE THE~ 

RETURN; /* ( X IS ALREADY IN THE SET>, •I 
END IFJ 

END WHILEJ 

I• .X IS NOT IN THE SET, PUT IT IN. IT rs PLACED AT THF. HEAD 
OF THE LIST, BECAUSE (1) IT IS SLIGHTLY ~ORE EF~ICI~NT TO DO 
SO IN THE LITTLE VERSION OF THE RUN TI~E ~IBRAR~, AND (2) A 
PROGRAMvS BE~AVIOR IS TYPICALLY LOCAL, SO THjS iTEM MAY BE 
REFERE~CED BEFORE THE OTHERS. •I 

NEXTMCX> = PIRSTJ 
(HASHTABLECS)>(HSM//HTSIZE(S> + 1) = X: 

I• NOW UPDATE THE HASH CODE CF THE SET, T~E NUMBER ~r MeMBE~S~ 
AND THE LOAD rACTOR. •I 

HCOnE<S> = ((MCOOECS) AS, BSlRING.) II ~~9M AS, BSTR!NG.)) 
AS, INT,J 

NMEMBS(S) s: ~MEMBS(S) • 1J 
LOAD<S> = LO~D(S) • 1J 

I• EXPAND H4SM TABLE Ir IT rs TOO "DENSELY useo. •I 

IF TOODENSEtS~ THEN EXPANDCS>JJ 
RETURNJ 
:END AUGS I MP J 
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ALGTUP 

DEFINE AUGTUPCX,S)J 

/+ THIS ROUTINE IS TME SAME AS AUGMENT, EiCEPT THAT X rs KNOWN 
TO BE A TUPLE (POSSIBLY NULL> ANDS IS K~OWN· TO BE A ~ET <ALSO 
POSSIBLY NULL>, 

THE ROUTINE IS COMPLlCATEC BECAUSE Jr THE WAV ,u~LFS ARE 
BROKEN up WHEN PUT INTO SETS. IT WORKS ~iTMOUT RECUR9ION, gUf 
IT HAS TO use THE STACK. OPERATION IS AS rOLLOWS cro~ TME 
NON-TRIVIAL tASES>. . 

FIRST T~E GIVEN SETS IS SEARCHED rOR A SPECIAL ~AIR T~AT 
BEGINS WITH "THE rrRST COMPONENT OF THE GIVEN tUPLE ~. tr 
FOUND, THE SET IS STACKED, A~D THE SECOND PART OF THE SPECIAL 
PAIR <WHICH IS A SET) IS SEA~CHED FOR A SPECIAL PAJq THAT 
BEGINS WITH THE SECOND COMPONENT OF THE T~P(E, IF rouNn, T~E 
CURRENT SET IS STACKED AND T~E PROGESS REPEATS. 

THE SEARC~ ENDS WHEN WO~KING ON THE tNPUt TUPL~ ~OMPON~N~ 
I AND EITHER Of TWO THINGS HAPPENS: 

1, I • LENGTH OF X • 1, IN WHICH C4~E TME CURRE~T SET 
IS ~OT SEARCHED, OR 

2, I < LENGTH OF X • 1, BUT NO SPE~iAL PAIR THAT REGJ~S 
WIT~ XCI) WAS FOUND. 

IN EITM~R CASE, THE CUR~ENT SET IS A~GMENTED av THE RE
MAINING COHPCNENTS (fROH I 0~). THIS IS riDNE B~ CA(LIN~ 
TUPSPLT. WHtCM PROCESSES THE CCHPONENTS r~oM t ON~ ANn 
RETURNS WITH EITHER A 2-TUPLE (If I= LEN~TH or X • 1,, OR A 
SPECIAL PAIR REPRESENTING THE REMAINING COMPONENTS tor WHIC~ 
THERE ARE THREE OR MbRE>1 1~1S VALUE IS ~UT tN THE CURRENT 
SET BY AUGStMPLY. 

NOW A TEST IS MADE TO SEE IF THE NU~RER OF MEMR~qS IN fH~ 
CURRENT SET .ACTUALLY INCREASED (IT MAY NOt Ir I = LeNnTH - i 
AND THE 2-TUPLE IS ALREADY I~ THE CU~RENT set). IP T4E NUMBE~ 
OF MEMBERS DID NOT INCREASE <W~ICH MEANS THAT~ WAS ALREADY IN 
THE ORIGINAL SETS), THERE f~ NOTHING TO 60 E~CEPT TO RFSTO~E 
THE STACK ANC RETURN, OTHER~ISE ALL THe ~TACKED SETS HAVE 
"THEIR MEMBERSMIP COUNT INCREASED BY 1. A~D THE STACK IS 
RESTORED AND THE ROUTINE RETLRNS, 

NOTE THAT THE STACKED SETS DO NOT MAVE THEiR LnADING 
FACTOR OR HASH CODE ALTERED, THE LOADIN3 FACTOR DErtNITELV 
SHOULD NOT BE INCREASED, IT IS OF LITTLE IMPORTANCE WHETHER 
OR NOT THE HASH CODE or THE 5ET IS ALtERE5 ~-RO~IDSn o,-COURS~ 
THE RUN TIME LIBRARY IS SELF-CONSfSTENT), •I 

IF NCOMPS<X) LE. 2 THEN AUGSIMFCX.S>: REiURNI END trJ 

IFS EQ. NULLSET TMEN S ■ SETWTH1CX>: REiURNI END trJ 
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/~ WE HAVE A NON•TRIVIAL CASE, •I 

CS= Si I• INITIALIZE 
I = 1: /• INITIALIZE 
ILIM = NCOMPS(X) • 1J 
(WHILE I LT, ILIM) 

COMP= <VALUE<X>><l)J 

CURRENT SET, •I 
CURRENT COMPONENT or~- •I 

I• INITIALIZE LA~T COMPONE~T • 1. •I 

I• GET CURRENT C~MPONENT, •I 

/• SEARCH 'CURRENT SET roR - SPECIAL PiI~ THAT BEGtN~ WITM 
THE CURRENT COMPONENT or x. *I 
SEARCH(COMF~ cs~ M) 

IF TYPE(~) EQ, SPECPAlR THEN 
IF EQUAL(<VALUE(M>)(l>, COMP> THEN 

I• rcuND THE SPECIAL PAIR. STACK cs~ AND AnVANCE. •I 
PUSHCCS)J 
I = I • 1J 
CS= 1VALUE(M))<2)J I• ADVANCE auRRENt SET, */ 
CONTINUE WHiLE I LT, ILIM; 
END Ir EQUALJ 

END Ir TYPEJ 
ENDSEARC~CM)J I• ADVANCE IN SET-LIST. •I 

/• I < ILl~ BUT SEARCM or CURRENT set Jg EXMAUSTE", TREAT 
SAME AS I·• ILIM CASE CX MLST BE ADDEti fo tME SET>, •I 

QUIT WHILE I LT, 'ILIMJ 
ENU HHILE I LT, ILIMJ 

/• EITHER I•• ILIM OR I c lLIM BUT THE s 0 ~CIAL PAIR T~AT 
BEGINS WITH ·COMPONENT I WAS ~OT FOUND. A~GMENT TME cuRqENT 
SET BY THE REMAINING COMPONE~TS, FROM i ON. •I 
NEWCS = CSJ 
AUGSIMP<TUPSPLTCX~l,ILIM), NEWCS>; 
IF NEWCS NE, CS TMEN 

/• NUMBER ·C~ MEMBERS MAS I~CREASED. M06tr~ TME oqt~INAL sef 
S TO REFLECT NEWCS RATHER 'THAN CS. TMig IS DONE ~V WORKING 
BACK IN TME STACK, CHANGING EACH STic~E6 set. T~e LAST O~E 
BECOMES THE NEW VALUE ors RETURNED BV THIS ROUTINE, •I 

S = NEWCSJ 
(WHILE •STACK GT, 0) 

POP<NEXTSST)J 
I = I ~ 1J 
S = REPLACE(<SPECPAIR,<<VALUE<X>><I~,~S•>~ NEXT9ET~ 

<SPECPAIR,<<VALUECX>i<J~.~>>~J 
NMEMBS(S) ·= NMEMBS(S) • 11 
CS= NEXTSETJ . 
END WHILEJ 

-571-



I• NOW$ ts ·PROPERLY MODIFIED. NOTEi iHE LI+TLE veRSION ~~ 
SRTL IS BASED ON POINTERS, A~D HENCE tr IS ONLY N~ceSSARY 
UPDATE NME~BS IN THE STACKED SETS. •I 

ELSE 
/• NUMBER :CF" MEMBERS DID NCT INCREASE, TME TUPLE WAS · 
ALREADY IN THE SET, THIS :t--AS ALL BEEN A WASTE OF' TIMI:, •I 

STACK = NULT.J 
END Ir NEWCSJ 

RETURN; . 

I• RESTO~E STACK. •I 

END AUGTUP; 

FiEPLACF. 

DErlNEF" REPLACECX~S,XNEW)J 

'/• THIS FUNCTION SEARCHF.S SET s FOR MEMBE~ x~ AND R~PLA~ES tr 
WITH XNEW, X MUST BE PRESENT INS. THE ROUTtNE HA~ NO 
COUNTERPART IN THE LITTLE SRTL, BECAUSE ~iTTLE WORKS WITM 
POINTERS AND MENCE CAN MODIFY A .MEM9ER 0~ A SET VERV ~A~!LV. 

THE SET RETURNED HAS XNEW IN PLACE JP X AT THE SAME SPOT 
IN THE SET-LIST THAT X OCCUPIEC. NO OTHER A(fERATION Or TM~ 
SET IS DONE, IN PARTICULAR, THE HASH COD& or TME S~T Is NOT 
CHANGED, AND THE POSSIBILITY OF A DUPLICATE MEMBER tS NOT 
CHECKED FOR, 

THIS ROUTINE IS USED ONLY BY AUGTUP ANO DIMTU~ TO ALTER 
. SPECIAL PAIRS IN A SET, •I 

I a HASHCX)//MTSIZE • 1J 
M = CHASHTABLECS))(I)J 
PREVMEMB = OM,J I• INITI~LIZE. •I 
(WHILE M NE, OM, DOING Ha NEXTM(M~J) 

IF EQUAL(X,M) EQ, TRUE THE~ 
I• FOUND X, REPLACE IT hITM XNEW. •I 
I• MAKE ;~EW MEMBER PO I NT TC LIST BEVQND )(, •/ 
NEXTM<XNEW) a NEXTMCX)J 
/• PUT NEW MEMBER IN LIST IN PLACE 0~ X. •I 
IF PREVMEMB EQ, OM, TMEN 

CHASHTABLE(S)>CI) ■ XNEW; 
ELSE 

NEXTMtPREVMEM~) = XNEW; 
END IF'J 

I• x AND ITS TAIL WILL BE GARBAGE-COLLECTED, •I 
RETURNJ 

ELSE 
PREVMEMB ■ MJ 

-572-



END IF e,uALJ 
END WHILEJ 

:ERRIMPL<-AUG~ENT ROUTINE OBTAINED INCONSISTENt RESULTS AS To~ 
+ -WHET~ER OR NOT THE CBJECT ~ + tX AS, CSTRING.) 
+ - IS IN TME SET - • CS AS. CSTRt~n.)~I 

END REPLACEJ 

TI.PSPLT *I 

DEF'INEF TUPSFLTCT~ IMIN, ILI~); 

I• THIS FUNCTION MAS AS INPU, A STRING or N ~ 2 OBJF-CTS 
STORED IN THE TUPLE T FROM f~IN ~ I ~ ILI~ • t~ TH~ VALUE ~F 
THE ROUTINE IS EITHER A SPECIAL PAIR ctr N > 2) TMAT REPRE• 
SENTS THE CO~PONENTS, OR IS t 2-TUPLE er~ N ~ 2~ CONTAINING 
'THE COMPONENTS, 

THE ROUTlNE WORKS RV PRCCESSING ITS iNPUT tN RtGHT-TO• 
LEFT ORDER. rIRST~ A 2•TUPLE IS MADE UP ~ONTAINING TME LASt 
'TWO COMPONENTS, THEN A SERIES OF' SETS A~fi SPECtAL PAIRS IS 
MADE UP FOR THE OTHcR COMPONENTS. •I 

/*MAKEUP A 2•TUPLE F'OR THE LAST TWO CO~PONENTS, •I 
Ra <TUPLE, ·c2, 2, c(VALUE(Tl)CILIP>~ <VA~UECT>~<ILTM•l>>>>J 

I = I L I M; / • IN I T lA L· I Z E F' CR LOOP . • / 
(WHILE I GT, !MIN) 

I= I - 1J I• POINTS TO ~EXT COMPONE~T TO PROCE~S. •I 
/•MAKEUP A SPECIAL PAIR ·co~TAINING tViLUE~T~)(I, ANO THE 
SET CONTAt~?NG THE PREVIOUSLY FORMED s~~CIA~ PAIR cnR 2-
TUPLE l, *I 
R = <SPECPA!R, c(VALUECT) i CI), SET1SMPCR)»tJ 
END WHILEJ 

RETURN RJ 
END TUPSPLTJ 
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I• TH I S R l'J L T l 1-..: E I ~ G l\i I:: ~1 A ~J QR.; Fr, T c::, A i,l b I T C? F: TL';;~; c: t. JT H T µ E 
SEr CCNT.';It\t'~/~ f1NLY T-4AT Or.l.JL:cr: :,n AR'HJ!1E'JT u,f.Cl<Trir. TS 
0 0 NE , A ~l J f- i:: :~ ~ E I T ~ H ri UL i) i•J 0 T SF r. AL :.. F. D D l ~'. t: CT L " : RI') r; C n MP ! LE· fl 
CODF, 

~ MJY 0 ~ A L~~G TUPLE, 
T~IS R~JTt~E JS rALLED FPCM AU~TUPLE, •I 

1 F TYPE C X ) c: 1) ~ TU PL F A ~I:) , · f ~ C::; MP S ( X ) G ;-: , 3 TH t: ._, 
RETUR~ CETlCMP(TUPSPLTC~, l. NCOMP~~X)-1)J; 

2LSE RETU~~ 5FT1SMPtX);J 
c:ND SET\.JTH11 

OEFIN~F SETt5~P(X); 

I• TH I .3 ~(')LT I~• E l c:: TH~ SA !1.1 t AS c:: ET WT Hi F. X r, E PT T 1-J 1). T ',( T;: 
i( N u W N ,. t\J r:l T T "I ~ E A T ll P L E O F l. [: N G T H ~ ~ , 

T H 1 S R nu T I IJ E I !':; r. A i_ i. ED r R G M SE i' ! I TH 1 A r-~ 1 T Ur ~ PL T , • / 

I• CREATE TH~ HASM TA9LF Foq TH~ SET. THE HAC::H TABLE rs 
~EPRESE~TEC )VA ~PAR~E TUPLE~ iND iT MAY HAV~ ~~LY c,E cnM-
p O l\i E N T O E ~ P.1 ~ !'I • H E rJ CI= ,1, H A SH T A E'i' E ( S J < ,-.IT S l7 E ( S J E t\1 E ~ A L L V , 
TH t: QUA r--T TT v ,1, ,U S ,.q Ao l_' [ < S ) I S ~;~VER USE n n~ nn ~ ~PF: T F -
lCATION. •I 

i1ASHTAB = f\lli..,T.J I• ItllTIALPF. •/ 
~ASHTAa(HtS~J~J//MINH~SiZE • f) = X: 
~AS~SrT = (C~tSHOAJ A~. ~STRING:) // tHASHNLS A~. BST~ING.)) 

Ac:; • I ~.J T I ; 

~EfURN <SET, <1~ 1, H~SMSET, MINHTS~ZE, HASHT~a~~J 
END Sf Ti S:-1F: 
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E)PAND 

DEFINE EXPANC<S>J 

I• THIS SUBRCUTINE DOUBLES" T~E SIZF. or T~R MASH TABLE ors, 
IT IS CALLED BY AUGSIHP WHEN T~E HASH TA~LE IS TOO neNSF.LY 
POPULATfD, 

•1 

IF THE ~EW SIZE WOULD E)CEED 'TME MAXiMUM (MAXHTSIZE), ~O 
ACTION IS TAKEN, •I 

OLDSIZE = HTSiZECS)J 
NEWSIZE = 2•CLDSIZEJ 
Ir NEWSI~E GT, MAXHTSIZE THE~ RETURN;; 

NEWHASHTAB = NULT~J I• INIT}ALIZE. *I 

/• SCAN MEKBERS or OLD MASH TAeLE, MOVING TMEM TO T4E NEW HAS~ 
TABLE. EACH ITEM MUST BE RE-HAS~ED (TO JRTAIN ONE MoqE BIT or 
INFORMATION -CN EACH>, •I 

(1 ~ vi S OLCSIZE> 
M = (HASHTABLECS))(l)J 
(WHILE M NE, OM,· DOING M: NEXT~CM)J) 

NE~I = HASH(M)//NEWS!ZE ·• 1J , 
I• PUT M INTO FRONT Or SfT-LIST AT N~WI. •i 
NEXTMCM) • NEWHASHTABCNE~l>J 
HEWHASHTAB(NEWI> • HJ 
END WHILEJ 

END ~r; 

s = <SET, <NMEMBS(S>,LOAD(S),HCODE<S>,NE~~ize~NEWHA~HTAR>>J 
RETURN; 
END EXPANDJ 
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6.10 DIMINtS (LESS> 

--------------
DErINE DIMINIS(X,S)J I• ENT~Y POINT roR ~ LESS. x. •I 

I• THIS ROUTINE DIMINISHES s BY REMOVING¥ rROM IT, IT is 
EQUIVALENT TC S • S LESS, X. S IS NOT CO~IEOJ tT l~ ASSUMED 
THAT THE COMPILER WILL GENER,TE A CA~L ~o THE COPY qouTJNE iF 
IT IS NECESSARY TO PRESFRVE 5. •I 

IF TYPE<S> NE, SET THEN 
ERRTYPEC~DIMINIS, S, NOT, SET, IS~, S~: 
END IF; 

IF X EQ. UNOErwo THEN 
ERR T y p E ( - D I M I N I s I , )( ( u ND E F IN ED ) I s ~ , l()J 
END lr:"J 

OIM.INOK<X,S)J 
RETURN; 
ENO DIHINISJ 

DIMINOK 

OErINE DIMINCK(X,S)J 

/• THIS ROUTINE IS THE SAME ftS DIMINJS, A~OVE~ EXCEPT TMAT 
·THE -ARGUMENTS ARE NOT VALIDITY CHECKED.-•~ 

IF TYPE<X> EQ, TUPLE THEN Ot~TUP<X,S>J 
.ELSE OIMSIMPCX,S~J 

END IF; 
RETURN; 
.END DIMINOKJ 
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) 
DIMSIMP 

DEF1NE DIMSt~P(X,S); 

/• THIS ROUTINE IS THE SAME is DIMJNIS; A~OVE~ EXCE~T T~AT 
'THE FOLLOWING IS KNOWN ABOUT THE AR0UMENT9: 

X IS A VALID S~TL 0BJECl, AND IS NOT A TUP~E or LENGTH?' 
3. IT MAY BE A SPECIAL PAIR. 

S IS A 'SET, POSSIBLV NULL, •I 

IFS EQ. NULLSET THEN RETURN;; 

/* SEARCH FOR X IN SETS, •I 
HSH = HASHCX)J 
·PREV = OM.; 
I = HSH//HTSIZE<S) • 1J 
M = CHASHTABLECS))CI)J 
(WHILE M NE. OM, DOING M = 't--EXTMOO J > 

IF EQUAL(M,X) ea. TRUe THE~ 
I• FOUND X IN TME SET. DELETE IT. *I 
IF PREV :ea, OM. THEN 

/• FIRST IN LIST, MOVE NEXT ONE i~. •I 
(HASHTABLE(S))(I) ■ NEXTMCM>J 

ELSE I• NOT rtRST IN LfST. MAKE PR;ijrous MEMB~R PnINT 
TO THE FOLLOWING ONE. •I 

NEXTMtPREV~ = NEXTM<M>; 
END IF' PREVJ 

/• ADJUST NMEMBS, LOAD, ftNC HASM COD: or THE SET, *I 
NMEMBSCS) = NM.EMBSCS) g 1; 
L0A0(S) 1 LOADCS) • 1J . 
HC0DE<S) • ((HCODECS) AS, 8STRJNG.> // <HSij AS, B~TRlNG,)~ 

AS, INT.J 
/• MAKE 'THE HASH TABLE· S~ALLER, IF DE!l:IRABLE, AND RETURN 
WITH THE STANDARti NULL SET IF NMEMBS is ze~o •• , 
IF TOOSPARSE(S) THEN C0NlRCT<S>JJ 
RETURNJ 
END IF EQUAI.J 

/• RESULT ·CF EQUAL COMPARf50N WAS rALSE. AbV~NCE tN LIST.•1 
END WHILE ,MJ 

·1• X IS NOT IN THE SET, N0T~INO TO DO. *I 
RETURN; 
:END DIMSIMPJ 
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DIMTUP 

OErINE DIMTUP<T,S)J 

/• THIS ROUTINE IS THE SAME AS DIMINIS, E~CEPT THAT T IS 
KNOWN TO BE• "TUPLE (POSSIBLY NULL>, ANDS is KNOWN T~ RE A 
SET <ALSO POSSIBLY NULL>, ~ 

THE ROUTINE IS COMPLICATED BECAUSE or THE WAY TU?LF.S ARE 
BROKEN UP WHEN PUT INTO SETS. IT WORKS ~iTHOUT RECURSI~N, euf 
IT HAS TO use THE STACK. OPERATION IS AS roLLOWS cro~ THE 
NON-TRIVIAL ·CASES). 

FIRST T~E GIVEN SETS 15 SEARCMED F'JR A SPECIAL PAtR TMAT 
BEG HJ S W 1 T H 'T ME r I RS T COMPO NE N T OF" THE G I VE N TUPLE T • I F' NO T 
f'OUND, THEN :evIDENTLY T"E TUFLE IS NOT i\J THE SET·. c:;o PARA• 
METERS ARE RESTORED AND CONTFOL RETURNS. IF' THE SPF-CtAL PAIR 
JS FOUND, THEN THE SET AND T~E SPECIAL PAiR ARE STA~K~D, ANri 
THE SECOND P•RT OF' THE SPECIAL PAIP <WHtC~ IS A SET, IS 
SEARCHED FO~ A SPECIAL PAIR THAT BEGINS WiTH THE SE~OND COM• 
PONENT OF' T, IF' F'OUND, THE 'CURRENT SET ANO SPECIAL PAI~S ARE 
STACKED, AND THE PROCESS REPEATS, 

THE-SEARCH ENOS AfTER TrE <N-2>TH OJMPONENT HAS qE~N 
SEARCHED AND rOUND TO B~ THE rIRST PART Or A SPECIAL ?AIR. 
THE LAST SPECIAL PAIR AND THE SET CONTA!~TNG IT ARE STACKED, 
AND THE CURRENT SET IS MADE lQ BE "TME se:oNO PART or THE LAST 
SPECIAL PAIR, 

NOw THE LAST SET IS SEARCH~O F"OR A 2•TUPLE CONTAINING T~~ 
INPUT TUPLEvS LAST TWO COMPO~ENTS. IF NOT rOUND, PARAMETERS 
ARE RESTORED AND CONTROL RETlRNS. Ir rOJNO, THE 2•TU?LE IS 
DELETED F'ROM THE LAST SET, IN THE NORMAL CASE, ALL TMAT 
REMAINS TO BE CONE IS TO DECFEMENT THE NJ~BER OF' MEMBeR~ ANO 
THE LOAD FACTOR rROM THE LAST SET, ADJUST ITS HASM ~one, ANO 
THEN DECREME~T THE NUMBER or MEMBERS IN ALL STACKED s~TS (ALL 
THOSE HIGHER UP IN THE CHAIN>, 

IN THE EVENT THAT DELETION OF TME 2-+u~(E CAUS~S TME LiSt 
SET TO BECOME NULL~ HOWEVER, WE PROCEED AS roLLOWS (T~E POINT 
IS THAT WE NEVER LEAVE SPECIAL PAIRS AROUND WMEN TH~i~ ~ECOND 
COMPONENT lS THE NULL SET), THE SET AND SPECiAL PAIR AT THE 
TOP OF THE STACK ARE OBTAINEt, AND THE S?RCiAL PAIR IS nELETE~ 
FROM THE ·ser (USING DIMSIMP). IF THIS ~A~SES THE S~T Tn 
BE C OM E NULL , TH EN T HE NEXT SF T A ND SPEC i AL. PA I R A RE U NS T ACK E D ·. 
AND THE PROCESS IS REPEATED. THIS PROCESS ENOS WHEN .~ITHER A 
,DELETION DOES NOT CAUSE THE ;~ET TO BECOME NULL, OR ALL ~TAC1<Eii 
SETS HAVE BEEN PROCESSED, T~E ALGORITHM NOW PROCEEns AS IN 
THE NORMAL CASEI THE REMAINING S~ACKED S~TS <Ir ANVl HAVE 
THEIR NUMBER OF.MEMBERS DECREMENTED <THEY C~NNOT BE~OME ZERO>~ 
AND CONTROL ·RETURNS TO THE CALLER. •I 
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LENGTH= NCO~PSCT)J 
IF ~ENGTH LE, 2 THEN DIHSIMP<T,S>; RETUqNJJ 
IFS EQ. NULLSET THEN RETUR~;; 

/• WE HAVE A NON•TRlVIAL CASE. •I 

CS= s; I• INITIALIZE CURRENT SET, •I 
.ILIM = LENGT~ • 1J 
(1 ~ vI < I-LIM) 

/• SEARCH :cs roR A SPECIAL PAIR TMAT BE~INS wt TH TH~ rURREN~ 
COMPONENT, •I 
SEARCH((TUF(T))(l), cs~ M) 

IF TYPE(~~ EQ, SPECPAIR AND. 
CEQUAL((TUP(T))(I), (vALUE(M))(1)) ea. TRUE) TMEN 

I• FOU~D THE SPECIAL P,IR. STACK -tt iND ITS ~ONTAINING 
SET, At\D ADVANCE,.•/ 
PUSH ( c~ ·,·CS>) J 
I = I·• 11 
CS= CVALUE(M>)C2>J 
CONTINL;E "ll 
END IP TYPEJ 

ENDSEARO~CM>J 

/• I < ILlM BUT SEARCH or CURRENT SET l~ EXHAUSTE"· TIS 
NOT IN THE ORIGINAL SET, •1 
STACK= NULT,J /• RESTU~E STACK. •I 
RETURN; 
END "IJ 

/• NOW ALL COMPONENTS< !LIM HAVE BEEN p~~CESSED ANn ~s IS TH~ 
LAST SET IN 'TME CHAIN, ALL :r IGHER ORDER SETS AND THE SF'ECIAL 
PAIR POINTING ·ro OS HAVE BEE~ STACKED. ~~w DELETE TH~ ,-TUPLt 
CONTAINING 1~E LAST TWO COMPCNENTS FROM TMIS ~ET. THtS IS 
DONE BY FORMING AN APPROPRIATE 2-TUPLE, AND USING DtM9IMP. 
THIS IS RATHER INEFFICIENT~ ~NC ANYONE W~~ IS CONCERN~D ABOUT 
IT IS !NVITEt. TO COPY T~E BULK OF CIMSIM~ AT THiS P~t~T. •I 

NEWCS = CSJ 
DIMSIMP<<TUPLE, <2~2,<(TUP(T>>(ILIM>,<T~PiT>>tILIM•i~~>>~ 

NEWCS>1 
IF NEWCS EQ, CS T~EN I* NOTHING WAS OELET~O. ~/ 

STACK~ NULTJ I* RESTCRE THE STAC<. •I 
RETURNJ 
·END IFJ 
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/• SOMETHiNG WAS DELETED, IF TME SeT BECiM~ NULL~ nELETE TMF 
SPECIAL PAIR AT TME TOP or T~E STACK FRO~ TME SET AT THE TO~ 
OF THE STACK, POP THE STACK, AND CONTINUE UNTiL A N~N-NULL SL, 
REMAINS. •/ 

(WHILE NEWCS EQ, NULLSET, 
/• IF STACK IS EMPTY, RETUFN WITHS= ~ULLSET. •I 
IF STACK E,. NULT. THEN s = t-.'ULLSETJ RF;TURNJ. ENn tr, 
POPC<SP, NEWCS>)J 
DIMSIMPCSP, NEWCS)J 
END WHILEJ 

/• NOW NEWCS rs NON-NULL, CCNTINUE WORKING BACK !N T~E STACK~ 
DECREMENTING NMEMBS IN ALL STACKED SETS. ~/ 

(WHILE STACK NE, NULT,) 
POP(<SP, S>)J 
S = REPLACECSP~ S, <SPECPAIR,<<VALUE<S?~>C1~,NEWC~>~)J 
NMEMBS<S) ·• NMEMBS(S) • 1: 
NEWCS = SJ 
END WHILEJ 

/• DONE. •/ 

RETURN; 
END DIMTUP; 
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CCNTRCT *I 

DEfINE CONTRCT<S>J 

/• THIS ROUTINE REDUCES THE ~IZE OF THE GTVEN SET~S HAS~ 
TABLE, T.f APPROPRIATE, BV A FACTOR OF" ONE HAL)", IT !!; CALLED 

. B Y D r M S I MP ~ ~ 0 D H1F' AO K w HEN I T I S F" r, u N D .T MA T THE SET ;it c; . 
HASH TABLE tS TOO SPARSELY USEC, . 

THE LOGIC IS. AS rOLLOWS: IF" THE SET H~S NO MEMB9RS~ TME 
STANDARD NULL SET IS RETURNEC, IF THE SEi HAS MEMB~R~ PUT 
HALF ITS HASH TABLE SIZE IS LESS THAN TME MINUMUM (M!~HTSIZE>, 
THEN NO ACTION IS TAKEN. OHERWISE' THE Rr;;oucTION I«; r,Q~JE, IN 
PLACE. LISTS IN THE LOWER HALF OF THE MASH T~BLE A~E CnMBINEfi 
WITH THOSE t~ THE UPP~R HALF. •I 

IF NMEMBS<S) EQ, 0 THENS= ~ULLSETJ RETURNJJ 

NEWSIZE = HTSIZE(S)/2J 
IF NEWSIZE LT. MlNHTSlZE THE~ RETURN:; 

(1 ~ vi S NEWSIZE> 
I• GET OBJECT IN LOWER HALF CF HASH T~3LE (PLUS ITS LTST),*/ 
OBJECT= t~ASHTABLECS>~<l•~EWSIZE>: 
IF OBJECT :ea, OM. THEN CONTINUE ., I I 
/• INSERT ,ceJEC.T (INCLUDING THE LI ST i T l'O t NTS TO' AT THE 
TAIL END 0~ THE CORRESPONDING LIST AT ~ns1TtON I, *' 
IF" CHASHT~BLECS>><I> EQ, 0~. THE~ I• VACUOUS, •I 

<HASHTABLECS>>CI) = OBJECT; I• PUT WMOLE LIST tN. •I 
ELSE /• SEARCH LIST AT I FOR ITS TAIL ENO. •I 

L = CHAS~TABLECS))(I)J 
M = NEXTtHL > J 
CWHILE M NE, OM,) 

L = MJ 
M = NEXTMCM)J 
END WMILEJ 

I• NOW L IS 'TME LAST 
NEXTM<L> ■ OBJECTJ 

END IFJ 
END ""II 

MEMEER IN THE LIST. •I 
I• ATTACH LIST ~ROM BOTTOM HALr or 

,f-ASM TABLE. •I 

·1• THE FOLLO~!NG IS DON~ IN~FLACE IN TH! ~ttT~E coo~ •• , 
S = <SET, <NMEMBSCS>, LOAD(S>, HCODE<S>~ NEWSJZE, 

l~ASMTABLECS>~<1~~EWSIZE>>>; 
RETURN; 
END CONTRCTJ 
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6,11 DIMF lLESr) 
------~-·--

DEFINE DlMf"(X',S)J I• ENTRY 'FOINT ·ro~ s u:sr. )(. •I 

I• THIS SUBACUTINE DIMINISHES S BY DELETING rROM iT ALL TUPLE~ 
OF LENGTH~ 2 TMAT BEGIN WIT~ X. IT I~ E~UIVALENT TO S • 
S LESF, X. •I 

IF TYPE<S) NE. SET THEN 
ERRTVPE<-DlMF, S, NOT A SET, JS_, S)J . 

END IF"; 

DIMFAOKCX,S)J I• NOTEI X = UNDEFWri IS Oi. •I 
RETURN; 
END DIHFJ 
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DIMF'AOK 

DEF'INE DlMF"ACK(XiS)J 

/• Tri IS SUBACUT 1:Ne Is· THE' SA~E . AS CI MF, A ROVE'. e:xce~T 
THATS IS KNCWN TO BE A SET. X MAY BE u~riEtINEO~ •1 

IFS EQ. NULLSET THEN RETURN;; 

HSI-I= HASH(X)I· 
PREV = OM.; I• INITIALIZE, •/ 
I = HSH//HTSIZE<S) • 1J 
M = <HASHTABLE(S))(l;J 
(WHILE M NE. OM. DOING M = ~EXTMCM); > 

F'IRSTCOMP -~ OJ I• INITI-LIZE TO. AN IMPOSSIBLE neJECT 
<NOT ~ FAIR>. •I 

IF" TYPECM) EQ, TUPLE AND. NCOMPS(M) ;rS. 2 TMEN 
FIRSTCOMP ·: CTUP(M)>(1)J 

ELSE IF TVFECM) EQ, SPECPAIR THEN 
FIRSTCOMP • (VALUECM,><1>;; 

IF" EQUAL(F'IRSTCOMP,X) E0e 'TRL·E THEN 
/• FOUND AN OBJECT TO BE DELETED. •I . 
IF PREV :ea, OM. THEN (HA~HTABLE(S) > f I', • NE)(TMP.4) J 

ELSE NEXTM(PREV> = NEXT.M(M)JJ 

•1 

I ( T Y P E (, t-'. ) E Q • TUPLE THE r,.. t-. BR DE L E TED ■ 1 I 
ELSE NB~DELETEO = NM~MBS~(VA(U~~M)>C2)iJJ 

NMEM8S(S) = NMEMBSCS) • r-..BRDELETEOJ 
LOADCS) ,, LOADCS) .• 1J 
HCOOECS) = ((HCODE(s, AS, 8STRING.)//il-lSH AS. aqTqJNG,)) 

AS, INT.J 
ELSE I* DO NOT DELETE IT e ·• / 

PREV = MJ 
END IF EQUALJ 

END WHILEJ 

·/• COMPRESS •1-!ASH TABLE IF' NECESSARY. •I 
IF NMEMBScs·, EQ, 0 THENS• !~,ULLSETJ 

:ELSE 
(WHILE TOOSPARSECS) AND, HTSIZE<S> GT, MIN~TStZE) 

CONTRCT (;S > J 
END WHIWEJ 

END IF"J 
'RETURN; 
END DIHFAOl<J 

' 
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6~12 ARBITRARY ELEMENT 

·DEFINEF ARBfS)J I• ENTRY POINl FOR TME S~T( AN.S (ANV S). +/ 

IF TYPECS> EQ. SET THEN RETURN ARBSET~S~JI 
IF TYPECS) EQ, TUPLE THEN RETURN ARBTUP(S~:1 
IF TYPECS) EC. CMAR THEN RETURN AR8CSTRC~>JJ 
IF TYPE<.S> SQ, BOOL TH9N RE'TURN ·ARBBSTRC!I) J J 

ERRTYPE<~ARB(S), S, NOT A SET, TUPLE, NOR STRING, TS_, S>J 
END ARB; 

AFBBSTR · 

DEFINEF ARBBSTR<S)J 

/* ARB ROUTf~E FOR BIT STRINGS. •I 

IF sea. NULLBSTR THEN RETUR~ UNOEFWD: 
ELSE RETURN (VALUE(S))(1)JJ /* (ANY BIT ~OULD BE .u~eii., •I 
END ARBBSTRJ 

Af;BCSTR 

DEFINEF ARBCSTRCS)J 

/* ARB ROUT~~E FOR CHARACTER STRINGS, •I 

IFS EQ. NULLCSTR 'THEN R~TUR~ LNDEFWD: 

*I 

·ELSE RETURN (~ALUE<S))(1~JJ l•<ANY CMAR~C+ER CO~LD 8E 'USED,>*; 
END ARBCSTRJ . 
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ARBTUP 

DEF'INEF' ARBTLP(T~J 

/• ARB ROUTt~E F'OR TUPLES, •1 

/• THE SETL 'CEF'INiTION IS ANY CEF"INED CO~PONENT CIF' T~E~E IS 
ONE) .• , I 

LENGTH= NCO~PSCT~J 
IF" LENGTH EQ, 0 THEN RETURN !LNDEF'WO; 

ELSE:RETURN CVALUE<T>><LE~OTH~J 
END ARBTUPJ 

, r 

I• ARBSET 

DEF'INEF' ARBSET<S~J 

*I 

*l 

/• THE RESU~T IS THE F'IRST MEMBE~ ENCOUNT~REO IN A LINEAR S~A~ 
. 0 F' . T HE H ASH · T ABLE·, AND UN DEF' I NE D IT S I S NULL , • / 

IF' SEQ. NULLSET THEN RETURN UNDEF'WO:; 

MEMB = ARBSf~P(S~J 
IF" TYPEcMEMB) NE, SPECPAIR T~EN RETURN ME~BJJ 
/• OBTAINED./,. 'SPECIAL PAIR, MUST BUILD A TUPLE <OF' L~N!1TH ~ 
3> .F"ROM IT, •I 

NEWTUPLE = NULLTUPL&J 
(WHILE TYPEt~EMB~ EQ, SPECPAIR> 

I• ADD FIRST COMPONENT OF' SPECIAL PAIR ~N AS LAST cnMP •• , 
'TUPA0D1CNEWTUPLE~ CVALUE(MEMB>><1>>; 
MEMS= ARBSiMPCCVALUE<MEMB>><2>>J I• G~T NEXT SP~CIAL 

PAI~ OR 2•TUPLE, •/ 
END WHILEJ 

.,. NOW MEMB :MUST BE A 2 .. TUPLE. ATTACH i Ts TWO OOMl'nN~NTS To 
'THE TUPLE BEIN~ ~UILT. •I 
:CONCATT<NEWTUP.LE, MEMB)J 

'RETURN NEW TUPLE J 
:ENC ARBSET J 
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AFBSIMP • 

DErINEf ARBSIMPCS)J . ' 
/• THIS fUNCTiON RETURNS Wil~ AN ARBITRA~V MEMBER ors. s·iS 
KNOWN To BE !t,;ON•NULL I THE RESULT ti.AV Bl! A SPEC I Al i,A IR, IN 
WHICH CASE A CORRESPONDING TLPLE IS NOT 3UILT UP, •1 

·(1 s vl S HTStZECS>> 
MEMB = <HASMTABLECS))<l>J 
IF MEMB NE, OM, THEN ~ETUR~ MEMBC1i2>1: 
/• (THE DELETION or MEMB(3) 1S NECESS~~i). •I 
END vIJ 

ERRJMPL<-ARBSET ROUTINE HAS ENCOUNTERED 
• itAS 'TO WHETHER OR NOT TME SET -
+ it IS NULL,llf)J 

-TNCONSISTENT RE~ULTS ~ 
• CS AS, CSTRtNG,> 

END ARBSIMPJ 
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6~13 ITERATION _____ ., __ _ 

THE ROUTtNES IN THIS SECTION IMPLEMENT TME SETL tTFRATiO~ 
-~x .. s. THE NUMERICAL ITERATION, M ~ ... , C N, IS NOT tNr.LUDeD 
IN THIS SPEClrICATION, AS IT IS ASSUMED TMAT NUMERICAL tTER• 

.ATION WILL BE IMPLEMENTED BY COMPILER-GE~~R~TED CALLS To · 
ARITHMETIC RCUTINES, 

S IN THE ITERATION vX .. SMAY BE A STRING, TU~LE, OR 
SET CSEE SETL NEWSLETTER 42 FAGE 4), tME PRIMARY ITE~ATION 
ROUT I NE Is -~ex T- BELOW. OTFER ·ROUTINES ARE NE)(TB IT~ 
NEXTCHR, NEXTOMP, AND NEXTME~. CORR~SPONDiNG TO TME TYPF nr s. 

ALL THE tTER4TION ROUTI~ES TAKE TWO i~GUMENTS& SANO A 
:-CONTROL ITEt',111 C, ON F'IRST :ENTRY, TME CONTROL ITEM (WHICH 
WOULD GENERAL~Y BE HELD IN A COMPILER-~~N~RA~ED TEH~ORAR~> 
MUST BE THE INTEGER ZERO, ·sLBSEQUENTLV~ THE CONTROL tT~M 
SHOULD NOT BE ALTERED BY ANY RCUTINE EXCEPT -NE~T- (•NEXTt 
ALTERS ITS rtRST PARAMETER). THE ·cOMP~~TiON OF' ITERATlnN I~ 
SIGNALED BY ·RETURNiNG AN UNDEF'INED VALUe AV -NE)(T,t, 

THE CONTROL ITEM IS A CCMFLEX DATA AGGREGATE IN THF. CASE 
OF ITERATING OVER A SET THAT CONTAINS LO~~ TUPLES (SEE 
NEXTMEM BELOW), 

THE COMPILER MAY TRANSL-TE TH~ iTERAiION 

(vX ·~St .CQND> BLO~K 

AS ILLUSTRATED BELOW, 

T , ■ 0 J 
/BACK/ )( ;• NEXTCT,S)J 

Ir tx ,EQ, UNoerwo> GO TO OUTJ 
Ir (COND) THEN BLOCK ENOir: 
GO TO BACIO 

/OUT/ J 
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NEXT 

DEfINEF NEXTCC,S)J I• ENTRY POINT F'OR iT~RATION, ~~ 4 S, •1 

·1• GIVEN A CONTROL ITEM C ANC S, iHIS ROJtINE rt NOS 'T~E -NE~T~ 
OBJECT IN s. Ire IS ZERO, IT RETURNS WITH THE -rI~ST-
0 BJ EC T . I F' : C I ND I CATES THE ·~LAST llf OBJ E OT·. I T RETURNS W I TH 
THE RESULT UNDErINED, •I 

IF TYPE<S> EQ, SET THEN RETURN NEXTMEM<~,S~JJ 
IF TYPE<S> EQ. TU~LE TH~N RETURN NEXTC~~<E,S~JJ 
IF TYPE<S> EQ. CHAR THEN RETURN NEXTCHRCr,,S)JJ 
IF TYPECS> EQ, BOOL THEN RETURN NEXTBIT<e,S)J; 

ERRTYPE<-NEXTCC,S), s, NOT~ SET, TUP~&, NOR stRtNo~ IS_, s>, 
·END NEXT; 

NEXTBIT •1 

·DEFINEF NtXTBITCC~S)J 

/• THIS ROUTINE EXTRACTS THE NEXT BIT fAO~ BOOLEAN ~T~ING S 
AFTER THE ONE INDfCATED BV c. C rs THE BiT INDEX IN s nr T~E 
BIT RETURNED, •I 

. IF • VALUE ( S) EQ, C THEN RETURN UNDEfWD J J 
C = C.., 1: I• INCREMENr ·en INDEX. •I 
RETURN <BOOL~ CVALUE(S)>CC)>; 
END NEXTBITJ 
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NEXTCHR 

-DEFJNEF NEXTCMRCC,S>J 

I• THIS ROUTINE EXTRACTS THE NEXT CMARAOTER rROM CHARACTER 
STRINGS ArT:ER THE ONE INDIC~TED BV C. C IS ~ME CHARACTER 
INDEX OF THE CHARACTER RETUR~Et. •I 

IF ~VALUE<S) EQ, C THEN RETU~N UNDEFWti:1 
-C = C + 1; . I• INCREMENT :CHARACTER INDEX. •I 
RETURN <CHAR, (VALUE(S)>(C)>; 
END ~~EXTCHRJ 

I• NEXTCMP 

DEFINEF NEXTCMPCC~T>J 

/• THIS ROUTINE EXTRACTS THE NEXT DEFINED COMPONENT ,qOM TU~L~ 
T AFTER THE ,CNE INDICATED BY C. C IS AN iNDEX INTO T. •I · 

(WHILE C LT, NCOMPS<T>) I• LOOP FOR s~i~~l~G UNOEF. OOMPS, •1 
C = C + 1J 
'COMP= <TUPc·r,·,cc>, 
IF COMP NE, UNOEFWD TMEN RETURN COMPJI 
END WHILEJ 

I• C = NCOMPS<"T>, l.AS'.T' COHPC-NENT WAS ALR&ADY RETURNEI'>, •I 
RETURN UNDEP.\riOJ 
END NEXTCMPJ 
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I• TH?S RGLTl~E G~TS TH~ NlXT ~FMGEP rRUM S~T S A~TF~ THE ONE 
l N IJ I C .~ T F 'C F. v r. • "!'Hr- ►hH · T I ~IF ! .3 CO r-:;, ,_ I C ~ T f-: D 8 i:: C .•, 1.(· E: C ► T !-' F \•.' t Y 
LON~ TUPLCS AgE STO~l1 iN SFTS. 

T H t:' H A T N F' F A T U FJ E c; r; F" TH I c; t L r, ~ R I T H M H A V f 1' ri :, G i·: T i H 
E F' F I C T E 'l .T L Y i T E R A T I ~.: G G V !: R S E T S C O \ T i.\ I N I I'! G L O "I (j T I. P i_ ~ c • H; :"'l 
SJGNJryrA~T P"JNT~ ARF~ 

l. Ti~E HiFLE: RFTtli~r!!:r'1 TS rJOT ;~i:,3u1i_·r F·~u~, ·:;r;pi-\"!"Ch F~rl- TTMF, 
11\: STE AC, n NL V THE Lt.ST r E \.; r, Cr-· PO !ff NT S AR!: CH A. (;Fr< r S 
RF:tJuir--En, 

2, TME RnL~I~E DO~s NO+ 8E~IN fj~ P~OCESSING ~tT~ T~r !NP~T 
SC. T S ( ~ X CE PT O ~J q ~ST H; n: Y > • · I NS T F. AD~ TT fl L I r.;.: I Y 

L r. c A T F. s , r R ,., M c ·• "!'Hr c lJ "'R F ,·-: i- s E i" R E It-: c i T F h ,, T D r. " F. P , 

,. H t:= r. C '-.' T Q O L TT F ;-: C I ~ ;_; 0 TH A tJ T:-J PU T A N i1 H, 0 lJ T D l ,. P A P J. .. 

MF.TER. ITS FnRMAT ts: 

W H E R E . O L D ~~ ~ S T H E L 4 S T M E M B t R ,;:; F T lJ R ~: E D ( S LI C H A S 1\ r-.; "1 .. , I. P L F ) , 
ANIJ A IS n-r J'ADDRE:SS1! r.F OLCi-1, A js FJ CiEI\Jc:P.AI ~Ot-El,'HAT 
1 N \J O L I/ E n ~ T p u ~ T I JR F. n F THE r O LI_ c; \,I I NG F O R t 1 : 

TH I: Arn OE$ s I c:: A 4 -Tu p L F. w H n s [- i Ast ..:; 0 t.A p ONE iH ( L I 1\ k, T s A r,.i 
ADIJRESS (t>t-.nTblEP 4-i'UPLF-), THE ItJNF.RMOST A1)!)!=1[~S !c_ t 4.Tt.;PLF. 
~HOSE LAST COMPONENT rs THE JNTCGER ZERO. tN1~~ IS T~~ 
CU~RENT HASM TAAL~ !Nn[x, CURSCT IS THE cuqRCNT SET CllN~ 
ITERATED cvr:R. MFMR ts THE CUf:::ic:tJT r1EMnEH. YT (3 US!=~ TC'l 
ll E ~-I NE 1' .Hi: t.; E 'V'. T Mc:: M f-1 F. R V I A MEX T "' , A I\! J TO PP. ·W T D ~ I Mr Or. f-1 AT t (• r,J 
As To Ju s r ~.; a 1.i r o Mn D tr v o ui M ~ n, i: out ER~, o s T A• s T P. u c, u PE 
REFERS TO THE INNF.RHO~T SET Jrl fME t~~IN OF SCT~ LSFC TO 
REPRESE~.tT T11P1_ES ?\I SFT~. 

TMF GVFRALL STRATErY OF TH~ ROUT~NE, o~c~ rT G~TC GOING, 

1 , I F" POSS ! 8 l. E , ~ E i' T 1-1 !='. NEXT \ F n◄ ER AFT F. ~ '1 EMS·, L SF r T T n 
SUPPLY iHJ:: "-IEW LA~T TWO CM'PO~JE~;TS ,1F OLJM, 14f\I) ~C:TI.JRN 
OLDM, 
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4 • I F" A. T Ar-, Y T T MF A c; PFC I AL PA TH i S O 8 TA I N;:: D F n ~ t1F M f: , 

~ t, D V ;.. •_: C ~ ,; 8 y ~ E: T T t N r:, A = < 0 •• M l: M a ( 2 ) , i•m L T • • ~ > ·• l· C n I 1\1 G 
Mr MR C 1 ) 0 ~; TO O I. D 11, AN l) IT EPA TI t\ G OVER SE: T •q: :-,-1 B ( 2 , • 

TH!i Et.'C or THi: wHnu= tTFRAT!c~, rs siGNIF'IFD f,v t,T'TF~,pi-p,1G TO 
BACK lJ P E.U. ! T F T N n I \! r., T ~A: L If'I K I ~ Z E F. () • 

I H) I 'St K ~ E P I NG fl FT A I l. S , c; Ur, H A ~; P :~ 0 Pr: R LY M"' D n- v l 1'1 G H' E 
Rl~MT•HIN~ ~N~ OF OLDM, ARE M;::SSY. 

TH~ LI~TLE V~RSinN WORKS hiTH PJIN!Ers~ ANf ~ IS A CMtIN 
0 F' S H A L L P U: C K S , F .A r::-1 C n N T A I N I \ 1-; MJ I f\J D E X , A P ,) T ! J T E q -r C A S c-.: T , 
A MEM8EF RCrT WORr, A~D A LINK ~O!Nf~R. •I 

I• IN ! T ! AL I 7 E A At-_: L ·• TF f'J OT F" I ri ~ T t: ~.! T P. Y , 0 L !l i 1 • -1t / 

IF C .~E-, 0 T~EN OLnM: CC1); 
A:: C(r'): 

EL.S~ I• FtRrT E~TRV: •/ 
A = < C ·• s • N lJ L T • ~ ~ > J 

Er-Jo rr r:; 

TE:ST~I IF M EQ, C~. THl=N 
! •AI; VANCE T n NE 'i T SL: C ,. I N HAS J..J TAP:.., F. , • I 
lND~X(A) = TNnEXCA) • 1J 
JF' !NnfX(t) GT, HTSiZF(CUPSFT~A)i THEN 

/t THRCUGI-I WITH CtlF{PENT SET: E?.4Glc'. CP Tu Ppe":'-JIOLIS O~'E, 
IF' IT EXIST<;, +/ 
I F' L PJI< < A ) ;:: Q • U T H F N / * D n N E • * / R E T U R N u ~J D ~ F" W t: 1 ; 

/• DELETE LAST COMP~NENT(S) rP.OM OLDM, +/ 
IF' TVPECM~MR(A)~ EQ. TUPLF iHFN ~ = 21 EL~E L = 1•: 
NCQHPS(~L"M) ~ NCOM~S(OLDMi • LI 
A= LIN~(A)J /• ~Ar.K UP A, •I 
GO TO GF.TMJ 

ELSE /• P 1DFX (A) ~ HT~ I ZE • •I 
M = (~ASHTA8L~<~U~SFT(A))~(iNOEX(A)); 
GO TO TFSTMI 
END lF' JNl'!E)((A)J 

ENO IF" M; 
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I•· GOT A MEMBER M ·To PROCESS. •I 

IF LINKCA> EQ, 0 THEN 
/• we ARE., r1AST LEVEL SET.·•/ 
MEMB(A) = !f',J I• SAVE M F'OR NEXT :ENTRY •• , 
IF' TYPECM) EQ, SP6CPAIR 'THEN 

I• FIRST LEVEL SET AND M IS A 'SPECIAL PAIR. SET t.,LTH1 
AN □ ADVANCE A. c Nonti 'THE cuRRENr oL oM MA v Nor i;v~N 
BE A: TUPLE, HENCE ALL OF" OLDM MUST 9E SET). •I 

· OLDM = <TUPLE~ <1, 3~ <<VAL~EtM>~~1~>>>1 
A= <O, (VALUE(M))(2), NLLT,, A>S 
GO 10 GETt-U 

ELSE 
I• FIRST ~EVEL SET AND MIS.NOT~ sp;~Ii( P~IR (SIM~LE 
CASE), •I 

C = <M, A>J I• SET C 'TO REF'LECT 'NEW M ANO A. ff/ 
RETURN MJ 
ENO IF TYP.EJ 

END IF LIN~(A)J 

/* LINK<A> - OJ WE ARE NOT AT "FIRST LEVE~ SET, •I 

IF" TYPE<M> SQ, SPECPAIR THEN 

I• NOT FIRST LEVEL SET AND Mrs A SPEOIAL ~AIR, ~UT M(l) 
INTO OLDM CWHIC~ MUST BE A TUPLE> ~ND A~VANQE A, tr THIS_l~ 

"THE F'IRST ;ENCOUNTER OF' A SFECIAL PAIR AT THIS LEV~L, OONCAT
·ENATE MC1) TO OLDM, OTMER~fSE R~PL~C~ LAST ONE 0~ TW~ COM• 
PONENTS or OLDM WITM MC1). •I 

JF' MEMB<A) EQ, NULT, THEN "TUP•tioito~o~. cvi(U&(M)~(i)>J 
ELSE 

L = NCOMPSCOLDM>I 
IF TYPE~M6MBtA)) EQ. SPECPAtR -~~E~ 

CTUPCOLDM>)lL) • <VALUECM>><1~J 
EL SE I• i~SMB ( A) MUST BE ,j 2 •TUPLE,. •I 

CTUP(OLDM))(L•1) • (VALUECM>>C1lJ 
NCO MPS C O L D M ) • NCO MPS <1 CL; D M > · - 1 'J 
END Ir i'YPEJ 

END IF MEMBCA)J 
MEMBCA) = :Ml . '/* UPDATE ADCRESS AT CURRf!NT' LEVEL, •I 
A= <O, (VALUE(M,))(2), NULT., A>J I• ~DVANCE, •I 
-Go TO GETMJ 
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.E~SE 1• M HUST BE A 2•TUPLE, ADD.ITS T~O C6MPS, TO OLDM, ·•/ 

IF MEMBCA) EQ, NULT, TMEN :coNCATT(OLOM, M)J 
ELSE 

L = NCOMPSCOLDM>J . 
IF TYPE~MBMB(A)~ EQ, SPECPAtR ·t~EN 

NCOMPS COL OM·, 11: NCO MPS (;C LDM .> · • 1 J 
CONCATTCOLDM~ M>J 

ELSE I• ifilEMB(A) MUST BE ,fl. :2..:rupLe. •I 
(TUP(OLDM>)CL•1) D CTUPtM~>l1~J 
(TUP(OLDM>)CL> • <TUPr~>>t2~J 
END IF' _TYPEJ 

END IF MEMBCA)J 
MEMB <A> = :,.q I• UPDATE ADDRESS AT CURRENT LEVEL, •I 
C = <OLDM~ A> J 
RETURN OLDMJ 
END IF TVPE(M)J 

'/* AUXILIARV ROUTfN~S FOR ACCESSING AD~~5~S ~u~~E (TH~Se 
-MAY BE USED IN SINISTER MOOE>, •I 

DEFINEF INDEXCA)J 
·DEFINEF CURSET(A)J 
:OEFINEF MEMBCA)J 
OEFINEF LINK(A)J 

END NEXTMEMJ 

RETURN A<1)J :ENDJ 
RETURN AC2>J ENDJ 
RETU~N AC3)J ~~QJ 
RETURN AC4}J ~NDJ 
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-----~-----~------~----------~---
THE ROUTINES IN THIS SECTION IMPLEMENT SETL rUNCTIONAL 

APPLICATION 'F'OR RIGHT HAND SIDE EXPAESSiONS. ROUTI~E NAMES 
ARE: 

0 F' 
OF'R.STR 
O ► CSTR 
OFTUPLE 
QF'SET 
O ► N 
OF'A 
OFAN 
ors 
OF'BBOOL 
OfBCHAR 
OF'BTUP 
O ► BSET 
O ► BN 

rtx,, MAIN ROlTINE 
F'~Xi, F' A BOOLEAN STRIN~ 
F'(X), F' A CHA~ACTER STRING 
F'()(), F" A TUPLE 
F"(X), r A SET 
F'(X1, , , .~ XN> 
rs><ii!! 
F'SX1, , , • ·, XN? 
F'[SJ, HAIN ROLTINE 
rts], s A BOOLEAN ST.iNG 
F'[SJ, SA CHA~ACTER STRJNG 
F'tTJ, T A TUPLE 
F'[Sl, SA SET 
F'tS1, "-~ SN] 

DErINEF OFCF', .X)J 

I• THIS IS ,~s MAIN ROUTINE "FOR F'<X>~ F'OQ X A SiNGL~ ITEM, 
roR RETRIEVAL, */ 

1F' TYPECF> &Q, SET THEN RETURN-OF'9ET<F', X>JJ 
"IF' TYPE<F'> SQ, TUPLE THEN RETURN OtTU~Lf<f, .X~JJ 
IF TYPECF) EQ, CHAR THEN ·RETURN OF'eSTR(r, X)lJ 
IF TYPECF) eQ. BOOL THEN RETURN or•stRi~~ X~JJ 
IF TYPECF') BQ, ruN THEN . 

ERRMSG(~CO~PILER ERROR OR ~TTEMPT TO USE A F'EATUR~ ~OT YET t 
+ tIMPi.;EMENTEC, ·TME ROLTINE F'OR fc>(; tor> WAS CALLED•~ 
+ tWIT~ F' A PROCECURE,~)J 

RETURN;J 
ERRTVPE(~F(X) cor,~ r IS NEITHER A set, T~P(E~·NOR ST~ING. -

+ tF' IS1(, F')J 
END OF"; 
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IF TYPE(X) ~Q. INT TH~N 
IF V~LUFCX) GT, 0 THEN 

1r VALL.c:(x> LF •• i.iALU~<F> tHi:.:tJ 
RE T.u r:, \ 1 < 8 n. 0 L , C ,i A I.. U E ( F ) , ( \I AL t_; E ( X ) ·, > ; ; 

END Ir VALUl;J 
E~D I ► TYP:1 

I• E l TH!: R X I c: NOT A:~ INT E G f: .:i C q IT IS 1 UT ) F R ~,~Gt:. ~ / 

IF TYPE(X) ~a. INT TH~N /* JUT nr R~~GE, •1 
~ E T U R t\l L' t\ I) E ► 'tJrJ J 

ELSE I• ~CT aN INT~GFR. •I 
i: RR TYO !: C t ► ( v ) ( n. F ·, , F' . I , /1 n 0 '1 LI: A tJ ST ,l I l·J G ·• X T St·, X , ; 
t:ND It"i 

END 01="8~TR; 

DEF!N~F OFC~T~CF, X); 

/• THts ROL.Tl~E EVALU~T~S F(X~ ~ORF A CHA~ACTEn ~tnr~G. •I 

IF TYPECX) ~Q. ?NT tHFN 
JF VALUE(X) GT, n TMEN 

H" VALL.J::()() LF, .vALUECF) THcN 
RETURN <CHA~, (~ALUE(F)~~0ALUF(X))>:; 

ENO IF VAL.'UEJ 
END IF TYPEI 

/• EITHF.R X I~ NOT AN PJTEGER OR it IS OUT C1F" :l~~GE, •I 

IF TY~E(X) ~Q. INT TH~~ I• out ~F Ri~GE, */ 
R E T 1j R N U I\ I') E r:" W r, J 

ELSE/• NOT AN INTEGE~. •I 
E R R : Y P E C ii! F( )( ) ( 0 F ·, , F I S A C h A R A C T ~ R S T q liJ G ·, i< · I S ~ , X , ; 
END IFJ 

EN8 otcsnn 
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I• 

.certNEf OFTUFLECt, X)J 

/• THIS ROUTINE EVALUATES r,x, rep,; TJ~LE. •I 

If TYPE<X> EiQ, INT THEN 
IF VALUE(X) GT, 0 THEN 

IF V,ALUl:(X) LE. NCOMPsc,t·, TMEN 
RETURN (TUPCr>)<VALUEi~))tl 

END IF VALUEJ 
END IF TYPEJ 

I•~ IS NOT AN INTEGER OR !I OUT or -~NOE. •I 

If TYPE<X> EQ, INT THEN 
I• X IS OUT or ~ANGE. ; HAY BE NU~L. *I 
RETURN UNDEF"WDJ 

·ELSE I• X IS NOT AN. INTEGER, •I .. _ , 
ERRTYPE(-r(x) (Or>, r IS A TUPLE, X rs~. )()J 
END Ir J 

···ENO OFTUPLEJ 
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I• OFSET 

OEFINEF OFSET(r, X>J 

/• F IS KNOW~ TO BE A SET, X MAY ee ANiT~ING EXCEl'T 
UNDEFINED. 

T~E ROUTINE SEARCHES 'THE SET r ~OR A TUl'LE OF" LENGTH 
·~ 2 BEGINNING WlTM X, NULL TUPLES jNo TJ•LES or LENGTH ONE 
ARE SKIPPED ,CVER, IF' A TUPLE CF" LENGTH TWO IS rouNr,~ .TME 
RESULT IS ITS SECOND COMPONE~T. A TUPLE OF" ~ENGTM ~, IS 
STORED AS A :SPECIAL l'AIR! IF A SPECIAL ?it~ IS F'OUND 
BEGINNING HfTM x, THEN ITS SET (THE SET or TAILS or ALL 
TUPLES IN r 'TMAT BEGIN W!TH )( AND ARE or i'.ENGTM ~ 3) IS 
EXAMINED. fF THIS SET CONTAINS EXACTL~ O~E HEMBER, tMEN IT 
IS EXTRACTED (USING THE ARBSF.T ROUTINE> A~ TME RESULT. IF 
IT CONTAINS it,'ORE THAN ONE MEt-'BER < IT CANNOT BE NULL·, TH~N 
EVIDENTLY THE ORIGINAL SET H~D MORE THAN ONE TU~LE qe"INNING 
WITH X, so T~E RESULT or F(X). IS UNDEFINE5. 

AFTER rlNCING THE RESULT, THE SEARe~ or r MUST CONTINUE 
·ro SEE IF THE IMAGE OF" X IS ~ULTIPL~ oetI~ED~ IN WHICM CASE 
THE RESULT IS UNOEF'INED. A SWITCH CALLl!D llfDEF'JNEDII tq USED 
IN CONNECTIO~ WITM THIS, •/ 

IF X EQ. UNDErWD THEN 
ERRTYPEC-F(X) (OF>, F !SA SET, X IS UN6er1NED:•, x,11 

IF F EQ. NULLSET THEN RETURN UNDEFWD:: 

*l 

DEFINED= F"ALSE,J I• INITIALiiE MU~Ti~~i DEF1N~D SW, •1 
SEARCH(t, F', M)J 

IF TYPE<M> EQ, TUPLE TMEN 
IF NCOMPStM> EQ, 2 TMEN 

.IF EQU•L<<TUP(M))(1)~ ~) EQ. T~ue TMHN 
/• rcuND A 2•TUPLE BEGINNiNO wttH x. •I 
IF DEFINED THEN 

/• MULTIPLY oerINSC. •I 
RETURN UNoerwc, E~D IF DEF'IN&OJ 

I• QCT A 'IRST RESULT. •I 
DEF't~SD •.TRUE,J 
.ANSWER• (TUPCM>>t2>; 
END IF' EQUALJ 

END IF' NCOMPSJ 
·ELSE I• NOT A T~PLE, CHBCK ·~OR S?EriiAr ~~i~. •I 

IF TYPEt~> EQ, SPECP~IR ·rHEN . 
IF EQUALCC~ALUECM>~C1>, X> EQ, TR~E T~EN 

/• FlCUND AN N•TUPLE 'EEG INN I NG w·f TM )(, ·.•I 
IF" DErINED OR, NMEMBS((VALUE(M~~(j~, GT~ 1 1HeN 

I• MULTiPLY DE~INEC. •I 
RETORN UNOEF'WDJ E~D r~ DEF't~FD1 
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/• GCT A f:'IRST RESULT, w/ 
DEF"I~ED • TRUE,J 

/• EXTRACT THE UNIQUE ~EMBER F'R~M Mt21, NOTE T~AT 
THIS rs A COMPLICATE[ OPERATiON Ii TME MEMBSR IS A 
TUPLE OF' LENGTH~ 3, •I 

ANSWER• ARBSET((VAUlE<M>><~~>: 
EN!J rr EQUAl.J 

END IF' TYPECM>J 
END IF' TYPECM)J 

ENDSEARCHf:"'>J 

·1• SEARCH IS COMPLETE, AT Tl-IS ·POINT, ii=- oeriNED m F'AL~E., 
NO VALUE Or 'F(X> WAS F'OUNDe IF DEF'iNED • TRUE.~ _EX4CTLV ONE 
VALUE WAS F"OUND, •I 

IF' DEF'INED T,~EN RETURN ANSWEFJ 
ELSE RETURN UNOEFWDJJ 

END OF'SET; 

·CF'N 

OEFINEF' OFNCF~ X)J 

I• THIS ROUTINE EVALUATES rc~1, x~ •... ~ ~N), t MUST BE A set 
AND x MUST BE A TUPLE OF' LENGTH~ 1 CALT~OUGM A LENnT~ ~r 1 
WOULD NOT NORMALLY BE USED~ ~S OF'SET ~00L6 TMEN BE OALLED>, •1 

IF' TYPECF') NE, SET THEN 
ERRTYPEC-F'(X1, ,,,, XN, (OFN), F' IS NOT A SETi~~ F'):J 

IF TYPE<X> NE, TUPLE OR. X EQ, NULLTUP~R TMEN 
ERRMSG(~CO~PILER ERROR, OFN(F, X) CAL~~o wiTM X NOT A~ 

+ tTUPLE OF' LENGTH f 1,-.,_ > J J 

S • 0 FAN ( F, : X°)J 
IF NMEMBSCS) EQ, 1 THEN RETU~N ARBSET<S~I 
ELSE RETURN UNDErWDJJ 
END OF'N; 
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C"FA 

DEF'INEF 0FACF~ X)J 

·1• THIS 'ROUTINE EVALUATES F'SX?, F MUST 3E A S~T. ~ MAV BE 
ANYTHING EXCEPT UN0ErINED, 

T4E OPE~ATION or T~IS RCUTINE IS si~tLAR TO TH4T OF 
0FSET, A.BOVE, EXCl:PT THAT A ·ser or RESULTS IS BUILT UP, •I 

IF TVPE<F> NE. SET TMEN 
ERRTYPE<-FSX~ (0F'A), f IS ~OT A SET:~~ r)JJ 

IF X EQ. UNDErWD THEN 
ERRTVPE<,tF'~X~ (OF'A), XIS 'LNCEF'H'ED:~·. X)JJ 

IF F EQ. NULLSET THEN RETURN NULLSET;; 

S: NULLSETJ I• INITIALIZE RESULT to NULL. •I 
SEARCH(X, F', M)J /• SEARCI- FOR X IN r, STEPPiNG H, *I 

IF TYPE(M) EC, TUPLE T~EN 
IF NCOMPS<M> EQ. 2 TMEN 

IF EQUAL((TUPCM))(1), X) ea. TRUE TMEN 
/• F'CUND ~ 2•TUPLE BEGINNING wrt~ x. •I . ' 
AUGACK((TUPCM))C2)~ S>; I• PUT 2ND COMP, IN~. •I 
END IF' EQUAL.I 

END IF NC0MPSJ 
ELSE /• NCT A TUPLE, CHBCK F'OR SPECiA~ PAIR. •I 

IF TVPE(~> EQ, SPECPAIR THEN 
IF EQUAL(CVALUECM>)C1>, X> E0. TRUE THEN 

I• F"CUND AN N .. TUPLE :EEGINNING WiTw X, •I 
AUNiCNCS, (VALUEtM~><2>>J I• PUT AL( TAILS I~~. •I 
ENO IF' 'EQUALJ 

END 1 F' TYPE 01> J 
END IF TYPE(M)J 

ENDSEARCHOO J 

/• SEARCH IS COMPLETE. •I 

RETURN SJ. 
END OFA.: 
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I• 0FAN •· 

DEF"INEF OFANCF',X)J 

/• THIS ROUTINE EVALUATES f"~)(1, X2, ••. , XN~. r MU~T 8~ A SET 
AND X MUST BE A TUPLE or LENGTH~ 1 (ALT~~UGH A LE~OT~ ~r 1 
WOULD NOT NORMALLY BE USED, AS OfA WOULD THEN BE CALL~D. •/ 

IF TYPE<f> NE. SET THEN 
ERRTYPE<-rsx1 ••••• XN~ COF'A~). F IS NOT A SET:i, r,.: 

IF TYPE<X> NE, TUPLE OR. X EC. NULLTU~LF, THEN 
ERRMSG(tC0~PILER ERRO~, OFA~<F,X> CALLPD WITH X NOT At 

+ ,TUPLE or LENGTH~ 1.-);; 

/• SET F IS SEARCHED F"0R ALL T~PLES OF tw~ OR MORE ~O~PnNENTS 
THAT BEGIN WITH XC1>, WHEN A PAIR IS FOJND, iT IS FX4MINED Tn 
SEE IF IT IS OF THE F'ORM <X1,<X2,X3, .. .',·oj .. ,)> OR 
<X1.<X2,<X3,,.,·,xN,.,,>>>, ETC·, IF' SO, TMS RESULT SET~ 
(WHICH IS INITIALLY NULL) IS AUGMENTED APPROPRIATELV, WHEN A 
SPECIAL PAIR IS F'OUND T~AT BEGINS WITH Xl~ ITS SECOND 
COMPONENT (W~ICH IS A SET) IS SEARCHED rJR A MATCH iN x,, XJ, 
X4, .... XN, 

FOR REASONS OF EF'FIC1ENCY, THIS R08TiNE AVOIDS R~CURSI~N~ 
BUT IT USES 'THE RUN TIME ST~CK TO SAVE i~TERME0!ATE Ri::SuL rs.•, 

IF F EQ. NULLSET THEN Re~URN NULLSET;; 

S = NULLSETJ 
I = 1: 

I• INITIALIZE R;~ULT SET, •I 
I• INITIALIZE A~~UMENT P0INT~R. •/ 

·CURF = F; I• INITIALIZE ~J~RENt SET ruNCTI0N.•1 

L1 I 'COMP = C TUP C X >)CI) J I• ;f ET CURRENT :oMPONENT F"R0M ARG, • I 
IF COMP EQ. 'UN0EF"WC THEN GO TO 6RRCR:; 

SEARCH<C0MP, CURF', H)J I• 5EARCH F"OR C~MP IN CURF", t:UF:P M.•1 
IF TYPE<M) EQ, TUPLE TMEN 

IF NC0MPSCM> EQ. 2 THEN 
I ► EQUALCCTUPO1>)<1>, :COt-'.P) E0. TRJr; THEN 

/• rcuN0 A POSSIBLE FAIR-CONTRIBJiOR TO F"SX1,.,.,XN~-, 
I.E., <XI~A> OR <XIi<A,9,C>>. etc. •I 

M2 ~ (TUPCM>)C2>J 
K = lJ I• IN!T. POINTE~ TO C:0MPS nF" M,, *I 
(1•1 S vJ ~ NCOMPS(X>) 

C0~PJ = (TUP(X))(J)J 
IF' C0MPJ EQ, UNDEF~D THEN I = Ja GO TO ERRnR:J 
IF' TYPEtM2) NE, TUFLE THEN CONTSEARCHtM)Jt 
Ir K·GE, NCOMPS(M2> TMEN CONTSEiRCH(M~;J 

-600-



IF' EQUAL(<TUP(M2))(K), COMPJ) Eo. rALSE T~EN 
CONTSEARCM(M):J 

/• ADVANCE IN M2, •I 
IF' CK•1) EQ, NCOMPS(M2> TMEN M2,c_CTUP<M2~><K•1>J 

I( • 1J 
ELSE I< ■ K • 1JJ 

ENC 'YJJ 

/• M rs A PAIR•CONTRJSUTOR, AND~; AND I( tNnt~ATE WMAT 
.IT CCNTRISUTES, NAMELY, THE COMPJNENTS OF' M~ rROM K 
ON IF' K > 1, AND M2 ITSELF" IF' K = 1. •I 

IF K EQ, 1 THEN AUGACK<M2, S>; 
ELSE AUGSIMP(TUPSPLTCM2,K+1,NCOM~S<M2>>~ S)tJ 
ENO IF' EQUALJ 

END IF' NCOMPS<M)J 
ELSE 

IF TYPEt~> EQ, SPECPAlR THEN 
IF EQUAL(CVAL<M))<1>~ COMP> E0. TRU~ THEN 

I• F'CUND A POSSIBLE ~-TUPLE CON~~iBUTOR TO 
F'5X1,.,,,XN~, 1.e.~ <Xl,A,e •••. > nR <XI~A,<R~ ••. ~>, 
ETC, •I 

SETOF'TAILS ~ CVAL(M>><2>J 
IF I EQ, NCOHPS<X) T~E~ AUNIONCS, SETOf"TAlL~)I 
ELSE /• SEARCH DEEPER, •I 

PUSM ( <CURF, F'>) J 
I: ■ I • 1J 
CURF' = SETOF'TA!LS; 
GO TO L1J 
ENC IF' lJ 

-ENO IF' EQUAL;J 
ENO IF' TYPECM> EQ, SPECPAIR; 

END IF TYPECM) EQ, TUPL~: 
L21 ENDSEARCH<~>J 

I• NOW RESUME SEARCHING WHERE WE LEF'T of~ ABOVE. •I 

IF STACK NE, NULT, THEN 
POP(<CURF, M>)J 
I = I - 1 J 
COMP= <TUFCX>)CI>J 
GO TO L2; 

ELSE RETURN SJ; 

ERRORS ERRTYPE<-FSX1~,.,,XN~ (OrAN>, XI IS UNOE~iNED F'OR l =~, l>J 

END OFANJ 
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I• OFB 

DEPINEF OFBCF~ S)J 

/* THIS ROUTINE EVALUATES rrs1, F MUST 3E A SET, ~ MUST BE 
A SET, TUPLE, CHA~ACTER STRI~G, OR 800LEAN STRING. •I 

IF TYPECF> NE. SET THEN 
ERRTYP~C-FfSJ (OFB), F IS ~OT A SET:i~ f>JJ 

IF TYPECS> EC. SET THEN RETURN OFBSET~~~ S)JJ 
IF TYPE(S) EC. TU~LE THEN RETURN OFBTUP(~~ S~JJ 
IF TYPE($) EC. CHAR THEN RETURN OFRCHAR<r, S)JJ 
IF TYPE<S> EC, BOOL THEN RETURN OF8BOOL<r, S)JJ 

ERRTYPEC-F[Sl COFB), S ISi_, S)JJ 
END OFB; 

I* OFBBOOL 

DEPINEF OFBBCOL<P, S)J 

•1 

*I 

/• THIS ROUTINE EVALUATES FrSJ roR FA SET iNO s A RO~LEAN 
STRING, IT IS CODED FRnM THE DEFINtfION rCSJ • [•& B•SlF<B~. 
THE ROUTINE IS COOED IN A SI~PLE BUT INE;rictENT WAV rO~ 
COMPACTNESS (THIS IS A LOW•USE ROUTINE>. NOTE THAT TME RESULT 
MAY BE AN INTEGER~ REAL, BOOLEAN STRING~ f~ARACTER ST~ING, 
TUPLE, OR SET (ANYTHING roR hHICH ·• IS A ~ALIC OPERAT~R), ., 

IFS EQ. NULLBSTR THEN RETUR~ LNDEFWO;; 
R: OFSET(F", OF"BSTR<S, <INT, 1>)); I• R • rcsc1,,. ~, 
<2 ~ vI S 4VALUE<S>> 

R = PLUS(R, OFSET<r, orBSTF(S, <INT, i>~))J 
1• R = R ,+ F<S<I>>. •/ 

END "'I; 
RETURN R; 
END OFBBOOLJ 
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OFBCMAR •1 

DEF'INEF OFBC~ARCF'~ S)J 

/• tHIS ROUTINE EVALUATES F'fSl F'OR F' A ~Ei iND SA ~MARACTE~ 
STRING, IT IS CODED F'ROM THE DEF'INiTION r.-csJ • [•I C•SlF'<C>, 
THE ROUTINE IS CODED IN A SL~PLE BUT INS~,1~1ENT WAV roq 
COMPACTNESS (THIS IS A LOW•U~E ROUTINE), NOTE THAT T~E RES~Lt 
MAY BE AN INTEGER~ REAL. BOOLEAN STRING~ ~M~RACTER STRING. 
TUPLE, OR RET /ANYTHING roR kHICH ♦ rs~ ~ALID OPERATOR), ., 

IF' SEQ. NULLCSTR THEN RETUR~ UNOEFWD;; 
R = OFSET<F', Of"CSTRCS, c!NT, 1>»; I• R ■- ~(S(1)>, •I 
(2 ~ YI S ~VALUE($)) 

R = PLUS(R, orseT<F', OF'CST~(S. <INT. i>~))J 

t• R = 'R ·• F'CS<I>>. •I 
END YI; 

RETURN RJ 
END OFBCHARJ 

I• OFBTUP 

DEF"INEF' OFBl~P(F', T>J 

•1 

/• TH IS ROUT I NE :EVALUATES F' [Tl F'OR F" A SET AND T A TUIILF.: • IT 
IS CODED FRO~ ·THE DEF'INITION F'[Tl : C+i ~;T]~F'<T>~ <~~E 
NEWSLETTER • ◄ >, E>CCEPT THAT ;L NCEF' INED CO~PONENTS i N T AF~E 
NOT SKIPPED ;C\IER CAS THE DEFINITION IM?LI~S>. •I 

IF T EC. NULLTUPLE THEN RETURN UNDEF'WD;J 
K = Q; ,. ~ WILL KEEP TRACK or THF. 4IGHEST 

DEFINED COM?ONE~t iN TME ~~SULT, */ 
•R = <TUPLE, :co, NCOMPALLOCNCCMPS<T». NUl.T,,.>I 

I• :CVERSIZED NULL TUPLE. •I 
(1 S YI S NCCMPStT)) 

C = CTUP(T))(()J 
IF C EQ. UNDEF'WD THEN CTUP<R>><I> = UNORrWDJ 

ELSE ~TUP<R>><I> = O~S~tif~ ~lJ 
1(·11· I; END IF'I 

,END y I J 
IF' K EC. O TMEN RETURN NULLTlPL&J; 

:NCOMPS ( R) a :1< J 
RETURN RJ 
:END OF"BTUP J 
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OFBSET . , 
CEFINEF OFBSET(F~ S)J 

/• THIS ROUTINE EVALUATES F'f5J F"OR ~ ANC ~ SETS. IT IS CODED 
FROM FCS] a Ir SEQ, NL, THE~ NL. ELSE t•i x~sJr$X~. •I 

IF' SEQ. NULLSET THEN RETURN NULLSETJJ 
-C = O; I• CO~TROL ITEM ~OR fTERAT!ON, •I 
R • NULLSETJ 
X = NEXTMEMtC~ S)J 
(WHILE X NE, UNOErWD) 

AUNION(R, CF"A(F"·, )())J I• ·F - R + F"SX~. •I 
X = NEXTME~tC, S)J 
END WHILEJ 

RETURN R; 
END OFBSETJ 

DEFINEF OFBN(r, X)J 

'/• THIS ROUTINE EVALUATES F"lX1, X2, ••• ·, ~N1, r MUqT BF. A 
SET AND X MUST BE A TUPLE OF LENGTH~ 1 (ALTHOUGH A L~Nr.TH OF' 
1 WOULD.NOT t\ORMALLY BE USED, AS OF"B wout.ri TH~N BE ~ALLFO), 

THIS ROUTINE IS CODED r~o~ "THE RE(ATiONS rtx.v1 ~ 
(F"tXJ>[Y], ETC, tT REQUIRES ,1,X EVALUATiO~S OF' OF"BSET, AND 
HENCE 4X(1) ,. ♦ X(2) • '. I • ,1,X(N) EVALIJATiONS or AUNI,,N, DF'A, 
AND NEXTMEM, ·EVALUATION STOFS IF' AN lNTc:RMEDiATE RF;SlJLT IS 
NULL, AND THE REMAINING ARGU~ENTS ARE NOT CMEC~ED, •I 

IF' TYPE<F"> NE, SET THEN 
ERRTYPE(-F"[X1,,,,,)(NJ COF'B~), F" IS Not i $ET1-, r~ •• 

IF TYPE<X> NE, TUPLE OR, X EQ, NULLTUP~F THfN 
ERRMSGC~CO~PlLEq ERROR, OFBN<F,X> CALL~D WITM X NOT A~ 

+ ~TUPLE or LENGTH~ 1.-)JJ 

R c F; I• INITIALIZE Re~ULT SET, ~/ 
(1 s vi S NCCMPSCX)> 

IF' R EQ. NLiLSEl THEN QUIT vIJJ 
c = c r u P c x ,-, < I°> 1 1 • c; er Ne x r A R G J Me NT • • 1 
lF" TYPE<C) NE, SET THEN 

ERRTYPEC-r[x1~ ••• ,XNJ (OFBN>, ARGUMe~t Not j SETi_, C>iJ 
R = OFBSETCR, 'C)J I•-~= RCX<I>l, •I 
·END vJJ 

RETURN RJ 
:ENO OF"BN; 
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-6~15 FUNCTfCNAL APPLICATION, STORAGE 

THE ROUTINES IN THIS SECTION IMPLEMENT SETL F'UNCT!ONAL 
APPLICATION 'FOR LEF'T HAND Sl[E EXPR~SSTO~S. ROUttNE NAM~S A~Ei 

SOF F'()(), MAIN ROLTINE C i'STOR AGE or"·, 
SOFBSTR F'()C), F' A BOOLEAN STRING 
SOFCSTR F'()(), r A CHA~ACTER STRJNG 
SOFTUPL F'()(), F'.ATUPLE 
SOFSET F'(l(), F' A SET 
SOF"N F' ( X1, I I ■ I XN> 
SOFA F'SX~ 
SOFAN F'SX1, I t • I X tJ:? 
SOFB F'[XJ 
SOFBN F' [ X1, I I • I X N l. 
DIMF'N CMANUES F' SO THAT F'~X1,.,. ·• XN~ IS NULL 

OEF'INE SOF(F', X~ R); 

/* THIS IS T~E MAIN ROUTINE FOR THE ASStJNMENT F'(X) • R, F'O~ 
X A SINGLE ITEM, THE SUBROUTINE UPOATes ~ B~ RFPLA~ING 
(OR ADDING) :ELEMENT X WITH R. •I 

RETURN11 
RETURN11 
RETURNJJ 
RETURNIJ 

IF' TVPE(F) ec. SET THEN SOFSET<F, x. R)1 

IF TYPE<F> EC, TUPLE TH~N SOFTUPL<F', X, R\s 
IF TYPE<F> EQ, CHAR THEN SOFCSTR<F, X, ~~J 
IF TYPE<F'> EQ, BOOL. THEN SOFBSTR<F, X, ~~J 
IF' TYPECF') SQ, F'UN THEN 

ERRMSG<,co~PILER ERROR OR ~TTEMPT TO us~ A re,TURF- NOT vet"~ 
• ,IMPLEMENTED. THE ~OUTINE ro~ ~ix, tsor, WAS CALLeDi 
♦, WITH r A PROCEDURE. THE CALL MUST BE MA~DLEn BY -
♦ ,co~PILER GENERATED CODE, NOT BY TME SRTL ~, -
.+ ,ROUTINE,P'>J 

RETURNJJ 
ERRTYPE<PIF(X) csor,, r IS :NEITHER A SET~ TUPLE, NOR STRING, -

• - F' ISi i', r)J 
:END SOF": 
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I* SCF'BSTR 

DEfINE SOFBSTR<r', X, R)J 

/• THIS ROUTINE IMPLEMENTS F'<X> s R F'OR ~ A BOOLEAN STRiNG, 
BIT X OFF fS REPLACED BV R, •I 

I = OKINDEX(X~J ,. ~ERIF'Y REASONiBLENESS or~ •• , 
IF I NE .. O Tr.EN 

IF R EQ, TRUE OR, Rea, 'FALSE TMEN 
CVALUE(F')~CI) • (VALUE(R>><1>; 
RETURNJ 

ELSE ~ 
ERRTYPEf-F'(X) • R (SOF'BSTR>, R IS NOT A BOOLEAN STRING -

+ -Of LENGTH nNEI~. R>J 
END IFJ 

ELSE 

*' 

ERRTYPE(-F'(X) • R csoreSTR>, OR UNREASO~ABLE VALLI~ nF INDEX~ 
-• )( ■ ,-·, X>I 

END IF I NE, OJ 
END SOF'BSTRJ 

I* SCF"CSTR *I 

DEF' I NE SOFCSTR ( F', X, R fJ 

/* THIS ROUTINE IMPLEMENTS F<X> = R F'OR ~ A CMARACT~R STRING, 
.'CH A R A C TE R X , CF' F' I S REPLACED BY R , • / 

I = OKINDEXCX)J 
IF' I NE. O i,r,EN 

IF TYPECF) EQ, CHAR AND, ~VALUE<R> iJ. 1 TMEN 
CVALUE(F'))(I~ ~ CVALUE(R))C1)J 
RETURNJ 

ELSE 
ERRTYPEf1F'(X) • R (SOF'CSTR), R IS NOT A CMARACTeR STAINO~ 

·• --OF LENGTH ONEI~, R)J 
END If"J 

ELSE 
ERRTYPE(-F'(X) • R csorcSTR), OR UNREASONABLE VALUP-~F INDEXt 

+ -• x = 1', X>J 
END IF I NE, OJ 

END SOFCSTRJ 

-606-



SCF"TUPL ., 

DEFINE SOFTUFL(F~ X, R)J 

I• THIS ROUTINE IMPLEMENTS F(X) = R ro~ r A TUPLE. cnMPONE~T 
X OFF IS REFLACED BY R. •I 

I = O K I N DE X C )<°) J 
IF I NE. O Tl-EN 

( TUP ( F) > (I) ·= R J 
I• IF R II UNDErwo AND I II ~CCMPS(F). ,~~ TUPLE MU~T B~ 
CotnRACTE:0, .,·· 

(WHILE(TUP(F))(NCOMPS<r>> Ea. UNDErwo~ 
NCOMPS(r) ·= NCOHPSCF) • 1; 
IF NCOMPS{F) EQ. 0 THEN F = NULLTUPL;1 QUIT WHIL~JJ 
END WHit.:EJ 

RETURNJ 

,ELSE . 
ERRTVPE(-F(X) II R (SOrTUPL>, OR UNREASONABLE VALU~ ~r INDEX~ 

-· )( II -~ X)J END IF I NE. 01 
END sorruPLI 

O~INDEX 

DEFINEr OKINtEX<X)J 

,. THIS ROUTINE RETURNS THE ~ALUE OF X ,~ X rs AN INTP.GER or 
REASONABLE VALUE roR AN INDE~ INTO A TUPL~ OR StRINO~ AND 0 
OTHERWISE. fi/ 

If" TYPE<X> BQ, INT TMEN 
V'!- = VALUE C>O I 
IF vx GT~ 0 AND, vx LT, 1000000 T~~N ietuAN VXJJJ 

·RETURN OJ 
;END OK INDEX I 
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I• SCF"SET • I 

DEFINE SOFSETCF", X, R)J 

/• THIS ROUTINE IMPLEMENTS F(X) : R F'OR ~ A SET .. IT IS CODED 
FROM THE EQUIVALENT ASSIGNMt~T: 

F = (F' LESF', X) WITM, <X,R>. •I 

IF X Ea.· UNDEPWD THEN 
ERRTYPE<-F"(X) a R (SOrSET>, X IS UNDEfINEDi-, X)JJ 

DIMF"AOK<f", X)J I• F: F' LESF, X. •I 
IF R NE. UNDErWD THEN 

AUGSIMP<<TWPLE~<2,2,<X,R>>>, F'); I• F' = r wjTM. <~~~>. •/ 
END t F J 

RETURN; 
END SOF'SETJ 

SCF"t\ 

DEFINE SOFNCF~ X, R>J 

/• THIS ROUTINE IMPLEMENTS F<X1,X2, •.• ,XN> a· A, f" MU$T BE 
A SET, AND ALL THE XI MUST BE DEFINED. T~E ROUTINE lq CODEti 
FROM THE EQUIVALENT: 

DIMfNCF', X)J 
F: F WITH, ~X1,X2,,.,i~N,R>, 

WHERE DIMFN IS SIMILAR TO cr~F CSETL LES~\, SEE BELOW •• , 

IF TYPE<F'> NE, SET THEN 
ERRTYPE<-F'(X1~ ••• ,XN) ~ R CSOF'N), F' IS ~OT & SETI-~ F')J; 

IF" TYPE<X> NE. TUPLE OR, X EC. NULLTUP~~ THEN 
ERRMSG(~CO~PILER ERROR, SCF"N(f",X,R> CALLED WiTM X NOT A -

• ~TUPLE or LENGTH·~ 1,->J; 

DIMF'N<F', X)J 
IF R NE. UNDEFWD THEN 

TUPADDl<X, ~)J 
AUGTUP(X, 'f")JJ 

RETURN; 
END SOFN; 
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SCFA 

DEFINE SOFACF~ X~ R>J 

/* THIS ROUTINE. IMPLEMENTS F!X~ = R, WHE~~ X ts A StNOLF ITEM. 
F' AND R MUST BE SETS, ANO X ~UST BE DEFi~~O. THE ROUTINE 19 
CODED FROM T~E EQUIVALENTI 

F = F LESF, XJ 
(vM ~ R) F' • r WITH, <)(,M>;; •I 

IF TYPECF> NE. SET THEN 
ERRTYPEC~F'SX? = R CSOF'A), F IS NOT A sr::i': ~, F ) ; J 

IF )( EQ. UNDEF'WD THEN 
ERRTYPE<,FSX~ = R (SOFA), )( IS UN DEF I N:ri: ii·, X) ; J 

IF TYPECR> ·NE. SET THEN 
ERRTYPEC~F'.SX? = R (SOF'A), Fi IS NOT A SET:J!, R ·, ; J 

DIMFAOK<F, X)J 

C = o; 
LOOPI M = NEXTHE~CC, R); 

· IF M EQ. U~OEFWO THEN GO TC CUT;; 
AUGSIMPC<TLPLE,<2,2,<X,M>>>, F>; I• F' ■ F' WITH, <X,M>, •I 
GO TO LOOPJ 

OUTI RETURN; 
END SOF"Ai 
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SCF'AN . ' 
DEF'INE SOFAN(F', X, R.)J 

/• THIS ROUTINE IMPLEMENTS F!Xl,X2, •••• x~~ m R. F' ANn R MUST 
BE SETS AND ALL THE XI MUST EE DEFINED, THE ROUTIN~ tS COOED 

'F'ROM THE EQUIVALENT: 

DIMF'NCF', X)J 
(YM ◄ R) F' • F WITH, <)1,X2, ... ,XN,M>JJ 

THIS IS NOT VERV EF'fICIENT, -EUT IT IS EX~ECTED TO 8~ A LOW•US~ 
ROUTINE. •/ 

IF TYPE<F> NE, SET THEN 
ERRTYPE<-F'SXl,,,.,XN~. R (SOF'AN), F is NOT A SETi_, r);J 

IF TYPE<X> NE, TUPLE OR, X EQ. NULLTUPLF THEN 
ERRMSG(tCO~PlLER ERROR, SCFAN(F',X~R> CiLLEO WITH X NnT Ai 

+ tTUFLE or LENGTH~ 1.-);; 

IF <TYPE<R) ·~E, SET THEN 
ERRTYPE<~FSXl~, •• ,XN~ ■ R CSCFAN), R jS NOT A SETi_, R):J 

DIMFNCF, X)J 
Na NCOMPS(X) • 11 
IF' N GT. SP~CE(X) THEN VALUE<X> = <N, N, i>1 

·ELSE ~COMPS(X) = N; E~ri IFJ 
C = o: 

LOOPI M = NEXTMEMCC, R)J 
IF M EQ. U~OEF'WO THEN GO TC OUT;; 
(TUP(X))(N) = Ml 
AUGTUP(X, F>J /• F': F WITH. ~X1~ •.• ,XN~M ►• •1 
GO TO LOOPJ 

OUTI RETURN; 
END SOFAN: 
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SCF"B ., 
CEF'JNE SOFBCF~ S, R>J 

/• THIS ROUTINE IMPLEMENTS F[Sl = R, WHEq~ S ts A SINOLE ITiM: 
F', S, ANO R -~UST ALL ae· SETS. IT IS COD~ri rROMi 

<..,.X ~ S) 'F' = F' I.ESF", x;; 
cvx ~ S, M ~ R) F" a F' WITH. <X,M>;J •I 

IF' TYPECF') NE, SET THEN 
ERRTYPE<-F"CSl I: R CSOF"B>, F IS NOT A SET:-, 

IF TYPE<S> NE, SET THEN 
ERRTYPE<-F'tS] II R (SOF"B>, ·5 IS NOT A S:T:'iit, 

If" TYPE<R> NE, SET THEN 
ERRTYPE<-F"t$] II R (SOF'B), . f; IS NOT A Si:T:i', 

Ca O; 
LOQPI X = NEXTMEMtC, S); 

IF X EQ, U~DEF"WD THEN GO TC OUT;; 
OIMFAOl<<X, F")J I• F = f" LESF". )(. •I 
GO TO LqOPJ 

OUTI CS: o; 
LOOP11 X = NEXTMEMCCS~ S>J 

If" X EQ. U~OEF'WD THEN GO TC CUT1;J 
·cR = OJ 

LOOP21 M = NEXT~EMCCR~ R)J 
IF M EQ, UNDEF'WD THEN GO TC OUT2:; 

F' ·, ; J 

S ·, : I 

R, ; J 

AUGSIMP{cTUPLE, <2,2,<X,~>>>, F'>; I•;= F' WITH. <X,M>, *I 
GO TO LOCP2J 

OUT2t GO TO LOOP1J 

OUT1 I RETURN; . 
:END SOF'B J 
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SCF'BN 

DEF'INE SOFBN(r, S, R)J 

/• THIS ROUTINE IMPLEMENTS fCS<1>, SC2)~ 
5<1>, .. ,, S(N)'; AND R MUST ftLL BE SETS, 
(USING SETL LOOSELY>I 

••• , StN~J m R. r, 
IT ts coor;o r~oM 

(vx,1>~SC1)~ X<2>~S(2), ,,,, X(N)•S<~>> DIMFN(~~ r>J; 
cvx<l)•SC1>, X<2)•SC2), •.. , X<N>•S<N>. M~R> 

F = F' WITH, <XC1>, X<~>, , ..• X~N)~ H~JJ •I 

IF TYPE<F> NE, SET THEN 
ERRTYPEC-r[S1,, •• ,SNJ • R <SCrBN), F ts NOT A SETii, F);J 

IF TYPECS) NE, TUPLE OR, SEQ, NULLTUP~~ TMEN 
ERRMSG(tCO~PILER ERROR, SCF'BN(F, S, R> CALLEO WITHS -

• tNOT A TUPLE or LENGTH~ 1;-)JJ 

IF TYPE<R> NE, SET THEN 
ERRTVPEc-rcs1, ••• ,SN] • R <SCFBN), R ts NOT A SETi-. ~,:1 

N = NCOM.PS(S)J I• S IS A TUPLE ~r SETS, *I 
I - 1i 

• • 

C = <TUPLE, <N•1~ N•1, <0>>>; '* ROOM roR N+1 ~OMPnNENTS 
WITH Ct1> ■ O, •I 

X = <TUPLE, :cN, N•1, NULT,>>: 
(WHILE I GT, O) 

(TUPCX)>CI) = NEXTMEM<CTUPCC))(I). CTUPiS>itI,>J 
IF (TUP<X))CI> EQ, UNOEF'WD THEN J = I • 11 . 

CONTINU~ WHiLEJJ 
I-F I L. T. N THEN I ·• l • 1: 

( TU P C C ) ) ( I > = 0 .J 
CONTINUE WI-ILE:; 

/• I = N A~O X(I) IS DEFINED, REMOVE r~oM r ALL TUPL~S TMAt 
CORRESPOND TO X, •I 

DIHFN<X, F')J 
END WHILEJ 

' IF R EQ. NULLSET TMEN RETURN:; 
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·I• NOW AUG.ME~ T P 1-1 I TH ALL ( N-+ 1 ) ·TUPLES O :- THE r ORM 
:<Xl,X2, .•• ,Xl\,M>, ... x1 .. s1·. X2 .. S2, ••• , XN .. ~N. M~R. NOTE THAT 
C AND X ALREADY HAVE ROOM ro~ ~•1 COMPONENTS, ., 

TUPADDlCS, R)J 
I = 1; 
(TUP(C) > (1) :1 OJ 
NCOMPS(X) = l\•lJ 

(WHILE I GT, 0) 
(TUP(X)).(I) = NEXTMEMC(TUPfC))(I), cru~iS))(l~)J 
IF (TUP(X))(l) EQ, UNOEFWD THEN I = I • 11 

CONTJ~J~ WH!LE;J 
IF I LE. N THEN· I~ I• 1; 

C TUP Co·,> CI> = O; 
CONTINUE WI-ILE;; 

/• I = N•1 AND XCN•1) !S DEFINE~. ADD THE tN•1>•~U~LF 
<X1,X2, .• ,,XN,H~ TO f. •I 

AUGTUP(X, f')J 
END WHILEJ 

RETURN; 
END SOF'BN; 
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L11 

I* DIMFN •· 

DEFINE DIMFN(F', X)J 

/• FOR THIS ROUTINE, F IS A SET ANO X IS iN N•TUPLE, ~ ~ 1, 
THE ROUTINE ~EMOVES rROH SET FALL TUPLES OF' ANV OF' T~E roRMS 

<X1, X2, •••• XN, .,,> 
<Xl, X2, •.• , <XN,.,.>> 
I I I 

<X1, <X2, .,,, <XN, •.• >>> 

HOWEVER, THE TUPLE <X1, X2, ••. , XN> IS ,_i;rT iN F', qo A~ NOT 
TO CHANGE TME VALUE OF' F'(X1, X2, ... , Xl\J•U), •I 

IF F EQ. NULLSET THEN RETURN;;. 

I = 1; 
s = F'; 

I• INITIALl7.E i~nEx OF' X, •I 
I• INITIALIZE CJ~RENT SET, •I 

NBRDELETED • OJ 
COMP = ( TUP {X)) CI) J 
HSH = HASH(CCMP)J 

I• ~U~BER OF' MEH~ERS OELET~D F~OM 9*/ 
I• CURRENT COMPJ~ENT OF X, •I 

ENTRY= HSH//MTSIZECS) + 1J 
M = (HASHTABLecs,~(ENTRV)J 
PREV = OM,J 
(WHILE M NE, OM, DOING M • ~EXTM(M>:> 

IF TYPE<M) EQ, TUPLE THEN 
IF NCOMPS(M) EQ, 2 TMEN 

IF EQUAL((TUP(H))(1), COMP) ea. TRU~ TMEN 
I• rcuND A MATCM ON~ PAIR, I.E., MD <Xl~A> ~R 
<Xli<A,B~C>>, ETC, SEARCH DEEPER INTO M, Ir THERE iR~ 
MORE COMPONENTS OF' x. •I 

M2 = rTUPCM))C2>J 
K = 11 I• ~ET INDEX F'O~ M2, •I 
<1•1 S ~JS NCOMPSCX>> 

IF' TYPECM2) NE, TUFLE THEN GOT~ L2JJ 
Ir~ GE, NCOMPS<M2> TMEN GO TO L2JJ 
CO~?J • <TUP(X))(J); 
IF' EQUALC<TUP<M2)>CK>,COMPJ>EO.~A(SE ~HEN GO TO .L2JJ 
I• ADVANCE.IN ~2, •I 
Ir CK•1) EQ, NCOMP~(~2) THEN M2 • ttuP~M2)~(K•1)J 

I( ~ i J 
ELSE I( • K • U J · 

ENC ·vJJ 
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I• M MATCHES THE ARGLMENT X. D~L~TE tT FROM q, NOfEi 
DIMSIMP MAY NOT BE USEC, BECAUS~ ~E ~ANNOT o~~TqAcT s 
WHILE WE ARE ITERATf~G OVEP IT. •J 

IF PREV NE, OM, THEN NEXTM<PREV~ ~- NEXTM(M)t 
ELSE CHASHTABLE~S~>~ENTRY>•NE~TM~M)JJ 

NBRDELETED ~ NBRDELE1EC + 11 
LOADCS) ~ LOADCS) ·• 1; 
HCODElS) • ((HCODE(S> AS. BSTRINQ~ II, 

- (HSM AS, BSTRING> > AS. INTJ 
CONTINUE WHILECM)J 
ENO IF' EQUAl.J 

END IF' NCOMPS J 
ELSE 

IF TYPEl~) EQ, SPECPAIR THEN 
IF EQUAL<CVALCM))<1>, CO~P> EO. TRJ~ THEN 

I• F'.OUND A MATCH ON ftN N·TUPLE, \J ~ 3:· i.E., 
<xI~A~B •••• > OR cXI,ft,<B~ ..• >>, e+c. •I 

SETOrTAILS = CVALUE<~>><2>; 
IF I ·EQ, NCOMPS<X> l~E~ 

I• DELETE THE SPECIAL PAIR M rROM S, •I 
IF PREV NE, OH, THEN NEXTM<PREV, a NEXTM(~)I 
EWSE (HASHTABLE<S>><ENTRV) = N=iTMCM)J; 
NBROELETED a NBROELETED • NMEM3SCSETOF'TAILS)J 
LOAO(S) : LOAD(S) - 1J 
HCODECS) = ((HCOOE<S> AS. BSTRI~G.~ II_ 

(MSH AS. BSTRING.~) AS, INT.I 
CO~TINUE WHILE(M); 

ELSE I* I ·c NCOMPS(X), SEARCH OE&PER, •I 
PUSM(<S, ENTRY~ M, NBRDELETED~ ~S~>)J 
I·• I • 1J 
S 1• SETOF'TAILSJ 
GO TO L1J 
ENC IF IJ I• <NEVER FALL T~ROUGH HER~~. •I 

ENO tr EQUALI 
END Ir TYPECM> EQ. SPECPAIR: 

END IF' TYPE(M) EQ, TUPLE; 

L21 PREV = MJ 

L31 ·END WHILE~~)J 

/• THROUGH fTERATtNG OVERS, CONTRACT iT~ MASH TABLE IF 
:NECESSARY. ♦/ 

NMEMBS < S > c :NMEMBS ( S) .. NBRDE LE TED J 
IF' NMEMBSCS) EQ, 0 THENS ii: '~ULLSETJ 
ELSE 
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(WHILE TOOSPARSE(S) AND, HTSIZECS> GT. MINMTSIZ~> 
C O N T R C T (: S ) J 
END WHlLEJ 

END IFJ 

/• NOW POP T~E STACK ANO CONTINUE ITERATING AT THE ~InH~R 
LEVEL < IF" THE ·STACI< IS NON•Ef,'PTY>. MOWEVS:R, IF' TME sr;:T S 
ABOVE BECAME NULL~ IT IS NECESSARY TO D~l~TE TME SP9ClAL PAtR 
MAT THE TOP OF TME STACI< rRcM THE SET s AT TME TOP or TM~ 
STACK. •/ 

IF STACK NE, NULT. THEN 
TEMP= CS ·EQ, NULLSET>J 
POPC~S, ENTRY~ M, NBRDELETED, HSH>>J 
I = ! - 11 
COMP= <TUFCX))(l)I 
IF TEMP THEN 

I• DELETE THE SPECIAL PAIR M F"ROM S. •I 
IF PREV ;~E, OM. TMEN NEXTM<PREV> = NE~TM(M)J 

ELSE CHASHTABLE(~>>~E~TR~~ • NE~TM(M);J 
LOAD<S) :11 LOAD<S) • 1J 
HCODE<S) • ((MCODE(S) AS, BSTRING.> // 

(MSM AS. BSTFING.» AS. INT.J 
END IF TEMPI 

Go TO L31 
ELSE 

/• STACK rs EMPTY. WE WERE ITERATING O~ER THE TOP LEVEL, ., 
F' = S: I• SET RESULT. *I 
RETURN; 
END IF'; 

END DIMFN: 
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6~16 COPY RCUTINES 

--------··---
DEF'INEF COPY(R)J 

/• THIS FUNCTION RETURNS A CCPY OF' ITS A~AUMENT. T4E QqJECT 
IS COPIED TO ITS ruLL DEPTH. AN EXCEPTt1~ IS MADE ~r THE N~LL 
TUPLE AND NULL SET: THEV ARE NOT COPIED. TMiS IS ~E~AUSE 
ROUTINES THAT NORMALLY MOOIF~ TUPLES AND ~ETS MAKE AN 
EXCEPTION OF THE NULL TUPLE AND NULL SET, AND NEVE~ MnOtrv 

, THEM, HENCE WE AVOID HAVING SEVERAL COPl~S-or· THESF: i,BJECTS, 
WHICH WOULD BE A WASTE or SPPCE. 

THE COPY ROUTINE IN THE LITTLE VER~l~N or tHE RU~ TIME 
LIBRARY IS LESS SENSI.TIVE TO OBJECT TYPES THAN THE nNI: f11VEN 
BELOW. IT WCRKS WITH O~JECT5 AT T~E tGAR~AGE COLLE~TTOM 
LEVEL;t,. w I HI THE EXCEPT I ON or CMECKS FOR THE NULL TlJF'LE AND 
SET. HENCE ·THE CODE BELOW DCES NOT ACCU~iTE(~ RErL9CT TMAT I~ 
THE LITTLE RUN TIME LIBRARY; IT SHOWS WW~T ts TO BE oi,Ne RUt 
NOT HOW TO DC IT, •I 

C: <TYPE<R>>J /• INITIALIZE RESULT. •I 
IF NEXTMCR) ~E. OM, THEN 

/• COPY THE SET•LIST CONNECTED TOR. •I 
NEXTMCC) = COPV(NEXTM<R));; 

/• NOW COPY 'TME VALUE F'IELD CF R. •I 

F'LOW TYPE<R) EC, TUPLES 
Rc1:2> EQ, NULLTUPLES 
NULLT, COPYTUP, 

'TYPE(R) ea. SETS 
R(1:2>EC.NULLSET1 TYPE(R)EO,SP~CPA!R~ 
NULLS, '.COPYSET~ COPYSP~ eOPVATOM1 

NULL T: 'VALUE CC> ■ VALUE< NULL TUF'LE > J I• C NO COPY). •I 
·COPYTUP: 'VALUECC> 11 cNCOMFS<R>, SF'ACE<R>, NULT,>J 

CiSvISNCOMPSCR)> CTUP<C)><I> ~ COPYt<TUP(~)>CI))JJ 
NULLS: VALUECC) SIi .VALUE<NULLSET): ,. (NO ·c,,Pv). •I 
COPYSET: VALUE<C> ■ ~NMEMES<R), LO~ti~~~. ~~ODEtR>~ 

~TSIZE<R>, NULT,>J 
(1 S vI S HTSIZE<R>> 

CHASHTABLECC)><I> = COP~<~~i~HTABLEtR~~<J>~;J 
COPYSP: (1 S vI S 2> CVALUEfC>><I> • ~OF'i~C~ALUEC~)>~I)~JJ 
COPYATOM: VALUECC> ■ VALUECR)J 

:ENO F'LOWJ 

:RETURN CJ 
·ENO COPY J 
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CCPH. . ., 
DEFINEF COPVl(R)J 

I• THIS FUNCTION COPIES RONE LEVEL DEEP, iT EXISTg tN THE 
L(TTLE VERSiCN or "THE RUN ·ri~E LIBRARY 9E~AUSE' fr ~ROVlOES 
A FASTER WAV lO COPY LONG CHARACTER STRi~GS, ~ONG INT~GFRS~ 
ETC., AND A~SO BECAUSE IT MAY BE AN ADEOJiTE TYPE or ~o~v ,oR 
TUPLES AND SETS IN CERTAIN SlTLATIONS. 

AS IN T~E CASE or THE CCPY POUTINE~ THIS DOES NOT 
ACCURATELY RH"LF.CT THE CODE ,er Tl-IE LtTTL: VERSION •• , 

/•.THE LITTLE VERSION or THf5 ROUTINE ~iLL COPY TME F'tRST ITE~ 
IN A SET-LIST. HOWEVER, THl5 FEATURE IS ~EVER USED, RECAUSE 
NEXTM(R) IS ALWAYS UNOEF"INED WhEN THIS ROUTINE is uqen, AND 
roR SIMPLICfTY IT IS NOT SHO~N HERE. HOWF.VER~ TO ~REVENT 
INCOMPATIBLE USE or THIS ROUTINE, WE tHeC~ TO ASSURe THAT 
NEXTH<R> IS ALWAYS UNDEF'lNED. •I 

IF' NEXTM(R) :~E, OM. THEN _ 
ERRMSG(,COFYl CALLED WITH ftN OBJECT IN A SET•LIST.->J: 

C II <TYPE<R>·>J INITIALIZE RESULT. ~/ 

I• NOW COPY 'TME VALUE rIELD ,er FL •I 

FLOW TYPE<R) EC. TUPLES 
R<1:2> EQ, NULLTU?LES TYPECR> EO, SETS 
NULLT, COPYTUP, R(1:2>EO.NULLSET1 TVPE«R>E0,9PECPAfR~ 

NULLS, COPYSET~ C6PVSP, OO~VATOM: 

NULLT: VALUE(C) • VALUE<NULLTUPL&)J ,. (NO cnP~). ~/ 
COPYTUP: VALUEfC) • cNCOMFS<R>, SPA~~<~>, NU~T,>J 

(1SwISNCOMPSCR)> <TUP<C>><i~ ~ <tUP~R>)<l>J: 
NULLS: VALUE(C> a VALUE<NULLSET>J I• (NO cnPv). •I 
COPYSET: VALUE<C> = <NMEMES<R>, LOAD~~~~ MCODECR>, 

MTSfZE<R>, NULT.>1 
(1 S ~1 S HTSIZE<R>> 

(HASHTABLE(C)><I> = (HASMt~~LECR)~Ci)JJ 
COPYSP: (1 S wt S 2> (VALUE<C>><I> • tVALUEtR>>tl>J: 
COPYATOM: VALUECC> ■ V•LUE<R>J 

:eND F'LOWJ 

RETURN CJ 
END COPY1; 
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6.17 HEAD A~D TAIL ROUTINES 

, DE f" I N.E F HE AD C X ) J /• .ENTRY PC INT tOR THG SETL HD, X, •I 
FLOW TYPECX) EQ. TUPLES 

NCOMPS(X) GE, 1$ X ·Ee, UNDEF'WDS 
TUP1, UNO, UN[,· ERRI 

TUP1: 
UNO: 
ERR: 

END HEAD; 

'RETURN <TUP<X))Cl>: 
RETURN UNDEF"WDJ 
:ERRTVPE(llfHEAO<X>, X ISjll!, X>J 
:END F'LOWJ . 

T~IL 

DEF"INEF' TAIL(X)J I• ENTRY POINT F"OR TY~ SETL TL, X. •I 

.FLOW TYPE(~> EQ, TUPLE$ 
NCOMPS(X) ,Ge, 2$ X ·EQ. UNDEF'WOS 
MAKETAIL, UNO~ UN[, ~RRJ 

MAKETAIL: L • NCOMPS(X) ·• 1: 
'T. <TU?LE, CL, 't\COMPALLO(L·, •. NULT,,.>J 
Ci~ vJ SL> (TUFCT>><I> ~ tT8P~X)>~I)J1 

·RETURN T J 
UNO: RETURN UNDErwo, 
ERR: :ERRTYPEC,rTAILCX>, X ISjll!, X>J 

:END F"LOW I 
END TAILJ 
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6.18 PLUS. RCUTINES 

-----·-------
DEFINE PLUSCX~ Y)J I• :ENTRY POiNT !='OR TME SETL X • Y, •1 

/• THIS SUBROUTINE SETS X • X • Y F~R ALL T~E S&T( ME4NINGS Of 
"THE PLUS SIG~~ *I 

/•.NOTE:. nus ROUTINE AND SCME THAT F'OlLOW use AN tJNnRTHODOX 
LAYOUT OF THE FLOW STATSMENT, BUT IT IS SYNTACTICALLY CORRECT 
AND ITS MEANING SHOULD BE CLEAR. •I 

IF" TYPECX> NE, TYPE<Y> THEN 
ERRMIX(~PLUS(X,Y). X, y ::J, X, y ) I ; 

F'LOW TYPE<X) EQ, INTS CVALLE(X> = VALUE()() 
TYPECX) EQ, REAL.$ CVALLE<X> = VALUE f X > 
TYPE<X) EQ, BOOL$ CVALLE<X> ·- VALUE«X> -
TYPE<X> E0, CHARS CVALLE(X> = VALUEtX> 
TY.PECX) EQ, TUPLES (CONCATTCX, v > n, 
TYPE<X) EQ, SETS (AUN!ON(X, 
<ERRTYPEf~PLUS<X~Y>, X IS", 
END 

'RETURN; 
END PLLJSJ 

F",LOWJ 
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OCNCATT 

·oErINE CONCATT(T1, T2); 

/• THIS SUBRCUTINE CONCATENATES T1 AND +2~ ~~~ RESULT IS I~ 
T1. THE CONCATENATION IS DO~E IN-PLACE Ir POSSte(e~ TME 
RESULTING TUFLE MAY HAVE TRAILING UNOEriN~D COMPONENTg. ~/ 

.LENGTH!= NOCMPSCT1>J 

.LENGTH2 = NCCMPS(T2>J 
NEWLENGTH = .LENGTM1 • LENGTH2J 

Ir NEWLENGTM GT. SPACECT1> T~E~ 
/• INSUFrl:C!ENT ROOM, REALLOCATE Ti. •I 
R = <TUPLE, ·<NEWLENGTM~ NCCMPALLOCNEWLE~GTH~~ NULT,>>J 
I• MOVE CO~PONENTS rROM T1 TO NEW SPACE. •I 
( 1 S .., I S .LENGTM1) 

CTUP(R),(I) ■ (TUP(T1))CI)i 
END ""II 

T1 = Ri 
·END IF'J 

I• NOW A TTAO~ "T2 TO THE END ·,er T1. •I 
(1 s vI S LENGTM2> 

(TUP(Tl>)tLENGTM1 • I> ~ C1UPCT2>><I>J 
END ""I J 

NCOMPS(Tl> • NEWLENGTHJ · 
RETURNi 
END CONCATTJ 
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ALNION 

,CErINE AUNION<X, Y)J 

I• THIS IS T.~E -AUGMENTING U~ION- ROUTINE. X ANDY ARE 
SETS, AND ON RETURN X c X • l. THE ROUTl~E tfERAtS~ 
OVERY, PUTTING EACH MEMBER ·er y IN x .. H~NtE It EX~CUTES 

*I 

'rASTER If Y IS THE SM.ALLER SET, 
IT lS ~CSSIBLE TMAT THIS ROUTINE ~MO~LO swtTCH AqGUMENTS 

WHEN THE FIRST IS SMALLER, SC THAT IT AL~ivs ITERATES OVER™~ 
SMALLER SET, TO DO TMIS WOULD REQUIRE rI~ST COPYtNn v, AS 
"THE ROUTINE 'SMOULO NEVER ALTER ITS S~COND ARGUMENT, TH~ 
QUESTION THEN ARISESI MOW DEEPLY SMOULD V BE COPIEn, ITS . 
SET-LISTS WOULD HAVE TO BE CCPIED, BUT JT~ MEMBERS WOLJLn NOT, 
HENCE WE SHOULD HAVE A SPECI~L COPY ROUTINE THAT COPl~S ONE 
LEVEL DEEP tTMIS WOULD BE CIFFER~NT FROM ~OP~1, ~S ~OPV1 DOES 
NOT COPY SEl•LlSTS, ALTERNATIVELY, COP~l COULD BE 
REDESIGNED), 

FOR THE PRESENT WE TAKE THE SIMPLE APPROACM or ALWAYS 
ITERATING OVER THE SECOND ARGUM~NT, MOOl~VING TME rtR9T. 

IN ADOfTION TO THE PLUS MAIN ROUTINE~ THIS ROUTINE IS 
CALLED BY FSX~ (OFA), r~x1~ .. ,XN~ (OrAN~, AND rts, ~O~B~ET),•1 

Cm O; I• INITI~LIZE CONTRO~ FOR N~XTM~M. •I 

L11 MY= NEXTMEM(C~ Y)J 
IF MY EQ, ·~NDEFWD THEN RETLRNJJ 
AUGAOK(MY~ X)J 
GO TO LlJ 

END AUNIONJ 
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6.19 MINUS ROUTINES ----~ ... ----~--
DEFINE MINUSCX, Y)J I• ENTRY POINT roR TME SETL )( - Y, •1 

/• THIS SUBROUTINE SETS X • )( - Y FOR ALL TME SETL MEANINGS Of 
THE MINUS SfGN. •I 

IF TYPE<X> NE, TYPE<V) TMEN 
ERRMix<,Ml'NUS(X~V), x~ y =it, X, Y>:: 

FLOW TYPECX) EQ, INTS CPMt~US<X>: 
VALUECX> = VALUECV> • VALUE<V>J 
l'MINLSCX);), 

TYPECX) EQ, REALS CVALLE(X) = VALuaix~ • VALUF(V):), 
TYPE<X> EQ, BOOL$ CVX :: VALUE<X> J 

VY= VALUECY): 
VALUE(X) = Jr ~vx LE. •VY THEN 

V~ AND. NOT, VY 
ELSE \JOT • < NOT • V X O q , V Y ) I > ·• 

TYPE<X) EQ, sets CSET[IFF(X, Y)J~, 
CERRTYPE(~MINUS(X,Y), )( IS~, X>:>1 . 
END FLOlriJ 

RETURN.: 
END MINUS: 

SE TD IF'F' 

OEFINE SETDtFr<x, Y)J 

· I* TH IS SUB~CUT I NE SETS )( ·• ')( - Y F'OR X ANO Y SETS, t T 
ITERATES OVERY, REMOVING EACH MEMBER OF i FROM X, M~N~E IT 
.EXECUTES F AST ER I F' Y I S THE : S MA LL E P SET • • I 

:c • 0; I• INITI.ALIZE CONTROL F'OR N&XTM9M. •I 

L11 MY= NEXTMEMCC~ MY)J 
IF' MY EQ, :UNDEF"WD THEN RETL RN I; 
DIMAOKCMY, X)J 
GO TO LlJ 

:END SETO I FF' J 
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CErINE PMINUS(X)J I• ENTRY POINT ~~R TME SETL -X. •/ 

·1• THIS SUBRCUTINE CHANGES X TC -x. •I 

It TYPECX> e,. INT OR, TYPECX> EC. REA- TMEN 
VAL U E < X > • • V AL UE < X ) J 
RETURN.; 
END IF; 

ERRTYPE<~PMl~US(X), X IS-, X); 
.END PM I NUS J 
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6~20 ~UlTi~LtCATtON ROUTINES 

DEFINE HULTCX, Y~ R>J 

·1• THIS SUBRCUTtNE SETS R • :)(•Y FOR ALL TME SETL MEANINGS o;, 
THE ASTE~ISK, •I •· 

IF TYPE<X> EC, INT THEN 
IF TYPE<Y) EQ, INT OR. TYPE<Y> EQ. BOOL OR, TVPE(V) E~, CMA~ 

THEN I• INTEGF.R MULTIPLY OR REPLICATION or A STqtNG. •I 
R: <TYPE CV>, VALUE<X>•VALUE(Y)>:. REfURNI 

ELSE ERRTYPE(-MULT(X,Y), X IS AN INTEG;R. VIS_, V)JJJ 

IF TYPE<X> EQ, RE4l THEN 
IF TYPE(Y) EQ, REAL TMEN 

R = <REAL, VALUE(X)•VALUECY)>J RETU~NJ 
ELSE ERRTVFE(~MULT(X,YJ, X IS REAL. Y I~i. V)J;J 

IF TYPE<X) ec. SET THEN 
I F T Y P E < Y ) E Q , SET THE N I Ni SE CT < X • Y • ~ ·, : RE TURN I 
ELSE ERRTVP~(-~ULT(X,Y), X IS A S~T. ~ is-, Y)JJJ 

ERRTYPE<~MULTCX~Y>, X IS_, X); 
·END MUL T J 
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LOOPI 

II\TSECT 

DErtNE INTSECT(X, Y, R)J 

/• THIS SUBRCUTINE SETS R = X•Y roR X AND y SETS (S~T 
INTERSECTION), 
. THE INTERSECTION SET IS BUILT 8Y ITERATING OVE~ THE 

*I 

SMALLER or X ANO v~ CHECKING TO SEE rr EA~H MEMBER nr TME 
SMALLER.SET IS ALSO IN TME L~RGER SET. I~ so~ i~ I~ ,oneo TO 
THE RESULT SET R, •I 

IF NMEMBSCX) (E, NMEMBS<V) T~EN SMALLER= XJ 
L·AROER ■ VJ 

ELSE SMALLER= VJ 
LARGER :i ltJJ 

R = NULLSETJ 
·c = o; 

/~ INITI~LIZE RESULT ■ •I 
,_ INITl~LIZE CONTRn~ roR NEXTMeM. •I 

M = NEXTME~CC~ SMALLER)) 
Ir M EQ. u~oErwo THEN RETURNJJ 
It ELMTSET(M, LARGER) E0e lRUE THEN AUGAOK(M, R>JJ 
Go TO LOOPJ 

END INTSECTJ 
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6~21 DIVIStCN ROUTINES 

-----------~-----
DEFINE DIVIDECX, ~~ R)J I• ENTRY POINT f~R TME SETL ~/V, */ 

I• THIS SUBRCUTINE SETS X. )/Y FOR ALL T~E SETL MEANINGS or 
THE SLASH, IN ADDITION, IF' X AND V ARE INTEGERS, R rs SET 
EQUAL TO THE REMAINDER, TME QUOTIENT ANO REMAINDER A~E 
RELATED BY X • 0•Y • R, WITH SIGNCR> = Sl~NCX) AND 49g(~) < Y. 
F'OR EXAMPLE"i 

9/4 ■ 2 REM 1, 
9/•4 a •2 REM 1, 

-9/4 ■ -2 REM •1~ 
-9/-4 ■ 2 REM 1, ·•I 

IF TYPECX> NE, TVPE<Y> THEN 
ERRMIX(~DIVIDE(X~Y), X,Y -=~, X, Y>:; 

F'LOW TYPECX) EQ, INTS CR= VALUECX)//VAL~E<Y~J 
VALUECX) = VALUE~X~/VALUE<Y)I), 

TYPE(X) E0, REALS <VALLiECX> = VALUE<i>IVALUECY\J), 
TVPECX) EQ, BOOL$ (VX = VALUECX>: Vi a VALUE(~~I 

VALUE(X) = IF ~vx LE, •VV 
TMEN VX OR,NOT,VY 
ELSE NJt.~NOT.VX AN~,V~>i>, 

TYPECX) EQ, SETS CSYMDIFF(X, Y)J)~ 

ERRTYPEC-DIVIDECX,V), X IS-, X>:>: 
END FLOWJ 

RETURN; 
·END DIVIDEJ 

SYMDIF"F 

DEFINE SYMDrFF(X~ Y)J 

/• THIS SUBROUTINE SETS X ·• ~/Y FOR X ~ND Y SETS (SYMMETRIC 
:OIF'FERENCE), IT fS CODED F'RCM TME RELAtI~N XIV= f~•~>-CX•i>~ 
WHICH PROBABLY RESULTS IN A FASTER ROUTi~~ TH~N <X•V~ •· (Y•~>. 
"THE LATTER WOULD REQUIRE-COPYING Y, ~s SEiorrf DEST~o~s tTS 
·r I RS T AR GUMB~ T, 

THIS ROUTINE RUNS .rASTER Ir y IS TME SMAlLER s~+, BECA~S~ 
OF THE UNION >t•Y, ·•I 

INTSECT<X, V, R)J 
-AUNION(X, Y)J 
SETOIFFCX, R)J 
RETURN; 
:END SYMDIFF'J 

I• ·SET R = X•V. ~/ 
/•:SET X - X• Y. •I 
I• :SET X = X • ~. •I 
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. 6,22 boU~LE SLASM ROUTINE 

DEFINE DSL~SMCX, V)J 

I* THIS SUBRCUTINE SETS X • )//Y FOR THE TWO SETL M~AN!NGS OF 
THE DOUBLE SLASH, Ir X AND~ ARE INTEGE~S OR REA~S~ TH~ 
RESULT IS TME REMAINDER AS DEFINED BY X • TRUNO(X/V~•Y CANO 
NOT X -. F"LOCR(X/V)•Y) I ., 

IF TYPECX> NE, TVPECY) THEN 
ERRMIX(~OSLASH(X,Y), X, Y =~, X, Y>:J 

IF TYPE(X) e,. INT OR, TYPE(X) ea. REA~ THEN 
/• REMAINDER, •I 
VALUE<X> • VALUECX)//VALUECY>J 
RETURN; 
END IF; 

IF TYPE(X) ec. BOOL THEN 
/• EXCLUSIVE OR, w/ 
BOOLEX(X, ·y·)J 

RETURNJ 
END IFJ 

·ERRTYPE<~DSLASHCX~Y>, X •-~ )); 
ENO DSLASH; 

6,23 ABSOLUTE VALUE ROUTINE 

DEFINE ABSCX)J I• ENTRY FOtNT ;oR TME SETL ABS,X, •1 

I• THIS ROUTINE SETS X • ABS,X. •I 

IF TYPE<X> EC, INT OR, TYPECX> EC. REAL THEN 
VALUE<X> • ABS,VALUEcx,, 

ELSE 
ERRTYPE<-~ES,X~ X ■-, X)J; 

'RETURN; 
:END ABS; 
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6,24 PARALLEL BOOL~AN OPERATIONS 

DEPINE AOOLA~D(A~ B)J I• ENTRY POINT roA THE SETL A AND. B, */ 

IF TYPECA> ~E. B~OL THEN 
ERRTYP~C~A AND. 8, A IS NOT A BOOLEAN STRiNG:-, A,JJ 

IF TYPECB> NE, BOOL THEN 
ERRTYPEC~A AND. 8, B IS NOT A BOOL~AN S+RING:i, B~JJ 

VA= VALUECA)J 
VB:: VALUECB)J 
IF ,VA GE. ♦ VB THEN 

VALUE(A) a ( ♦ VA• ♦ VB>••O~B • (VAc,vA-,V3+1:) ANO. VB)J 
ELSE 

VALUECA) ~ ( ♦ VB••VA>•-0-B • (VA AND. V8i,vs-•ijA+1i))IJ 

RETURN; 
·END BOOL ANO J 

BCOLOR 

,oE,INE BOOLOR(A, B)J I• ENTRY POINT FOR THE SETL Ao~. e. •I 
IF TYPE<A> NE, BOOL THEN 

ERRTYPEC~A OR, B~ A IS NOT A BOOLEAN ST~INGi-~ A)JJ 
IF TYPECB> NE, BOOL THEN 

ERRTYPEC~A OR, 8, 8 IS NOT A BOOLEAN STRINGii~ B)JJ 

VA= VALUECA)J 
VB= VALUE(B)J 
IF iVA GE, MVB THEN 

VALUECA> ~ VAC1i ♦ VA• ♦ VB) + CVAC~VA-•VR•ii> OR, VB~J 
:ELSE 

VALUE<A) • ~B<1i•VB• ♦ VA) + (VA OR. ve~,ije-,vA+1i)~JJ 

RETURN; 
:END BOOLOR J 
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I• BCOLEX . , 
DErlNE 800LEX(A, B)J I• ENTRY POINT FOR TME SETL A exnR. B, •1 

IF TVPE<A> NE, BOOL THEN 
ERRTYPE<-A EXOR, B, A IS NCT A BOOLEAN STRINGS~~ A)JJ 

IF TYPE<B> NE. BOOL THEN 
ERRTYPE<~A EXOR, B, B IS NCT A BOOLEAN STRINGi~~ R~JJ 

VA= VALUE(A)J 
VB= VALUE(B)J 
IF •VA GE. •VB THEN 

VALUE(A) • VA<1i•VA••VB) • <VA<•VA-.VB•i:> EXOR. ve,, 
ELSE 

VALUE<A> = VB<1i•VB••VA) + (VA EXOR. V3~•VB••VA+1i))JJ 
RETURN; 
END BOOLEXJ 

RCOLIMP •1 

DErINE BOOLl~P(A~ B>J I• ENTFY POINT FOR ~Et( A IMPLI~S. B, •1 

IF TYPE<A> NE. BOOL THEN 
ERRTYPE<-A IMPLIES, 8, A 15 NOT A BOOLEiN STRING:~~ A)J; 

IF TYPE<B> NE, BOOL THEN 
ERRTVPE(-A IMPLIES, B, B rs NOT A BOOLEiN STRINGS-~ 8)J; 

VA= VALUE(A)J 
VB a: VALUE(B)J 
IF •VA GE. •VB THEN 

VALUECA) • NOT,VA(11•VA••VE) • (VA<•VA-.vs.t:, tM~LtEs, V8): 
·ELSE 

VALUECA> ■ t•VB••VA>•-1-B ·• (VA lMPLtES. VBC•VB••VA•1:))JJ 
RETURN; 
END BOOLIMPJ 

BCOLNOT *I 

·DErINE BOOLNCT(A)i I• ENTRY POINT ► rtR TME SETL NOT, A.*/ 

IF TYPE<A> NE. BOOL THEN 
ERRTYPE<-NtT, A~ A IS NOT A BOOLE~N STRiNGii, A)JJ 

VALUECA> = NCT, VALUECA>J 
.RETURN; 
:END BOOLNOT J 
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-6~25 TYPE A~D ~AIR ROUTINES 

I• ENTRY POINT ~OR TME SETL TYPE.X.•1 

I• X IS THE :CBJECT TO BE TESTED. THE VALUE or nus F'UNCT'ION 
IS A SETL INTEGER GIVING THE TYPE CODE o~ x. OR UND~rwo tr X 
IS UNDEFINED, •I 

IF TYPE<X> GT. SET THEN 
ERRTYPE<-TYPE,X, X IS~~ X>;; 

IF X EQ. UNDErWD THEN RETURN UNDEFWD: 
ELSE RETURN ·crN·r·, 'TYF'E()()>J; 

·END SETL TYPEJ 

P~IR 

-DErINEP PAIR(X)I /• ENTRY POINT FOR THF. SETL PAI~. X. •/ 

/* THE VALUE Of TMIS FUNCTIO~ JS TRUE tr~ IS A PAIR ANn FALS~ 
OTHERW I se·. A PA IR Is CONS IDE RED TO BE A TUPLE WHOSr; MI OMEST 
INDEX IS TWO, EVEN Ir ITS rtFST COMPONENT IS UNtierI~en •• , 

If TYPECX> EQ, TUPLE THEN 
IF NCOMPS(X> EQ, 2 THEN RETURN TRUE;:1 

RETURN .FALSEJ 
·END PAIRJ 
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6.26 NEW ATCM ROUTINE 
-----!1!11•---------

DEFINE NEWAT(R)J 

/• THIS SUBRCUTINE GENERATES A F"RESM BL!\JI< ATOM AND Rl:!TtlRNS 
IT IN R. THERE ARE NO INPUT ARGUMENTS. iHE VARIABLE 
~BLANKATOM~ IS GLOB~L .AND IS INITIALIZED TN SECTION 5.1.8. •I 

VALUECALANKATOM) 11 VALUE(BLA~KATOM) + 11 

IF VALUE(BLA~KATOM) NE, 0 THEN R = BLANKATOMJ 
ELSE 

/• WRA?-ARCUND OCCURRED, •1 
ERRMSG(tLf~IT EXCEEDED F"OR BLANK !TOMS ~O~NTER,-)1 
END IF; 

RETURN; 
END NEWAT; 
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6~27 MIN ANC MAX ROUTINES 

-------···----------
.. 

DEFINE MIN(X, Y, R)J I• ENT~Y POINT FOR THE SETL X MIN. Y, *I 

IF TYPE<X> NE. TYPECV) THEN 
ERRMIXCtX ~IN, V, X, Y •-• X, Y);J 

IF TYPECX) ec;. INT, OR. TYFE(X) EC>. ReAL THEN 
IF VAL.UE(X) LE. VALUE<V> TI-E~ R- = X: · 

ELSER= Y;; 
RETURNJ 

·ELSE ERRTYPEC-X MIN. Y, X at, X>;; 
·END MIN: 

*I 

DEFINE MAX(X, Y, R)J I• ENT~Y POINT FOR iHE SETL X MAX. Y, *I 

IF TYPE<X> NE. TYPE(Y) THEN 
ERRMIX(tX fo'AX, Y, X, Y :pt, X, Y>:J 

IF TYPE<X> EC. INT, OR. TYFECX> E0. REAL THEN 
IF VALUE1(X) GE, VALUE<V) HEN R = X: 

ELSER= Y:: 
RETURN: 

ELSE ERRTYPE(-X MAX. Y, X ■ ;it. X>n 
END MAX; 
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6;28 BOT ANt TOP ROUTINES 

DEF'INEF BOT(X)J /w ENTRY POINT FOR TH~ SETL BOT. X, •I 

/• THE SETL 'BOT AND TOP OPER.6 TCRS CONVERT BACI< AND roqTM 
BETWEEN REALS AND INTEGERS A5 ILLUSTRATED BE(OW~ ON A MACHINE 
WHOSE FLOATf~G POINT IS DECi~AL WITM THREE SIGNIFICANT n!GltS. 

)( BOT, X T :JP. X 

3,00 3 3 
3,14 3 4 

-3,14 .4 •. 3 
3 3, 0 0 3.00 
3141 3,1~E3 3.15E3 

-3141 •:S,15E3 •3.14E3 

ON A BINARY ~ACHINE, THE RESLLTS WOULD B~ SIMtLAR BU~ 
EXACTLY THE ~AME IN CASES SUCH AS THE LASf two ROWS. 
LESS OF MACHINE DETAILS, THE FCLLOWING R2LATIONS MOLD 
OR INTEGER XI 

BOT. X ~ X 
TOP. X ~ X 
TOP. X = -BOT.-X 

IF TYPEtX) E&, REAL THEN 

NnT 
RF(URO· 
rnR RE AL 

R = VALUEtX)//1,0J ,. GET FRACTIONAL PART or~, •I 
IF R LT, 0 THEN R • R + 1.0;; 
/• ASSUME 'THAT FIX IS A FUNCTlCN THjT CONVERTS A rLOATING 
POINT INTEG~R TO.AN INTEGE~. •I 
RETURN <INT~ FIX<VALUE(X)~~)>J 
END IFI 

IF TYPEtX> E~. INT THEN 

/• THE STEPS BELOW ASSUME lHE EXISTENtE OF A FLOAT 
FUNCTION W~ICH PRODUCES EXftCT RESULT~ If THE MAGNTTUDE OP 
THE GIVEN lNTEGER IS LESS THAN BASE EX~. ~RECISI~N roR 
THE MACHINE, •I 

BASE= 2J 
PRECISION• 48J I• USE (16,6) OR (16,i4) roR THE 9/360, */ 
MAX= BASE EXP, PRECISION: I• AN IN~SG&R • M~XIMUM POSSIBL~ · 

FLOATING POiNT ~RACTl~N ·• 1. ~/ 
VX = VALUECX)J 
F = 1.0; 
IF VX GE. o·THEN 
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(WHILE V)( GE, MAX) vx = ~X/BASEJ r = BASE•r; SN~ WHIL~J 
.ELSE 

D =BASE• lJ 
(WHILE vx LE, •MAX) vx = (VX-D)/BASE: r = BASE•rJ END: 
END IF VXJ 

RETURN· <RE~L, F'•F'LOAT<VX)>: 
END IF TVPEJ 

·ERRTYPE<-BOT, X~ X IS NEITHE~ A REAL NOR AN INTEGER•-• X): 
END BOT: 

:DEF' I NEF TOP O< > J 

PMlNUSCX); 
'R • BOTCX>J 
PMINUSCR); 
PMlNUS(X>; 
RETURN Ri 
END TOP; 

TCP 

I• ENTRY PCINT roR t~~ SETL TOP, ~. •I 

I• TOP(X> = -BOT<-X), •I 

I• <RESTCRE THE ARQU~~NT ~>. •I 
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6.29 SUBSlRJNG ROUTINES 

--------~---------
THE ROUTINES IN THIS SECTION IMPLEMENT TME SETL 

·EXPRESSION S(IIL~ FOR BOTH RETRlEVAL AND ~TORAOE. WE A~SUME 
THAT I AND LARE ALWAYS oerr~EC, THAT IS, T~E COMPILE~ 
TRANSLATES S(JI) TO S<I:•5•[•1> AND S<iL> TO S<i:L>, IN BOTM 
RETRIEVAL ANE STORAGE CONTEXTS, THE MEiNiNG OF' TME STORAGE 
CONTEXT,.S(JIL) ■ R, IS TAKE~ TO BE 

S = 5(111•1) + R • 'S(l+L:~s-c1.~-1,,. 

INTUITIVELY, THE SUBSTRING S<I:L> JS REPLiCED BV R, AND THE 
PORTION OF s TO THE RIGHT OF S(I:L) IS ~Lio Lerj OR RIGHT, ~s 
REQUIRED, TO HAKE ROOM roR R. 

NOTE THAT THE_ SUBSTRING OPERATION is NOT A PUR~ ~ETAIEVAI 
OPERATION (T~AT IS, AFTER S<I:L) = R, TM; VALUE or S(tlL) rs 
NOT NECESSARILY R)~ EXC~PT f~ CERTAIN SP2~IiL CAS~S. ~OST 
NOTABLY WHEN L = •R ■ 

DEF'INEF' SUBSTRCS, J, L)J I• :ENTRY POINT :-r,R THE SETL q(JIL).*/ 

IF TYPE<S> N,~SBOOL, CHAR, TLPLE~ TMEN 
ERRTYPE<-SCIIL>, S, NOT A :STMING OR TUPLE, isi-~ S)JJ 

IF TYPE<I> NE, INT THEN 
ERRTYPEC-S(JIL), I, NOT AN INTEGER, IS:i, l>JJ 

IF TYPE<L> NE, INT THEN 
ERRTYPE(-S(IIL)~ L, NOT AN INTEGER, IS:~~ L)JJ 

vs = VALUE(S)J 
VI = VALUE(l)J 
VL = VALUECL)J 
IF VI LE ■ 0 'TM_EN ERRVALCllfS(I:L), I ~ 0 : - • n •' 
IF VL LT, 0 "TMEN ERRVAL(ll'SC I :L), L < 0 : ... L ) J I 

!LAST= VI • VL • 1J 
IF ILAST GT, CIF' TVPECS> EQ. TUPLE THEN ~OOMPS<S> ELSE •VS) 

THEN ERRVALC-SCl:L), I• L - 1 > •S:-~ tLAST)JJ 
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I• NO~ IT IS KNOWN THATI 

I ~ 1 
L ·~ 0 
I+ L • 1 sis. 

FROM THIS IT FOLLOWS THAT I ·s ,s EXCEPT ~~SSI9Li IF L ·• 0, tN 
WHICH CASE I MAY BE •S•1, T~IS IS CONSIDERED VALID, TO ALLOW 
·CODE SEQUENCES SUCH AS 

(0 S ~LS •S> ••• sc,s-L+1iL) ••. 
TO REFERENCE THE RIGHT SUBST~INGS ors, INCLUDING TME NULL 
STRING. SIMILARLY~ IT rOLLO~S rROM THE A~OVE T~AT L ~ ,s, ~o· 
THIS NF.EN NOT BE EXPLICITLY CHECKED roR. •I 
IF TYPE<S> EQ, BOOL THEN 

IF VL EQ, 0 THEN RETURN NULLBSTR; . . 
ELSE RETURN <BCOL. (VALUE~S)>cvt:VL)>IJI 

IF TVPE<S> EQ. CHAR THEN 
IF VL EQ, 0 THEN RETURN NULLCSTR; 

ELSE RETURN <C~AR, CVALUECS~><V~1VL>>tJ: 

/• TYPE<S> • TUPLE, •I 

Ir VL EQ. 0 T~EN RETURN NULLTUPLE;: 

I* IGNOR TRAILING UNDEFINED ·cOMPONFNTS i~ SUBTUPLE, •I 
NEWL: VL; 
(WHILE tTUPfS))(NEWL) EC, UN[EFWD> 

NEWL = NEWL • 11 
IF NEWL ea. 0 THEN RETURN ~ULLTUPLE;: 
END WHILEJ 

RETURN <TUPLE~ <NEWL, NCOMPALLCCNEWL>, ~ViLUE~S~>CVtiVL>>>J 
END SUBSTR; 
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S5UBSTR 

DEF'INE SSUBSTR(S, I, L., R>J I• ENTRY ?OiNT roR S(tiL) ■ R.•1 

IF TYPE(S) N,~saooL, CHAR, TLPLE~ TMEN 
ERRTYPE<-S(?IL> m R, S~ NOl A STRING 0~ TO?LE~ ISi_, S):J 

IF TYPE< I> NE, INT TMEN 
ERRTVPE(-S(!IL) a R, I, NOT AN I~TEGER, ISi~, l)JI 

IF TYPE<L> NE, INT TMEN 
ERRTYPE<~S(t:L) : R, L, NOl AN INTEGER, ISi-, L)JJ 

vs = VALUECS)J 
VI = VALUE< I> J 
VL: :: VALUECL)J 
VR = VALUECR)J 

IF VI LE. 0 ;THEN ERRVAL<-'S(l :L> = R, I !I: n: i, I > ; I 

0 TMEN f:RRVAL<-'SC I :L>. -· IF VL LT. - R • L C n : - , L) ; I -
ILAST = VI • VL • 11 
IF ILAST GT, (IF TYPECS> EQ. TUPLE THEN ~r.OMPSCS> ELSe .VS) 

THEN ERRVAL(~S(IIL) = R, 1 + L - 1 > ,S:t, ILAST)JJ 

/• THE CONOfT?ONS FOR THE VALICITY OF I A~n L ~AVE ~E~N MADE 
·rHE SAHE AS IN THE CASE OF T~E. RETRIEVAL. ~UBSTRING. np~RATION, 
~OR LITTLE REASON OTHER THAN CONSISTENCY, IT WOULD P~O~ARLV 
BE REASONABLE TO ALLOW L TO EE ARRITRARi~v LARGE rQR THE 
STORAGE SUBST~INQ OPERATION, BUT T~AT rs NOT OONE. •I 

IF TYPE<S> NE, TVPECR> THEN 
ERRMIX(.tSCI> a R <SSUBSTR,, S, R :t, S, R)JJ 

/• THERE IS ·~o RESTRICTION 0~ T~E LENGTM nr R, •I 

S1 = <TYPECS), 
52 = <TYPE(S), 

PLUS(S1, R)J 
PLUS<SL S2)J 
S = SU 
RETURN; 

·END SSlJBSTRJ 

SUBSTR(S, <INT,1>, <INT,VI•i>)>J 
SUBSTR(S, <IN;,VJ~VL>, <!~T. ctr TVPE(q) ea~ 
TUPLE THEN NCCMPS<S> ELSE •VS)•ILAST>)>J 

I• S1 = ~(1:I-1> + R. •I 
/• S1 = ~<1:I-1> + R • Sci•L:•S•(I•L•1))*/ 

-638-



6~30 DEC ANC OCT ROUTINES 

-----~-----~--------
I• ENTRY POINT roR tH~ SETL DEC. ~~ ., 

·t• THIS F'UNCTION CONVERTS A :CHARACTER STRING, CONTAtNINtl TME ' 
DECIMAL REPRESENT•TION nF' A 't-Ut-'BER, TO A\I INTEGER~ ANn VICE 
VERSA. •/ 

IF TYPECX> EQ. INT TMEN RETU~N CHARINT(j, 0, io>;J 
IF TYPE<X> SC. CHAR THEN RETLRN INTCHAR(X~ iti)JJ 
ERRTYPE<-DEC, X, X IS NEITHE~ AN INTEGER NOR A CHARACTE~ ~ 

+ ia!STAING1,1·, X)J 

/• THE LOWER LEVEL ROUTINES :CH.ARI NT ANO INTCHAR ARE NnT SHOWN 
IN THIS SPECIF'ICATION, CHARINT(X,W,8) CONVERTS THE !NT~GER 
XTO A CHARACTER STRING or LENGTH W, TO 9iSE B. rr X < 0, i 
MINUS SIGN rs PLACED AT THE LEFT. IF w = ti, THE REgULTlNG 
STRING tS JUST LONG ENOUGH TC ~OLD THE RE~ULT~ ~.G., -•~3~, 
-99t, ETC. IF' W rs NONZERO, Tr.e RESULT Ii PADDED WtT4 RLANKS 
OR TRUNCATED ON THE LEF'T~ AS REOUIRED. 

INTCHAR(X,B) CONVERTS T~E CHARACTER STRING XTO AN 
INTEGER, INTERPRET I NG THF. STF If\G AS BASF: ·R. •I 

·END DEC; 

I• OCT 

·DEF'INEF' OCTC.X>J I• ENTRY POINT F'OR TH~ SETL OCT, ~, •I 

/• THIS F'UNCTION CONVERTS A CHARACTER STRING, CONTAINtN~ THE 
OCTAL REPRESENTATION OF A NU~BER, TO AN I~T~QER~ ANn Vl~E 
VERSA. • / 

IF TYPE<X> EQ. INT THEN RETU~N CHARiNTC~, 0, 8)J; 
IF TYPE<X> EC. CMAR THEN RETLR~ INT~HAR~X~ 8~JJ 
ERRTYPE<~OCT, X, X IS NEITME~ AN INTEGER NOR A CHAR4CTER ~ 

+ -STRINGr-~ X)J. 

/• SEE NOTE IN ROUTINE •DECt, ABOVE, •I 

:END OCT: 
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6.~1 BITR RCUTINE 

------------
DEF'INEF' BITR(X)J I• ENTRY POINT F'OR T~~ SETL BITR, X. •I 

/• THIS ROUTINE CONVERTS X AS FOLLOWS: 
INTEGER TO BOOLEAN STRI~G 
REAL TO BOOLEAN STRING <BITRtBOT<Xi> 
BOOLEAN STRING TO INTEGER. •I 

IF TYPE<X> ◄ $INT~ REAL~ THE~ 
V X = I F' TV P E ( X ) E O • I NT THE N V A LUE < X > : i~ SE V AL U E ( -~ 0 T C X ) > J 
IF VX GE. 0 THEN 

R:: NULTJ 
<WHTLE VX ~E, 0) R c 

vx = vx / 2, 
END WHILEJ 

RETURN <BOOL~ R>J 
ELSE ERRVALC-BITR, X, 

END IF VX GE. OJ 
END IF TYPECX)J 

IF TYPE<X> EC, BOOL THEN 
VX = VALUE(X)J 
R = O; 

<IF VX//2 eo. i +~eN 18 ELqe OR)• R1 

I• ~OTE THAT BiTR(O) = NULLBSTR, */ 
)( <· 0 : , , X ) : 

(1 ~ vl S iVX) R • 2•R • VX<I>;; 
RE!TURN <INT~ R>J 
END IF J 

ERRTYPE<-BITR, X, X IS NEITHER AN INTEGE~~ A REiL, ~OR At 
+ ,aoaLEAN STRINGS_, X); 

END BITR; 
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6.J2 RELATlCNAL OPERATORS LE AND LT 

-----~------------------------
DEF'INEF' LECX,V)J I• ENTRY PCINT F'OR TH~ SETL XL~, Y. •I 

/• THE RESULT IS OEF'INEO FOR INTEGERS, REiLS, BOOLEAN STRINGS~ 
AND SETS, T-~E RESULT IS ALW~YS EITHER TRUE OR rALSE, TMERE 
ARE NO ROUTl~ES FOR GE AND Gl, AS TME COMPI(ER MAY HA~E THE 
TRANSLATION ·GECX,V) • LECY,X> AND GT<X,V> = LT(V,X), WHICH 
IS VALID FOR ALL DATA TYPES. •I 

IF TYPECX> NE, TVPECY) THEN 
ERRMIXC-X .LE, Y OR X GE, Y,. X, Y =~, X, Y)JJ 

IF TYPEcX> EC. INT 
IF TYPECX> EC, REAL 
IF TYPECX) EC, BOOL 

/• THE MEA~!NG rs 
VX = VALUE(X)J 
VY= VALUE(Y)J 
I = ivx; 
J = ivY; 

THEN RETLRN <BCOL,Vi~~E<X~ LE, VALUF(Y)>JJ 
THEN RETLRN <BOOL,VA~8ECX) LE, VALUE(Y),;J 
THEN 
-X IMPLlES Y EVERYWM~~E.-•I 

(WHILE I GE, 1 AND, J GE, 1) 
IF VXCI) EQ, 18 AND. vvr~) EQ. 08 TME~ RETURN ~•L~EJJ 
I = I • 11 
J = J - 11 
END WHIL.EJ 

IF I EQ. 0 THEN RETURN TRUE;; I• c,vx s •VY>, •I 
I• x IS THE LONGER STRING. LOOK F'OR 1ts IN ITS L~rT PART.*/ 
(WHILE I GE, 1) 

IF VX<l) EQ, 18 THEN RETLRN FALSE:J 
I = I • 11 
END WHILEJ. 

/• LEFT PART OF X WAS ALL ZEROS. •I 
RETURN TRUEJ 
END IF TYPECX> EQ, BOOLJ 

IF TYPECX> e,. SET THEN 
/• THE MEANING IS -x IS A SUBSET or v-.• , 
IF NMEHBS(X) GT, NMEMBSCY> T~EN RETURN tALSEJJ 
C = O: 

LOOP: M = NEXT~EM(C~ X)J 
IF M EQ, UNDErwo THEN RETURN TRUE:: 
IF EL.MTSET(M~ X) EQ, rALSE THEN RETU~N rALSE;a 
GO TO l.OCPJ 

:END IF TYPECX) EQ, SETJ 
ERRTYPEOIX LE, V OR X GE, Y, X =it, X>: 
END LE; 
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LT . , 
DErINEr LT(X, Y)J I• ENTRY POINT rOR T~F SETL X LT, Y. •I 

/• THE REt.AT I ON X LT I Y ■ NOT,< Y LE. X > ~OLDS F"OR I "JTEGERS ANri 
REALS ONLY. IT DOES NOT HOL[ FOR BOOLEi~ StRtNGS AND S~TS, 

' T H E R E L A T I O N lC L T • Y = < X L E • Y A N D • X N !: • Y ·, 1-1 0 L D S F" r, R 
INTEGERS, REALS, ANU SETS, BLT NOT rOR BJOLEAN STRING~, FO~ 
SETS WE USE 'TME RELATION X LT. Y = (,1.X c 1,Y AND, X LE. V, •I 

IF TYPE<X> NE, TVPE<Y> THEN 
ERRMIX(;tX LT, y OR X en. Y, X, y =i, )(, V)JJ 

IF TVPE(X> ~ ~INT~ REAL~ THE~ 
IF LE<Y,X) EQ, TRUE TI-IEN RETURN FALSEI 
ELSE RETURN TRUEJJ 

IF TYPE<X> EQ, BOOL THEN 
/• THE MEA~lNG IS -X IS OB ANO Y IS 19 ~VERVWMERE~. *I 
VY= VALUE('t')J 
IF :B ~VY• 8 EQ, OB THEN RETURN FALS;1; 
/• NOW Y fS KNOWN TO BE ALL 1-S <OR NULL>. •I 
VX = VALUE(X)J 
IF ,vx GT, •VY THEN RETURN FALSE;, I• (Y WOULD ee LEFT-

EXTENDED WITH ZEROS~. •I 
IF :8 ~ VX • B EQ, 1B THEN RETURN FALSE1; 
I• NOW X IS KNOWN TO BE ALL ZEROS, AND 1,VX ~ •VY, •I 
RETURN TRUEJ I• X ANDY COULD BE ~~LL, •I 
END IF TYPECX) EQ, BOOLJ 

IF TYPE<X> EQ, SET THEN 
/• THE MEANING IS -x IS A FROPER SUBSET Or vi. •I 
IF NMEMBS C )( > LT, NMEMAS ( Y > THEN RETURN i'.E < X~ Y >; 
ELSE RETUR~ FALSEJJ 
END IF TYPECX) EQ. SETJ 

ERRTYPE<-X LT. Y OR X GT, Y, X =-, X>J 
END LT.; 
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6. 33 POWER ,5 ET ROUTINES 

THE ROUTINES IN THIS SECTION IMPLEM:NT TME SETL ?OWER SET 
POW(S) AND THE POWER SET RESTRICTED TO SJ~SETS or StZ~ N~ 
NPOW(N,S). 'TME ROUTINES ARE CODED MORE ~nR CONCISE~ess THAN 
FOR SPEED, BECAUSE THEY ARE .(F FAIRLY LO~ use AND R~C4USE T~E~ 
CANNOT BE USED FOR VERY LARGE SETS <MORE THAN TEN M~M~ERS OR 
so FOR POW)~ AS TME USER WOULD RAPIDLY RU~ OUT or M~AP SPAC~. 

THE MOST CONCISE ALGORfTH~ FOR NPOW(N,S) KNOWN~~ THE 
AUTHOR IS TME FOLLOWING RECU~SIVE ONE TMAT BEARS A ?ELATION Tn 
PASCAL~S TRIANGLE (IN W~ICH FCN,M> : PCN,M-1) + PCN•1,M-1>>i 

OEFINEF NPOWCN, S)J 
IF N GT, •S OR, N LT. 0 THEN RETU~N NL,:J 
IFS EQ, NL, THEN fiETUR~ ~NL.~1: 
X = ARB, SJ 
R = S LESS, XJ 
RETURN -~POWCN,R) + $M WITH, X, M ,. \JPOW(N•i,R)i'!J 
END NPO~J 

HOWEVER, THtS ALGORITHM IS NCT USEC, BECA~SE we FAVnR ONE TMAT 
RESTS ON AN UNDERLYING ~OUTI~E TMAT RETU~NS SUCCESSTV~ MEMBERS 
OF THE POWER SET ON EACM CALL. THIS PERMiT~ tTERATTON OVER A 
POWER SET WlTMOUT ACTUALLY CCNSTRUCTING T~E WMOLE P~W~R SFT. 
THIS F~CILITY WOULD ONLY BE ftVAILABLF. TO THE SETL USER RY 
GOING OUT or SETL, ALTERNATIVELY, THE setL COMPILER eOULD 
INCORPORATE 'TME SPECIAL CASE OPTIMIZATIO~ or LOOKtNn rOR THE 
ITERATIONS (vX~POW(S)) AND c~X .. NPOW(N,S~>~ ~ND tRANSLATING 
THEM TO CALLS ON THE LOWER LEVEL RCUTIN&S. 

THERE ARE FOUR ROUTINES IN ALL, AS r~LLOWSi 

PO~(S) COMFUTES THE WMO~E ~OWER S~T. 
NPCW(N~S) COMFUTES TME s;r or ALL N•MEMBER 

SUB~ETS. 
NEXPOW(C,S) GETS ~EXT MEMBe~ or POW(S). 
NEXNPOW(C,N,S> GETS ~EXT MEMB~R O~ NPOWCN,S~, 

'THE ruNOAMENTAL ONE IS NE~NPCWCC~N,S~~ ~N8 THE OTME~S ARE 
TRIVIALLY SUl(T ON THIS, 

WE ALLOW N TO BE -OUT OF RANGE- IN NPOW(N,S). THIS IS 
BECAUSE IT MIGMT BE useruL l~ CERTAIN cis~s SUCM AS IN THE 
ALGORITHM ABCVE, SOME SPECI~L CASES: 

NP OW C N ~; S > a; NL , C NOT SN L , ~ ) I f" N < 0 0 R N s-· • S . 
NPOW<OiS> • $NL,~, 
NPOW(1~S~ • $SM~, M ~ S?, 
NPOW<•S,S) = ss~. 
POW(NL,) = $NL.~, 
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PCW 

DEF' I NE F. POW C S > J I• ENTRY POINT roR ,~~ SETL POW(S), •I 

/• THIS rUNCTION CALCULATES THE POWER SeT ors (SET or ALL 
SUBSETS>. •I 

*I 

IF TYPE<S> NE. SET THEN ERRTYPE(-POW(S>. SIS NOT A S~T:-,S)J; 

R = rWLL.SETI 
C = 0; 

LOOP: M = NEXPOW(C,S)J 
IF M EQ. UNoErwc THEN RETU~N R;; 
AUGAOK(M,R)J 
Go TO LOOPJ 

ENO PQH; 

NFOW 

DErINEF NPOW(N, S)J I• ENTRY POINT FOR tH~ SETL NPOWCN,~l. •I 

/* THIS rUNCTION CALCULATES THE SET OF' ALL SUBSETS nr s OF 
SIZE N. *I 

IF TYPE<N> NE. INT THEN ERRTYPE<-NPOW<N~S~, N IS NOT AN -
• -INTEGEp:~, N)JI 

IF TYPECS> NE, SET THEN ERRTYPEC-NPOWCN.~1. S IS NOT A SETI-• s ,, J ; 

R = NULLSETJ 
C • 0; 

LOOP: M = NEXNPOhtC~ N~ S>J 
IF M EQ. U~DErwo THEN RETU~N R;; 
AUGAOK(M, 'R>J 
Go TO LOOPJ 

·END NPOW J 
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NEXPOW 

DEF'INEr NEXPOW(C~ S>J 

I* GIVEN A CONTROL ITEM C ANC A SETS, T~JS rLINCTION ~ETURNS 
WITH THE ~NEXT- SUBSET ors. TME CALLER SHOU~O HAY~ n = 0 

., 

ON FIRST ENTRV, AND SHOULD tJCT ALTER C i'··H=REAF'TER. cnMPLETtO~, 
OF THE PROCESS IS INDICATED EY THE ROUTi~E-S REtURN?N~ ·AN
UNDEFINED VALUE, 

THE ROUT? NE F' I RST RETURt-S THE NULL S~T, THEN 91.lBSETS OF' 
SIZE ONt, THEN THOSE OF SIZE TWO, .•.• TH~N A COPV nr s 
ITSELF, AND FINALLY THE UNDEFINED VALUE. <THE FACT THAT IT 
WORKS IN THIS ORDER IS COINCIDENTAL ANO ~OT PART or tHE SETL 
LANGUAGE DESIGN>, •/ 

IF C EQ. O Tl-,EN 
/• FIRST E~TRV, INITIALlZE C. *I 
C = <TUPLE, ·<2~2~<0,0>>>J I• C IS A ~iIR tCi,N), WHERE~/ 
ENO IF1 I• C1 AND N ARE ARGU~ENTS TO •1 

I• NEXTNPJ~(~f~N~S), •I 

/* USUAL CASE. •I 
C1 = <TUP<C))C1)J 
N = CTUP(C))(2)J 
M = NEXNPOWtC1,N,S)J 
IF.M EQ. UNDEF'WD THEN 

/• THROUGH WITH SUBSETS or SIZE N. •I 
IF N EQ. N~EMBS(S) THF.N RETUPN UNDEFWD;J I• ALL noNE. •I 
N = N + 1J /• SET PCR LARGER su3gers. •I 
(TUP(C))(2) = NJ I• SAVE -~EW N FOR NEXt ENTR~. *I 
C1 = OJ 
M = NEXNPO~CC1, N, S)J 
END IF J 

(TUP(C) > (1) 'II C1J 
RETURN Mi 

I• SAVE :c1 F'OR NEXT ENTRY, •I 

ENO NEXPOWJ 
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NEXNPOW 

DEFINEF NEXNFOWCC~ N, S>J 

/• THIS ROUTINE F'INUS THE -NEXT- SUBSET ors OF' SIZ~ N, AFTER 
THE ONE INDtCATEO BY THE CONlRCL ITEM c, ON rIRST ~N,RY, T~E 
CALLER SHOUI..C HAVE C III TME H TEGER ZERO, ON SUBSEQllENT 
ENTRIES, THE CALLER SHOULD NCT ALTER C. ~OMPLETION or THE 
PROCESS. IS H,DICATED BY THIS RCUTINE-S RETURNING AN UNDF:F'INED 
VALUE. . . 

THE ALGORITHM WORKS BY FIRST ARRANGING TME MEM~EqS OF s 
INTO A VECTOR U (IN AN ARBIT~ARY ORDER> Of ~ENGtM 4S, AN 
AUXILARY VECTOR V Of INTEGERS <1,2, ••• ,N> is ALSO MAO~ UP. O~ 
EACH ENfRY, 'THE LAST POSSIBLE COMPONENT or V is INC~EASF.D ev 
THE LEAST POSSIBL~ AMOUNT, FOR EXAMPLE~ ir N • 3 AND •s = !, 
THE SUCCESSIVE VALUES or V AFE: 

<1,2,3> 
<1,2,4> 
<1,2,5> 
<1,3,4> 
<1,3,5> 

<1,4,5> 
<2,3,4> 
< 2 ,':!, 5 > 
<2,4,5> 
<3 ,.4, 5> 

THE CONTROL ITEM C IS A PAIR (U,V), WHER; u IS THE ve~TnR OF' 
MEMBERS OF S, AND V IS THE VECTOR OF INTE~ERS. •I 

VN = VALUE(N)J 
SIZES= NMEMBS(S)J 
IF VN LT. 0 OR, VN GT. SIZES THEN RETU~N UNDErWDJI 
IF C EQ. O 'T!~EN 

/• FIRST E~TRY, BUILD U A~D V, •I 
U = <TUPLE, :<SIZES, SIZES, NULT.>>J 
l = o; 
Ci= OJ 

LOOP: M = NEXTMEM<C1, S)J 
IF M EQ, UNDerwo THEN GO TC OUTJ: 
I = I • 1.J 
CTUP(U) )( I) ■ MJ 
GO TO LOCPJ 

our, V = <TUPLE~ :<N, N, NULT,>>; 
(1 s vi S ~, fTUP<V>><I> = IJJ 
C = <TUPLE, <2~ ·2, <U,V>>>; 

ELSE . 
I• SUBSEQUENT ENTRY, EXTR,CT U AND v. iND iNCREM~NT V, •I 
U = ( T U P ( C ) ) ( 1 ·, J 
V = <TUPCC))(2)J 
/• IF POSSIBLE~ INCREMENT THE LAST COM~~NENt or v. •I 
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IF N EQ. 0 THEN RETURN UNDErwo;; 
IF <TUP<V))(N) LT. SIZES T~E~ 

CTUP(V))(N) ■ (TUP(V))CN> + 1; 
ELSE 

I• SEARCM v, RIG~T TO LEFT, roR A CO~PONENT T~AT OAN BE 
l NCREME.NTEC, • / 

(N > vI '! 1) 
IF <TUPCV)~CI> LT. C(TLPCV>><I+1>•1~ TMEN 

/• t~CREMENT I-TH CO~PONENT, ~ND ~ESET ·L~ TO R!QHT.•1 
.(I S ~JS N> (TUP<V>>CJ) = CTUP~V~>tr~ • i • J - IJJ 
GO TC MAKEJ 
END IF'J 

Er~D "'II 
I• NO COMPONENT OF' V CAN BE INCRE~sen. tMROUGH. ~, 
RETURN Ut\DErwoJ 
END IF C'TUPCV) > <N> J 

END IF C EQ, OJ 

/• MAKE THE :SUBSET Of' S CORRE SFOND I NG TO V. •I 
MAKEi R = NULLSETJ 

(1 S vi SN) AUGAOK((TUP(U)>((TUPfV>><t~>. ~)IJ 
. RETURN R J 
·END NE xr~F-OW J 
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6.34 RANDOM ROUTINES -----~-.. ., ...... 
THE ROUTINES IN THIS SECTION IMPLEM:NT TME SETL RANDOM. 

x. THE ROUTINE NAMES AND MEftNINGS roR t,~ VARIOUS ~ATA TYPES 
F'OR X ARE: 

RANDOH(X) MAIN ROUTINE 
RANlNTtNi NA SETL INTEGER, RET~RNS I~ 1 ~ t ~ N, 

UNIF'ORML~ DISTRIRUT&D 
RANREAL(R) R REAL, ~ETURNS X, fi ~ X < R, UNtrORH 
RANBOOLCB) BA BOOLEAN STRING, ~~TURNS B~I~~ 

1 S ! S ,e, I UNirOR~ 
RANCHARCC) CA CHARACTER STRING, RETURNS C<!>, 

1 S IS ,c, I UNJrOR'-1 
RANTUPLCT> TA TUPLE, RETURNS TCT>, i, I ~ 4T, 

I UNtF'OR~ . 
RANSET(S) s A SET, RETURNS A MeMBER M•s·. M UNtF'ORMLY 

DISTRIBUTED OVERS 
RANBASE(N) NAN ORDINARY CNON-s;iL> iNTEGER~ R~TURNS 

I, 0 S I < N, UNirOR'-1LY oiSTRIBIJT~D. 

CEF'INEF RANDCM(X)J I• ENTRY POINT roR T~~ SETL RANno~. x. •I 
F'LOW TYPE ( X, EQ I I NT$ 

TVPECX) EQ, REALS 
TYPE<X) EQ, BOOLS 
TYPE<X) EQ, CHARS 
TYPECX) 9Q, TUPLS 
TYPE<X).EQ, SETS 
<ERRTYPE(-RANDOM, 
END rLOWJ 

'END RANDOMJ 

<RETURN RANINTCXiJ~, 
<RETUFN RANR6ALCX>1>, 
<RETURN RANBOO~<X>1>, 
<RETURN RANCMAR<i>a>, 
(RETURN RANTUPL(~)j), 
<RETURN RANSETcx,,~. 
)(~ X IS:llf, X)J)J 

-648-



R~NINT 

DEFINEF RANl~T(N)J 

/• N IS A SETL INTEGER, WHICr MUST 9E ~ 1. TME RESULT TS A 
SETL INTEGER UNlrORM ON t1,Nl. •I 

VN = VALUECN)J 
IF VN LE. 0 ·T~EN ERRV•Lc-RANCOM,N, NS b:~~ N)JJ 

I• MOST OF 1rE STEPS BELOW HiVE TO DO WITM THE F'ACT THAT N 
CAN EXCEED THE RANGE or THE EASIC RANDOM NUMBER GEN~RATnR, 
RANBASE. THE GLOBAL VARIABLE MAXRNP1 IS THE MA)(IMUM ~ANOOM 
NUMBER RETUR~ABLE rROM RANBASE, PLUS ONE lRECALL THAT 
0 S RANBASE1N> S N•1), •I 

Ra RAN~ASEtVN//MAXRNPl)J I• INITIALilE TME RESUL~ R,· •I 
I<= VN/MAXRNP1J I• '!\UMBER OF' Ti~r;S F't'lR LOOI' ~ELOW, •1 
(1 S vI SK> I• LSUALLY K = O. •I 

R = R•MAXRNPl • RANBASE(MAXRNP1>: 
END "ll 

RETURN <INT, R•1>J 
END RANINT; 

DEFINEF AANREALtR)J 

RANREAL 

/• R IS A REAL, AND MUST BE> 0, TME RES~LT IS A R~~L UNir~RM 
ON CO,R>, •I 

VR = VALUECR)J 
IF VR LE, 0 'TMEN ERRVALC-RANtOM, R, R S O:llf, R)JJ 

/• WE ASSUME THE EXISTENCE OF A FLOAT F'U~CTION THAT cnNVERTS 
AN INTEGER TC FLOATING POINT, 'TRUNCATING ~N tME RiGMT IF' 
NECESSARY. •/ 

RETURN <REAL, VR•rLOAT(RANBASECMAXRNP1>~lfLOAT(MA~RN~1)>J 
END RANRl:ALJ 
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R.ANBOOL •·• ' 

,CErINEF RANBOOL<B)J 

/• B IS A BOC~EAN "STRING, T~E RESULT ts i RANDnM BtT F'ROM R, 
UN I FOR ML V D ISTR I 8UTED OVER HE LENGTH OF" R. i F' B ni NUI.L, THF. 
RESULT IS UNtEFINED, •I 

IF B EC .. NULLBSTR ·T~EN RETUR~ LNDEFWD: 
ELSE RETURN -CF"BSTR<B, RAN INT( ,1,VALUECB> >): 1 
END RANBOOLJ 

R.ANCMAR 

DErIN~F RANC~AR(C)J 

*I 

I• C IS A CMARACTER STRING, "THE RESULT IS A RANDOM CHARACTER 
FROM C, UNIP.ORMLV OISTRJBUTEt OVER THE LENGTH or c. IF C IS 
NULL, THE RESULT IS UNOF.F"INEt, •I 

IF C EQ. NULLCSTR "THEN RETUR~ UNDEFWOJ 
ELSE RETURN ,QF"CSTR(C, RANINTC,1,VALUE<c»·)JI 
END RANCHARJ 

R,A.NTUPL 

DErlNEF RAN1~PL{T~J 

·1• T IS A TUFLE, "THE RESULT IS A RANDOM OOMPON~NT rR~M T, 
UNIFORMLY DtSTRIBUTED OVER ITS LENGTH. tf t is SP4RSR, THE~ 
UNDEFINED RES~LTS WILL PREOO~INATE IN P~O~oRjioN ~o ITS 
SPARSENESS I ·•/ 

IF T EQ. NULLTUPLE THEN RETU~N UNDEF'WO: 
ELSE RETURN •CF'TUPLE<T, RANIN'T(t\COMPSCT>'>>11 

*I 

I• THIS IS NOT VERY EFFICIENT, BUT THIS WiLL PROBABL~ BE A 
VERY LOW use ROUTINE~ so IT~5 BETTER TO SAVE SPACE TN TME RUN 
TIME LIBRARY, •I 
,ENO RANTUPLJ · 
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R.ANSET 

DErlNEF RANSET(S)J 

/• s IS A SET, TME RESULT I~ A RANDOM MEMBER or S, UNlF'ORMLY 
DISTRIBUTED ,CVER s. Ir s IS NULL, THE RE:SULT. IS UNnerINED, 

T~IS RO~TINE IS DirF'ICULT TO IMPLEMENT EF"F'iCIENTLY. ONE 
WOULD LIKE TC BEGIN PROSING AT A UNIF'ORM~V RANDOM HAS4 TABLe 
ENTRY. BUT 'TM l S WOULD NOT RESULT IN A UN f F'ORM D 1 STR i qUT I ON 0~ 
RESULTS, BECAUSE F'QR A GIVEN SET THE USEO ENTRIES ARE NnT 
UNIFOR~LV DfSTRIBUTED, EACH ENTRY MAY coN+AIN A LIST nF' 
ARRITRARV LE~GTH, AND A MEMBER IN A LIST MAY BE A s~er.IAL 
PA IR, WHICH REPRESENTS MANY :t, EMBERS. 

FOR SOME ALGORITHMS IT ~AY BE VERY IMPORTANT TMAT THE 
RESULTS ARE ·UNIF'ORMLV OISTRtEUT~D. THEREfo~e~ WITH t~l~ IN 
MIND AND GUESSING THAT TMIS kill BE A rjJ~L~ (ow-us~ ~OUTIN~. 
WE TAKE THE 'VERY SIMPLE BUT INEF"FICiENT Ai,PROACM or Gl:INF.FUTINr. 
A RANDOM INTEGER N LESS THAN THE SIZE or S, AND STE~PINr, 
THROUGH SN TIMES~ USING NEXTMEM. •I 

IF s EQ. NULLSET THEN RETURN UNoer~o;; 

N = RANBASEf~MEMBS(S))J I• CS N < NMEM~SCS), •I 
C = O; 
(0 S vl ~ N> M • NEXTHEM(C, S);J 
RETURN MJ 
END RANSETJ 
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RAN6ASE 

OErINEf RANB~SE<K)J 

/* K IS AN ORDINARY (NON~SETL> INTEGER. THE RESULTruq AN 
ORDINARY INTEGER rROM OTO K-1, UNIFORMLY oiSTRiBUTeD. 

THIS IS THE TAUSWORTHE GENERATOR ro~ A 32 BIT MACHINE 
(SIGN AND 31 MAGNtTUDE), THE SEQUENCE ts or MA~IMUM LENGTH 
FOR THE HORD SIZE USED, 

REFERENCES I 

1, T AUSWORTHE, ROBERT C,, MATMEMAT I ~s or COMPlJTA TI ON 
1965 PAGES 201-209. 

2, WHfTTLESLEY, J.~ CACM SEPTEMBER t968 PAGES 641-644. 
3, PAY~E, W, H,, CACM -~A~UARY 197ri ~AGE 57, 

THE ROUTtNE USES PARAMETERS N AND M, WHi~H ARE C4O~EN 
BASED ON THE MACHIN6-S WORD -SIZE. ONE N1RMAL(Y CHOns~s N 
EQUAL To THE WORD SIZE LESS ·CNE, AND THS~ MAS roLLnW91 

N M 
-····•-t!i•~----
11 2 
15 1, 4, OR 7 
17 J, 5, OR 6 
23 5 OR 9 
31 3~ 6, ?, OR 1:! 
63 1, ·5, OR 31 . 

. ' 

THE CA~CULATION OF SUIT~BLE VALUES or M roR A ~!VENN 
INVOLVES FINtlNG PRIMITIVE PCLYNOMI~LS: SEE <i> PAQ~ ~O~, 

THIS ROtTINE uses A GLOEAL VARIABLE iR~NDSEED- cqee 
SECTION 5.1,S), WHICH MUST BE INlTIALIZ~D TO A BOOL~AN STRl~G~ 
NOT ALL ZEROS, or LENGTM N, •I 
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/• FIRST UPDATE TME VALUE OF iRANDSEEO-. •I 
AGAINI B = RANDSEEO(il<•RANDSEEO•M>>; 

A= RANDSEEO EXOR, a1 
8 ·= A<N•M+1f~> • CN-M)•0BJ 
RANDSEED = A EXOR, BJ 

I• RiG~T SMtrT M._ •I 

I• Lert s~irt N•H, *I 

I• NOW CONVERT -RANDSEEO-TO A~ INTEGER RANGiNG FROM n TO 
·K-1, WHERE K < 2 EXP, N. THIS IS DONE BV TRUNCATINO 
-RANDSEED~ TC THE APPROPRIATE ~UMBER OF 3iTS. tF T~E R~SULT 
IS LESS THANK, IT IS RETU~NEO. OTHERWiS~ tHE ROUTIN~ STARTS 
ALL OVER AGAIN, THIS GUARANTEES A UNIFORMLY DISTRI~UTE~ 
RESULT, THE PROCESS MUST TE~MINATF., AS ~RANDSEEDi rs or 
MAXIMUM PERlCO (2 EXP, N • 1>. •I 

·MASK= <•BITR.K>•1BJ ,. ALL ONES, LENOTM or K.•, 
RESULT= BITR,(RANDSEED AND, MASK>J 
IF RESULT GT, .K TMEN Gb TO AGAIN; 
ELSE RETURN ·RESULT - U J 
,END RANBASEJ 
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6.J5 ExPONE~TIAL ROUTINES 

-----·--·----~------
.cEFINEf EXPCX~ V}J I• ~NTRY POINT roR iH~ SETL X EXP~, v, ., 

Ir TYPEcX> EQ. INT THEN 
IF TYPE<Y) EQ, INT THEN RETURN EXPII~X~ Y)JJ 
IF TVPECY) EQ, ~EAL THEN RETURN EXPIR<X~ V~JJ 
ERRTYPE(-X EXP, Y, Y ISi_, Y>J 
END lFJ 

Ir TYPE<X> EQ, REAL THEN 
IF TYPE<Y) EQ, INT TMEN RETURN EXPRI<X~ V)1;· 
IF TYPECY) EQ, REAL .TMEN RETURN EXPRR~X~ V)JJ 
ERRTYPE<-X EXPi Y, Y ISi_, Y>J 
END lFJ 

ERRTYPE<~X EXP, ·y~ X lS:_, X)J 

I• NOTE: EiPrR, EXPRI. AND ·EXPRR ARE NOT SPECirIED H~R~ •• , 

ENO EXP: 

I• E)IPII 

DEFINEf EXPII(X~ Y)J 

/* THIS FUNCTION CALCULATES X EXP. Y FOR~ ~ND V INTE~ERS. 
THE DOMAIN OF oerINITION IS INDICATED ~~L~W~ ~HERE~> 1, 

---------------~~---------t ·ERR +1 •1 ·+1 +1 t 0 
t t 

' 0 •1 •1 •N -N , ·+1 
t t 
• ERR •1 •1 ERF ERR t -1 

' • 
' 0 +1 ••1 COt--PUTED t +N 

' t 
, :ERR +1 ••1 ERF ERR t -N 
-~----·······~~~8---------

0 +1 •1 •N -N 
BASE (X> 
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VX = VALUECX)J 
·yy = VALUECY)J 

IF ABS, vx LE. 1 THEN I• 'COLUMNS 1 - 3 or TABLE, •I 
IF" VX EQ, 0 TI-IEN I• 'COLUMN 1. •I 

IF VY LE, 0 THEN ERRVALC10 EXP, N, N ~ 6i•, V)JI 
EL SE RE T Li RN < I NT , 0 > J J / • 0 E X P • \J ', N ~ 1. • I 

ELSE . I• COLUMN 2 OR 3. •I 
MINUS :; VX LT·, 0 AND, (VY/12> EQ. 11 
RETURN <INT, rr MINUS THEN -1 ELSE •l>J 
END IF VXJ 

END IF ABS, VXJ 

/* COLUMN 4 ·CR 5 APPLIES, •I 

IF VY LT, 0 'TMEN ERRVAL<"X EXP, Y, A9S. X ~ 2', V < n'i,1, Y>JJ 

/* AT THIS PCINT ABS, X ~ 2 ANDY~ o. •I 
IF VY GE, <2 EXP, WS) TMEN I• WS = WO~n SIZE OF ~OMPUTER.•1 

ERRVAL(itX :exP. Y, ABS.X ~ .2, RESULT WOJLD NrJT FIT iN i 
+ itMEMORY, ·y ■ lid, V)J: 

/• WE NOW KNCW THAT VY F'!TS IN ONE WORD A~D HENCE V~ MAY BE 
EASILY DEALT WITH IN THE LOOF BeLOW. •I 

R = U 
XPOW2 = VXJ 

LOOP: IF CVY//2) 
VY= VY/21 

I• INITIALiZE RE~ULT, •I 
I• THIS IS X••L X••2, X••4~ ETC.~/ 

eQ, 1 TMEN R a •f<•XPOW2;: 

IF VY EQ, 0 'THEN RETURN 
XPOW2 = XPCW2•X?OW2J 

< l't-. T, R >; J 

GO TO LOOPJ 
END EXPI I; 
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6.36 MISCELLANEOUS ROUTINES 

I* TLPAOD1 •1 

DEFINE TUPADti(T~X)J 

/• THIS SUBROUTINE IS EQUIVALENT TOT= T • <X>~ EX~EPT THAT 
IF X IS UNDEFINED~ THE RESULTING TUPLE TWILL HiVE A TRAILl~G 
UNDEFINED COMPONENT (WHICH rs AN INVALID SETL OBJECT). 

THE ARGUMENTS ARE NOT V-LIDATED, tMF tONCATENATtON IS 
CONE IN-PLACE IF ~OSSIBLE, *I 

NEWLENGTH s: "COMPS<T) • 1J. 
IF NEWLENGTH GT, SPACE(T) THEN 

I• NO MORE ROOM INT, •I 
T = <TUPLE, :<NE~LENGTM~ NCCMPALLO<NE~LE~GTH~, TUPCT>>>J 
END IF'J 

/* NOW DO THE CONCATENATION, I~ PLACE. •I 
(TUP<T)>(NEWLENGTM) = XJ 
NCOMPS < T) = !NEW LENGTH J 
RETURN1 
-END TUPADD1J 
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Appendix 1. CATALOG OF SETL NEWSLETTERS AS OF JUNE 1975 

1. BALM-SETL -- a simple. implementation of SETL. M. C. Harrison 

2. No longer available. 

3. Modifications and extensions for SETL, Part l-

4. APL Version of Peter Markstein's McKeeman Table Routine. 

5. Miscellaneous algorithms written in SETL. J. T. Schwartz 

6. Revised SETL Version of McKeeman Parse. Peter Markstein. 

7. Modifications and extensions for SETL, Part 2. Dave Shields 

8. Additional Miscellaneous SETL. Algorithms. J. T. Schwartz 

9. Implementation and Language Design. M. c. Harrison 

10. Sorting Algorithm. Kurt Maly 

11. Modifications and extensions for SETL, Part 3. Dave Shields. 

12. Recapitulation of the Basic Parts of the SETL Language. J. Schwart 

13. Additional miscellaneous algorithms. J. T. Schwartz 

14. Additional syntactic extensions. J. T. Schwartz 

15. A proposed SETL implementation plan through the end of the 

bootstrap phase. J. T. Schwartz 

16. SETL 64-character set -- 48-character set/ 026 keypuncher 

CDC 6600 64-character set/ 029 keypuncher. Kurt Maly 

17. No longer available. 

18. Prelininary specification of BALMSETL conventions. D. ~-ields 

19. Lexical Description of SETL. Kurt Maly 

20. BALMSETL User's Guide (in Drief). D. Shields 

21. An Outside Review: Comments on the SETL Draft. 

22. Some small and large language extensions for consideration. 

J. Schwartz 

23. Current Status of BALMSETL Implementation. D. Shields 

24. Descript.i;on of a Register Allocation Algorithm. K. Kennedy 

25. Print Routine. B. Loerinc 

26. The currently specified form of SETL from a more fundamental 

point of view. J. T. Schwartz 

27. Code for the Postparse Setup Procedure (Postparse metalanguage 

analysis). J. T. Schwartz 

28. An Algorithm for Common Subexpression Elimination and Code 

Motion. K. Kennedy 
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~Q. Some issues connected with subroutine linkage. J. T. Schwartz 
1 • Sinister calls. J. T. Schwartz 

31. An additional preliminary remark on the importance of "object 

types" for SETL, with some reflections on the motion of ·

"data structure language". J. T. Schwartz 

32. Hyper-SETL procedural languages. J. T. Schwartz 

33. What is Programming? J. T. Schwartz 

34. Syntax revisions in preparation for implementation. J. Schwartz 

35. New form for IFF-statement. Dave Shields 

36. Syntactic and semantic conventions for programmer-definable 

object types (not available; replaced by Newsletter 76) JTS 

37. Initial description of an algorithm.for use-definition chaining 

in optimization. P. Owens, K. Kennedy. 

38. Algorithm for live-dead analysis including node-splitting for 

irreducible program graphs. K. Kennedy. 

39. More detailed suggestions concerning 'data strategy' 

elaborations for SETL. 

40. List of Newsletters 1-40. 

41. Additional planning detafl for the current and next phase 

SETL implementation. J. T. Schwartz 

42. · Revised conventions concerning tuples. J. T. Schwartz 

43. A parsing scheme for FORTRAN. s. Gruber 

44. Comprehensive SETL specifications. K. Maiy 

44a Modifications to Newsletter 44. K. Maly 

45. Semi-local SETL optimization. D. Shields 

of 

46. Generalized nodal span parse routine; preliminary-draft. J.T.S. 

47. Outline for a parsing scheme for SETL. K. Maly 

48. Toward a documentation of the String project's prqgram for 

parsing English sentences. J. Hobbs. 

49. Detailed specifications of certain SETL operations. H. Warren 

50. Three-phase parsing scheme for SETL. K. Maly 

51. List of Newsletters 41-51. 

52. Comments on SETL. Jay Earley 

53. SETL to LITTLE Translation: a first look. H. s. Warren 

~~- Current status of BALM-SETL 4. S. Gruber. 

SETL suggestions and questions. S. Finkelstein. 

56. Additional comments on some basic SETL operations. J. Earley. 
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56a. More Comments on SETL. J. Earley 

56b. More SETL Comments. J. Earley 

57. Minimizing Copying in SETL: Preliminary Observations. H. Warren 

58. Phase One of the SETL Compiler. K. Maly 
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In addition to items of general interest, the following index 
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functions defined in the present volume. These 'procedure' names' 

are shown in italics. In accordance with general SETL conven

tions, the names of infix and prefix operators are underlined. 
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unformatted input-

output 255,667 

unifiable clauses (in logical 

formulae) 36 8 

unilaterally linked list 260 

units (in logical 

formulae) 256,361 

universal quantifier 

- in SETLA 99 

-, storage procedure 

corresponding to 496 

universally quantified 

Boolean expressions 169 

unordered pair 160 

unordered tree generator 297 

unstacking operator. 497 

usedfpass 1 436 

use-definition chaining 435 

usedf 437 

value of a network flow 280 

value of a game position 397 

valued 399,401,402,405 

arsof 367 

walk 

while 

while-iterators 

(within compound 

with 

word 

-675-

308 

198,665 

198 

operators) 

203 

165,661 

505 
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