
Courant Computer Science Report #3

October 1974

Type Determination for

Very High Level Languages

Aaron M.Tenenbaum

Courant Institute of

Mathematical Sciences

Computer Science Department

New York University

Report No. NSO-3 prepared under Grant No.

NSF-GJ-1202x3 from the National Science Foundation

COURANT COMPUTER SCIENCE PUBLICATIONS

COURANT COMPUTER SCIENCE NOTES Price

On Programming: An Interim Report on the SETL Project .

Installment I :

General i ti es
J. T. Schwartz, 197Z, vii+160 pp. $ 4.25

Ins tal 1 ment 1

1

:

The SETL Language and Examples of Its Use
J. T. Schwartz, 197S, viii+520 pp. 13.00

A SETLB Primer . H. Mullish and M. Goldstein,
1973, v+201 pp. 5.25

Combinatorial Algorithms , E. 6. Whitehead, Jr.,

1973, vi+104 pp. 2.75

COURANT COMPUTER SCIENCE REPORTS

No. 1 ASL: A Proposed Variant of SETL
Henry Warren, Jr., 1972, 326 pp.

No. 2 A Metalanguage for Expressing Grammatical
Restrictions in Nodal Spans Parsing of Natural
Language , Jerry R. Hobbs, 1974, 266 pp.

No. 3 Type Determination for Very High Level

Languages . Aaron M. Tenenbaum, 1974, 171 pp.

No. 4 A Comprehensive Survey of Parsing Algorithms
for Programming Languages , Phillip Owens,
Forthcoming

.

A catalog of SETL Newsletters and other SETL-related
material is also available. Courant Computer Science
Reports are available upon request. Prepayment is

required for Courant Computer Science Notes . Please

address all communications to

COURANT INSTITUTE OF MATHEMATICAL SCIENCES
251 Mercer Street

New York, N. Y. 10012

COURANT INSTITUTE OF MATHEMATICAL SCIENCES

Computer Science NSO-3

TYPE DETERMINATION FOR VERY HIGH LEVEL LAl^GUAGES

Aaron M. Tenenbaxim

Report No. NSO-3 prepared under
Grant No. NSF -GJ-1202X3 from
the National Science Foundation

Table of Contents

Page

I

.

A Type Determination Algorithm 1

1. Introduction 1

2. A Lattice of Types 2

3. An Intuitive Introduction to Type Determination 16

4. Program Representation and Use Definition

Chaining 24

5. A Type Calculus and the First Method of Type

Determination 26

6. Functions and Transformations on Partially

Ordered Sets 30

7. The Second Method of Type Determination 36

8. Computing Types Algorithmically 48

II

.

Examples 56

1. Floyd's Treesort 58

2. Huffman Encoding 60

3. Multiplication of Permutations 63

4. Interval Analysis 65

5. Ford-Johnson Tournament Sort 67

6. Topological Connectivity Analysis 69

7. Summary of the Results 72

III. A SETL Specification of the Type-Finding Algorithm. 77

1. Representations of Programs and Preliminary

Processing 77

2. Representation of Type Symbols 81

-111-

Page

3. The Global Type Determination Algorithm 86

4. The First Method of Type Determination ' 89

5. The Second Method of Type Determination 91

IV. Concrete Algorithms of the Typefinder 97

1. The Data Structures in the SETL Version 97

2. Implementing the Typefinder in BALM 101

3. The Typefinder in PL/I 112

4. Sxommary and Conclusions 12 8

V. Modifications and Extensions of the

Typefinding Algorithm 131

1. Removing Type I Imprecisions 131

2. Mappings of One Argument 134

3. Applications of the Typefinder 137

Appendix. Tables for the aalo and baaktype Functions 142

Bibliography.

Index,

16 3

166

-IV-

Abstract

Many very high level languages are declaration-

free so that an identifier appearing in a program in such a

language need not refer to objects of specific data type.

Moreover, the semantic meaning of an operator symbol may

depend on the dynamic types of its operands. This may cause

such languages to be interpreted rather than compiled. In

the present thesis, we present two methods which alleviate

this problem by allowing the compile time detection of runtime

types. The first method determines the types of runtime

objects from the way these objects are defined, while the

second determines the types of runtime objects from the

way in which they are used. A SETL version of an implemented

typefinder incorporating both methods is presented. Examples

of the information developed by applying the typefinder to a

few programs are also presented. Realization of the type-

finder in languages of lower level than SETL is discussed.

Several possible applications of the information developed

by the typefinder are mentioned.

-V-

CHAPTER I

A TYPE DETERMINATION ALGORITHM

1. Introduction .

In many very high level languages, identifiers are not

constrained to refer to objects of particular type. Also,

in order to make maximum use of a small syntactic space, the

meaning of operator symbols may depend on the types of their

operands. In the SETL language (Schwartz 1973 a,b), for

example, the plus sign represents addition for numeric

operands, concatenation for tuples, character

strings, or bit strings and union for sets. Such

operations must either be interpreted directly or must

compile into a series of subroutine calls. These subroutines

must determine their operand types before executing the

instructions which will perform the particular operation.

It is desirable to perform this type determination

during compilation in order to speed execution. Such compile

time type determination also makes it unnecessary to

re-evaluate the type of an operand each time that it is

encountered in a loop. For all but the shortest running

programs, the time spent during compilation to determine

the types of operands should therefore be less than the

total time whi zh would have to be spent on the same task

during execution. Also, in production environments, the

object code of a single compilation may be executed numerous

times

.

-1-

2 . A Lattice of Types

In this section, we shall present the representation

of the types of SETL run time objects which our algorithm

will use. The representation is a simple one and similar

representations are directly applicable to any high level

programming language.

We define a family of type symbols each of which

designates a "state of knowledge" about the type of a run

time SETL object. These type symbols are composed from

elementary type symbols which designate the basic scalar

types of the language. More complex type symbols are

developed from the elementary type symbols by using

"constructor signs" which designate aggregates of elementary

type objects or which indicate that our state of knowledge

of the type of a specific object is not sufficient to

identify a definite type but only enough to state that the

object must be one of several alternate types.

We now present a formal definition of a family of type

symbols for the SETL language. As an auxiliary quantity

needed in the definition, we also define a function nl

,

called the nesting level function from the set of type

symbols onto the set {0,1,2,3}. To simplify later proofs

we also define a function rl, the recursion level function

from the set of types into the set of nonnegative integers.

-2-

Definition 1 . The following symbols are elementary type

symbols, each designating a specific SETL type:

type symbol type

ti

Examples of this are identifiers which are used before they

are defined or objects which are used both as integers and

as bit strings without any conversions or overlay definitions

having been encountered.

The symbol tg designates "the general type" and

indicates that nothing is known about an object's type

and that the object may be of any type. This symbol is

also used when the type of an object is sufficiently complex

that we do not wish to pay the overhead of keeping all of

the detailed information about the object's type. This

notion will be further elucidated in later definitions.

If t is an elementary type symbol then ril(t) = n£(t) = 0.

Next, we define a form of "compound" type symbol which

will be used when we know that an object is of either one

of two types but do not know its specific type.

Definition 3 . Let tl he any type symbol not equal to

tz or tg and let t2 be any elementary type symbol not

equal to tz or tg . Then the alternation of tl and t2

is the symbol denoted by tl\t2, or t2\tl. The

alternands of tl\t2 are tl, t2, tl\t2 and, if tl

is itself an alternation, all the alternands of tl.

The symbols denoted by {tl\t2) \tZ and tl\ {t2\tS) are

identified with each other and will henceforth be denoted

by tl\t2\t2. An alternation is a type symbol if no two

of its alternands are the same. The primary alternands of

tl\t2\ . . . \tn , where no ti is an alternation, are defined

as tly t2, . .
. i tn . If tl is the non-elementary primary

alternand of tl\t2 then we define z\l{tl\t2) = nl{tl)

and rZ{tl\t2) = rSi(tl) + 1.

There are several points to note about the above

definition. First, no alternation can have more than one

non-elementary primary alternand. That is, we provide no

way of designating an object which is known to be either

a set of integers or a tuple of integers. Such an object

will therefore be designated by tg . This is an arbitrary

decision, and reflects a willingness to forego certain

type information in order to simplify the storage and

manipulation of type symbols. Where to draw the line

between simplicity (which translates into efficiency of

the algorithm) and the desire for more information is

the question that must be faced in such decisions.

An extremely simple, but almost useless, type system

would be one in which alternations would be nonexistent

and where any imprecision in the knowledge of types would

result in the appearance of the indefinite type symbol,

tg.

We do not define the alternations of tg and ts with

any other types. If an object is known to be either

of general type or an integer, for example, then that

object could be of any possible type, so it is of type tg.

-5-

tg is thus an absorptive element for alternation. Similarly,

tz is an identity element for alternation since if an object

is known to be either erroneous or an integer, then it is

known to be an integer. This follows from the simple fact

that, in compilation, program correctness will be assumed

unless we can prove otherwise.

, The third and final point is that the syntactic meta-

operation designated by "|" is both commutative and

associative by the definition. Thus the forms tl|t2 and

t2 I tl designate the same type symbol and the form

tl|t2|t3 is well defined.

Example . ti | tb I tc designates "either an integer or a bit

string or a character string". nil (ti
|
tb

|

tc) = and

r£(ti I tb I tc) = 2.

We now define a new class of type symbols which

designate aggregate types.

Definition 4. Let tl be a type symbol and n£(tl) < 3.

Then [tl] is a type symbol which designates "a non-null

set of objects of type designated by tl." The nesting

and recursion levels of such a symbol are defined by

n£({ti}) = nl{tl) + 1 and r£{{ti}) = r£(ti) + 1.

-6-

Examples . {{ti}] designates a "non-null set of non-null

sets of integers". {tb}\tn designates a "possibly null

set of bit strings." {ti\tc} designates "a set each of

whose elements is an integer or character string."

ni{{{ti}}) = 2, riditi}}) = 2, ni{{tb}\tn) = 1,

r!i({tb}\tn) = 2, ni{{ti\tc}) = 1, ri(,{ti\ta}) = 2.

Definition 5. Let ti be a type symbol and nii(ti) < 3.

Then [tl] is a type symbol which designates "a non-null

tuple whose components are of type designated by tl"

.

The nesting and recursion levels of such a symbol are

defined by nli[tl]) = ni{tl) + 1 and ri([tl]) = rZ{tl) + 1.

Examples [{tb}\ti\tc] designates "a non-null tuple, each

of whose components is a set of bit strings, an integer or a

character string". nl { [{tb} \
ti\ tc]) = 2 and

r£([{tb}\ ti\ tc]) = 4.

Definition 6. Let tl,t2,...,tk be type symbols such that

nl{tl) < 3, n£(t2) < 3, ..., ni{tk) < 3. Then

<tl,t2,...,tk> is a type symbol which designates "a tuple

of length k whose components are of types designated by

tl,...ytk respectively." The nesting and recursion levels

are defined by nl {.<tl, . . . , tk>) = max (nil (t J) , . . . ,n£ (t/c)) + 1

and ri{<tl , . . . ,tk>) = max {ri (tl) , . .

.

,rl (tk)) + 1.

-7-

Example . <ti\ tb ^ to, {tg}i tt> designates "a tuple of length 4

whose first component is an integer or a bit string, whose

second component is a character string, whose third component

is a non-null set and whose fourth component is the null

tuple." ni (<ti\tb,taAtg}^tt>) = 2, rl [<ti\tb , tc , {tgh tt>) = 2.

We do not define any type symbol with nesting level

greater than 3. A smaller or larger nesting level limit ' '
'

would have been possible and would correspondingly decrease

or increase the complexity of the type system. However a '

finite upper bound on the maximum level of nesting is

necessary to insure that our algorithm will always terminate.

We shall return to this point in our later discussion.

Thus, an object known to be a set of sets of sets of sets

of integers will be designated as type {{{tg]}} rather than

{{{{ti}]]} , which is not a type symbol according to our defi-

nition. Similarly, <tiAtb\ [ta\<ti, tb , ta>]] , [[ti]] ,{to\ [[tb]]]>

is designated by <ti^ {tb\ [tg]] , [[ti]] , {to\ [tg]}> .

Thus far we have defined a family of type symbols;

we now build an algebraic structure on this feimily. We

define two binary operations on the collection of type

symbols and show that the collection together with the

two operations forms a lattice.

-8-

The first operation, type disjunction is a generalization

of alternation. Whereas alternation was a method for

creating new type symbols, disjunction is an operation

which operates on two types symbols to produce a third symbol.

Recall that one of the primary alternands in any alterna-

tion must be an elementary type symbol. Also, tz and tg

may not appear as alternands. Disjunction removes these

restrictions. The disjunction of any two type symbols is

that type symbol which designates an object which is known

to be of either of the two input types. Note that the

disjunction of two type symbols is one of the type symbols

previously defined in Definitions 1-6 and is not some new

"disjunct" type symbol.

We now present a formal definition of disjunction.

Definition 7. Given two type symbols, tl and t2 , we define

the type disjunction of tl and t2 , written disCtlyt2),

as follows:

dis(tl,t^) = di.s {tg ,tl) = tg

disitlftl) = dis{tl,tz)

= dis(tz,tl) = tl

dis{tl,t2) ~ dis{t2,tl) Etl\t2

dis{tl\t2,t3) =dis it 3, tl
I

t2)

5 tl\t2

for any

type symbol, tl

for any type symbol tl which

is not an alternation,

tl^tz , tg ; and t2 such that

nl{t2) = 0, t2^tz ,tg ,tl.

for any type symbols tl,t2,t3',

if t3 is an alternand of tl\t2.

-9-

dis (tl\ t2^ 1 3) =6.is(t3 , tl\ t2) for any elementary type symbol

s dis {tl , t3) \t2 t2 , and t3 any type symbol which

is neither an alternation nor an

alternand of tl\t2 and is not

' equal to tz or tg; such that

dis{tl,t3) ^ tg.

dxs{tl\t2 ,t3\t4) for any type symbols .

=dis {di.s {t l\ t2 ,t 3) ,t 4) tl ,t2 ,t3,t4.

dxs {{tl] ,{t2})={di.s{.tl ,t2)]') tor any type symbols

dis([ti] , [t2]) = ldis(tl, t2)] J
tl,t2.

dis {<tl , . . .,tk> ,<tl' , . . , ,tk'>) = <dis{tl,tl') , . . .,dis{tk,tk')>

for any type symbols tl,...tk,tl',..

dis(<tl , . .

.

,tk>r<tl' , . .

.

,tj'>

= [[dis: t& <tl,. . . ,tk, tl' , . . .,tj '>]t]

for any type symbols

where [dis: t s <tly...ytn>]t

represents

dis(tn, dxs [t (n-1) , . . . ,dis(t2 ,tl) . .

for any type symbolsdis([tl] ,<t2 , . . . ,tk>)

=dis(<t2, . .

.

,tk> , [tl]

)

=[[dis: t&<tl, . .
.
, tk>] t]

dis(tl,t2) = tg

tk

))

for all type symbols tl,t2 which

do not meet the above conditions

-10-

Examples

dis(ti ,tb) = ti\tb dis{ti\ta,tb) = ti\tb\to

dis{{ti],tb) = {ti)\tb dis ({ tt }
|
{ ti }) = {ti\tb}

dis{ti\tb,tb\to)= ti\to\tb dis{{ti\tb} Atb\tc]) = {ti\to\tb}

dis{{ti]\tb,tg) = tg dis {{ti] \tb , {tc} \ti)

dis{[ta] ,<ti,tb,tc>) = [ta\tb\to\ti] = {ti\to)\ti\tb

di.s {{ti}\tn,[ti]\ti) = tg dis ([ti] , { ti }) = tg

dis{{[tb]\ti}A<[to],ti>\ta]) = {[[ta]\tb\ti] \ta\ti}

Disjunction is both commutative and

associative. This can be proven by induction on the recur-

sion level using a case-by-case analysis. Intuitively,

the disjunction of two type symbols is that type symbol

which designates an object which is known to have either of

the two types designated by the input symbols, so that the

order of the operands is immaterial. Similarly the disjunc-

tion of three type symbols is that type symbol which

designates an object known to have one of the three types

designated by the input symbol so that it makes no difference

which two type symbols we choose to disjoin first.

The class of objects of type designated by the

disjunction of two types tl and t2 includes both

the class of objects of the type designated hy tl

and the class of objects of the type designated by t2.

This is because in forming the disjunction t from tl and t2

we are 'becoming "vaguer" in the information that is known

-11-

about an object's type, so that more objects may be

described by t than by either tl or t2

.

The

type tg , which is the absorptive element for disjunction

(as it was for alternation), can designate any SETL runtime

object.

We now define a second binary operation on the set of -

type symbols. This operation, type aonjunation,

designates the type of an object known to be of both of

the types designated by its two operands, or the error

type symbol, ts, if the two types are incompatible.

Definition 8. Given the two type symbols tl and t2 , we

define the type oonjunation of tl and t2 , written oon(tl, t2)

as follows:

conitl ,tg) = con(.tg ,tl) for any type symbol tl.

= con {tl,tl) = tl

con {tl , tz) =con(tz

,

tl) = tz

con{{tl) ,{t2})^{con{.tl ,t2)] 1 for any type symbols tl,t2 such

coniitl] ,[t2]) [con{tl ,t2)]
J

that conitl, t2) i- tz.

con{<tl, . . .^tk>,<tl' , . . . ,tk'>) = <con(tl,tl') , . . . ,con(tk,tk')>

for all type symbols tlt...,tk, tl',...,tk',

provided that 1 ^ Vj ± k , con{tj , tj ')^ tz .

con[[tl] ,<t2, . . . ^tk>) = <con(tlj, t2) , conitl ,t3) ^ ... ^conitl ,tk) >

for all type symbols tl,...,tk

provided that 2 <_ Vj < fe , conitl , to) ^ tz.

conitl\t2 ,t3) = dxsiconitl,t3) ,conit2 ,t2))

. tor all type symbols tl ,t2 ,t2 .

-12-

con Us ,tl \t2) = dis{con{tl ,t2) , con(t2,t3))

for all type symbols tl,t2,tS; tS not an alternation

con (tl,t 2) = tz

for all type symbols tl,t2 such that none of the above

conditions is met.

Examples

con{.{ti}\tb^ ta\tb) = tb con (.{ti\ to} ^ {tb \ti}) = {ti}

con{<ti,to> ,<ti,tCyta>) = tz con{[ti\tb] , <ti ,ti , ti ^ tb>)

con({ti}| ti ,{tb\tc]) = tz = <ti, ti ,ti , tb>

con<,{ti]\{tc]Ato\tb]) =[tc] .

Conjunction is also commutative and associative. The proof

is by induction on the recursion level, using a case-by-case

analysis. The class of objects whose types may be designated by the

conjionction of two types is included in the class of objects

whose types may be designated by either of the input types.

This is because in forming the conjunction t of tl and t2

we are becoming "more precise" in the information that is

known about an object's type so that fewer objects are

described by t than by either tl or t2. The type tz which

is the absorptive element for conjunction designates no

actual SETL runtime object, and when it appears indicates

that no object with the properties required in some

particular program context can exist.

Two more facts can be proven about the set T of type

-13-

symbols and the operations of disjunction and conjunction.

These are the absorptive laws and state that for all

type symbols tl and t2

,

conitl, dis{tl ,t2)) = tl dis{tl, con{t2 ,t2)) = tl.

Again, the proofs are by induction on the recursion levels.

The absorptive laws together with tlie commutative and

associative laws are all that is necessary to show that the

system (T,con,dis) fomis a lattice, so that we may now use

all of the properties of a general lattice in connection

with our type system. In particular, if we define the rela-

tion < on T by i^ ± *2 if and only if dis{tl,t2) = t2

(this is of course completely equivalent to con{tI,t2) = tl) ,

then the system {t, <} forms a partially ordered set.

Informally, the statement tl £ t2 expresses the notion

that a larger class of objects can be designated by type

symbol t2 than by tl, i.e., that the type information

implied by t2 is "vaguer" than that implied by tl

.

tg is the "vaguest" element of T and can designate

any SETL run time object, while tz is the "most precise",

element of T and can designate no SETL runtime object.

Definition 9. Given a partially ordered set (P, <} and

S c p. Then a maximal [minimal] element of S is an

element pes such that (^ p' e s - {p}) ,
p' > p [p' £ p].

A maximum [minimum] element of S is an element p 6 S such

that (Vp' G S) , p ^ p' [p <_ p']- A lattice is called

-14-

bounded if it has a maximum and minimum element. The

maximum element is denoted by 1 and the minimum element

by 0.

Theorem 1. {T,dis,con} is a bounded lattice with maximum

element tg and minimum element tz.

Proof : Follows immediately from the identities

dis(ti,tgr) = tg and dis(ti,t2) = tl.

Definition 10. Given a partially ordered set {P , _<} and

S = {p,,p2/-..} £ P, thQ-i S is a chain if Pi £ Po £ Po £• • • •

The length of S is its cardinality.

Despite the fact that we have imposed a limit on the

nesting level of type symbols, the set T is not a finite

set. This is because of the presence in T of symbols

representing tuples of arbitrarily large known length.

However, we can prove that any chain in T must be of

finite length.

Theorem 2. Any chain in T is of finite length.

Proof : Suppose that a chain of infinite length existed in T.

Then there would exist a chain containing two elements

<tl,...,tk> and <tl ',..., tj ' > where k 7^ j . Then

<tl,...,tk> <_ <tl' , . . . , tj ' > which means that

dis(<tl,. .
.
,tk>,<tl' , . . . ,tj •>) = <tl' ,. .

. ,tj '>.

But this is clearly not the case since

dis(<tl, . .

.

,tk>,<tl' , . .

.

,tj' >)=[[dis:te<tl, ..., tk , tl ',..., tj '>] t]

-15-

We will see later that the above fact that all chains

are of finite length is of importance in insuring termina-

tion of the algorithms to be presented. Note also that if

we had not imposed a maximiam nesting level this property

would fail to hold and we could have infinite chains such as

tg > {tg} > {{tg}} > {{{tg}}} > {{{{tg}}}} > ...

3. An Intuitive Introduction to Type Determination .

Having presented a method for representing data types

and having proved some elementary properties of the resultant

structure, we shall now give an intuitive description of the

method we propose to use for determining the types of runtime

objects from a static program text. There are two methods

which will be used to determine object types. The first

method examines the way in which objects are defined, and

determine the data types which can result from particular

methods of definition. Initially the types of all constants

in a program are known and all program variables (with the

exception of those which are defined by read statements) are

ultimately defined in terms of these constants. If an object

is defined by applying an operator to two constants, the

type of can be deduced from knowledge of the operator and

the data types of the constants . Once the type of this

defined object has been deduced, it can be used in deducing

the type of other objects which are defined in terms of it.

-16-

Consider, for example, t±ie following SETL sequence:

X = {y}

;

(1)

z = X + {1,2};

Although nothing is known about the type of y (here, we

ignore the fact that the type of y may be known from the

way it was defined in a previous program segment) and its

type must therefore be taken as tg , it can be deduced that

s is a set (described by {tg}) . We also see that in the

operation z = x + {1,2}, the plus operator must represent

set union; so that during compilation we can generate

"union- forming" code directly rather than having to call

a subroutine which must first make a runtime determination

of the meaning of the plus sign.

This first method of type determination propagates type

information in the direction of execution flow. The types

of quantities which serve as inputs to operations deter-

mine the type of the operation output and thus contribute

to the determination of the types of other quantities.

This method applies in straightforward fashion to the case

of a basic block, i.e. a piece of straight line code with

a single entry and exit point. If a definition appears

within such a block, the operation which defines the input

to that definition is readily identifiable as the last

operation whose target identifier is the same as the input

identifier.

-17-

However, in the presence of flow, things become more

complicated. Consider, for example, the situation shown

in Figure 1.

y

z

The second or "backwards" method of type determination

deduces the types of runtime objects from the way in which

these objects are used. The application of certain opera-

tions to an object can serve to restrict the range of

types which that object may validly take on. For example,

consider the SETL sequence:

1. read y , s;

(2) 2 . X = y + z;

3 . h) = hd X ;

In statement 3, the fact that the hd operation is applied

to X implies that x is a tuple. We then note that the plus

operation in statement 2 produces a tuple which implies that

its inputs are tuples and that the plus operation represents

tuple concatenation. This allows us to deduce the types of

y and 2 which are read at statement 1.

This method of type determination proceeds in reverse

order of control flow. Quantities Q.,Q,-)i--- have their types

determined from the way tliat they are subsequently used.

This information may then assi: t; in determining the types

of quantities which are used in defining Q^^, Q„j,

Whereas the first method provides no information about

an object defined by a read statement, the second method may

allow us to deduce the type of such an object fromi its

subsequent uses. This allows us to insert runtime checks

at each read statement to ensure that the item read in is

of a type which is compatible with subsequent uses.

-20-

As with the first method, the presence of flow compli-

cates the second method. Consider the example oE Figure 3:

In such a case, we can only assign tlie type tg to x.

A similar situation is shown in Figure 4.

4 . Program Representation and Use-Definition Chaining .

In this section we shall describe a schematized form

in which programs will be represented in our type deterr.-iina-

tion algorithm. Each program is regarded as a set of

basia blocks together with a multivalued successor function

defined on the set of basic blocks and with range in that

same set. Each basic block consists of an ordered set of

definitions . Within each block, control is assumed to

proceed from the first definition in the block, through all

succeeding definitions in the block according to the order-

ing. The possible paths of control flow between blocks of

a program are defined by the block successor function. Each

definition in a schematized program consists of three

components

:

i) an operator, op;

ii) a set of input variables, v^,...,v,;

iii) an output variable, x.

, Let defs be the set of definitions in a program, ordered

in some arbitrary fashion. We let d. represent the tth

definition in defs. If d - d . , we let type(d) and type(i)

denote the type of the output variable of definition d.

Note that the same variable may be the target of

different definitions each of which produces a result of

different type. It is for this reason that we choose to

have our algorithm associate type symbols with the output

of specific definitions rather than with variables. We

-24-

also distinguish between a variable v . and a use of that

variable at a specific point in our schematized program.

If u refers to a specific use of a variable v, we let

type(u) denote the type of the variable v.

Given a use u of a variable v and a definition df of

that same variable, u can access tlie value stored by df

if and only if there is a path from the program entry to

u on which df is the last definition of y . If this is the

case, we say that u and df are chained to each other. Note

that on any path to a variable use there can be at most

one definition which stores a value that the use is able

to access.

The type of a variable at a point of use at a specific

instant during runtime is the type of one of the objects

stored by the definitions which are chained to it. The

specific object used is of course dependent on the path

actually taken to the use during runtime. However we can

assert that the type of a variable at a point of use at any

runtime instant is (in the sense of the type lattice) less

than the disjunction of the types of all definitions chained

to that use.

We now establish a few notations which allow the above

relations to be expressed formally and conveniently. Given

a use u, let ud(u) be the set of definitions which can

create values used at m ; i.e., the set of all definitions

chained to u. This function can be calculated efficiently

-25-

by employing the interval based use-definition chaining

process originally developed by John Cocke and described

in (Schwartz, 1973b).

Following a notational convention of SETL, we let

[dis: t e. T]t represent the disjunction of all type

symbols in a set T. In terms of this notation, the relation-

relationships described informally above may be written as

(3) type(u) <_ [dis: df e ud(u)] type (df)

for all uses u in the program. It is understood that if

ud(u) is the null set, then the right side reduces to tz

.

We shall now begin to describe a formal system of relations

between object types and SETL operators.

5 . A Type Calculus and the First Method of Type Determination ,

Recall that the first method of type determination seeks

to deterinine the type of an output variable from the way in

which the variable is defined. To specify this method, we use

a type aalculus which defines the way in which input types are

operated on by the operations in a programming language to

produce output types. For example, tlie set of rules applying

the plus operator in SETL is as follows:

-26-

tl+tl = tl for all elementary types tl 7^ ta, tu;

tl+t2 - tz for all types tl = tz, ta, tu, and t2;

tg+tl = tl for tl = ti, tb, tc, tg;

tH-t2 = tz for tl = ti,tb,tc and t2 ^ tl,tg;

tl+t2 = tz for tl = tn, tt and t2 ^ tl, tg , elementary;

tl+(t2|t3) = dis (tl+t2,tl+t3)

;

tt+< tl , . . . , tk> = < tl , . . . , tk> ;

tg+< tl, . . . , tk> = tg+[tl] = [tg];

tt+[tl] = [tl]

;

tt+{ tl} = tn+ [tl] =

= tn+<tl, . . . , tk> = tz;

tn + {tl} = {tl};

tg + {tl} = {tg};

{tl}+{t2} = {dis(tl,t2) };

[tl]+[t2] = [dis(tl,t2)];

<tl, . .

.

,tj>+<t{ j+1) , . . . , tk>

= <tl, . .

.

,tk>;

<tl, . .

.

,t(k-]) >+{tk}

= [tl] + {t2} = tz;

[tl]+<t2, . . . , tk>

= [[dis: te<tl, . . . , tk>] t] ;

tt+tg = [tg] I tt;

tn+tg = { tg} I tn .

for all types

^X / • • • f UjC

-27-

Since the plus operator is always commutative, the

order of operands in the above equations is irrelevant.

Similar rules may be stated for all other operators

of SETL, and more generally for operators of other high

level languages.

Consider a particular definition d = <op ,v , . . . yV,,x>

.

We will write cala (op , tl ^ . .
. , tk) to denote the type symbol

which results when an operator op acts on a set of type

symbol inputs, tl^ . . . ^ tk. Let t-, indicate the instant

before the execution of definition d , and t„ the instant

after. Let z^ ^ . . . j u, represent the uses of variables

y J . .
. , y, in definition d. Let type (u.) represent the

type of the object denoted by y . at time t -, and type ^(u

)

represent its type at time t„. Similarly, let type^(d)

and typep(d) be the types of the object denoted by x at '

'

times T, and i .. . Then clearly, '.

(4) type„(d) <_ aalo (op , type
^
(u

^
),..., type

^
(Uj^)) .

Note that the aalo function is monotone increasing (in

the sense of our type lattic^ as a function of tl,...,tk.

This is clear, since if an input variable may take on a

larger range of types, the output variable may also take

on a correspondingly larger range of types.

Since oalo is monotone we may substitute inequality (3)

into (4) to produce

(5) typep(d) ± cala (op , [dis : df^ud(u j)] type j (df) , . . . ,

... [dis

:

df^ud(u.)] type j(df)) .

-28-

Definition 11. Given a program containing n defini-

tions, and given a specific instant during the execution

of the program; let x. = tijpe(d.) at that particular instant.

Then the type status of the program at that instant is the

vector (X ^, . . . , X) .

1 n

At the start of execution, all variables are undefined;

no definitions having been executed. Therefore the type

status of the program at the start of execution is

(tz,t z, . . . , tz) . If df = d . , let us denote x. by x,^

and define

(6) forward(d) = oalc (op , [dis : df^ud (u ^)]x .„, ...

... [dis: df G ud(u,)] ^j^^

which is a function of x^,...,x and may therefore beIn
written

(7) forward(d.) = f (x ^^ . . . , x) .

Note that each of the functions / . for 1 f. i £ "^

is monotone increasing. If at some instant in the program

execution, the type status is Ta- ^ . . . , x . j . . . ^ x) then

the execution of definition d. transforms the type status

to (X ^. X X) where x. < f.(x^}...yX). This is

an immediate consequence of (5)-(7).

-29-

In assigning a type to a definition J by a compile

time analysis, we must be sure that the type assigned to d

is greater than or equal to the disjunction of the types

which the output variable of d actually takes on during

execution. The preceding discussion shows us how to obtain

such an "upper type bound." Informally, an upper bound on

the disjunction of the types which the variables of a

program may taken on during runtime is the maximum type

status to which (tz,...,tz) is transformable by the

functions f .

.

In order to develop an algorithm for type determination,

we are therefore motivated to study monotone functions on

partially ordered sets.

6 . Functions and Trans formaions on Partially Ordered Sets.

We assume a knowledge of the definition of a partially

ordered set and of a monotone inoreasing (which will

hereafter be referred to as a monotone) function on a

partially ordered set. We will also refer to the terms

defined in Definitions 9 and 10, above.

Theorem 3. Let P be a partially ordered set under a

partial ordering <_ . Define a relation <_' on P by

(p^, . . . ^p^) <_'
(q-]^/ • • • ,q^) if and only if (VI £ k £ n)p <_ q

Then {P , £' } is a partial ordering. l4oreover, if is

the minimum element of P-, then (0,...,0) is the minimum

-30-

element of P ; and if 1 is the maximum element of P,

then (1,...,1) is the maximum element of P .

The proof of TJieorem 3 is quite simple since the

properties of <_' follow directly from the corresponding

properties of <^ , and the proof will not be given here.

We subsequently drop the "prime" from <_' and use <_ for

both the partial ordering in P and in P , it being clear

by the context to which one we are referring.

Tneorem 4. Let P be a partially ordered set all of

whose chains are of finite length. Then all chains of P

are also finite length.

Proof : Let s^<s<s< ... be an infinite chain

n 7m P . Let s . be the jth component of s . . Then

consider the n chains in P:

'o - 'i - •••

2 1

n ^ n ^
^0 - 'l - "

Since all of these chains are finite, 3 k such that Vj ,

Vm > k , s = s'^
, ^ . But then 'im > k , s = s ,_,— m m+1 — m m+1

so that the chain is finite.

Let P be a partially ordered set with minimum

element O all of whose chains are finite. Let {f^,'--}f }

be a set of monotone fimctions, and suppose we wish to solve

the system of equations

-31-

X

(8)

1 ^1 ^^1' • • ' '^n^

n n 1 n

In general more than one solution is possible. To find the

minimum solution, consider the following sequence in P^

:

(9)

_ , i + 1 i + 1 i + 1, _ / r.
f

'i i i)

• • • fn^^l'^A' ' ' ' '^n^ ^

Theorem 5. There exists a k > such that s, = s, ,,k k + 1

in (9) .

Proof : If the theorem were false, then by the monotoni-

city of f,...., f there would exist an infinite chain
K n

s^ <_ s < . . . in P which is impossible by Theorem 4. Q.E.D.

Definition 12. Given a sequence [sq^s ,...] in a

partially ordered set P, the sequence aonverges to p G P

if 3k ^ such that (Vi > k) s, = p.

Corollary . The sequence is ^,8 , . . .] in (9) above

converges to s, where k is any integer such that s, = s.

-32-

Theorem 6 . s, is a minimum solution of (8).

Proof ; Let s be a solution to the system of equations (8)

.

Then s = (x^x^,...,x). Since (0,...,0) is the minimum

element of P^, s >^ (0,...,0) = s „. But if

s > s. = (x'^^, . . . , x'^) , then x . > x'^. for all < i < n.— J In t— ^ — —

But by the monotonicity of /• / this implies that

X. = f.(x^,...,x) > f . (x''-,, . . . ,x^) for all 1 < i < n.

Therefore, s = (x^,...,x) > (fJ x''^, . . . , x'') , . . . f (x'l , . . . x'^))
1 n — ' 1 1 n •' n 1 n

,
, sp that s > s . ^. By induction, s > s, which

+ 1 — ,1 + 1 ^ — k
= s

3+1 - J

proves that s, is the minimum solution. Q.E.D,

Now, let us examine the system of inequalities:

(lo:

^^ 1 //x^,...,x^;

X < f (X ^y . . . ,X)
n — •' n 1 n

where {/t^-'-j/ } is a set of monotonic functions.
•' 1 •' n

Theorem 7. If s = (x^y...,x) is a solution to the
1 n

system (10), then s' = (f^(x^y...yX))...,f (x.,...,x))
-^ 11 n n 1 n

is also a solution and s <_ s '

.

Proof ; Clearly, since s is a solution,

1 n — "^ 1 1 n ^ n 1 n

To see that s' is a solution, note that:

f.(x^,...,x) < f-(f-,(X-,y...,X),..., f (x ,...,x))
•'^ 1 n — •' t •' 1 1 n n 1 n

for all 1
f.

i ;1 i^ by the monotonicity of f ,...,f .

" Q.E.D,

-33-

corollary . A maximal solution to the system (10) must also

satisfy the system (8).

Definition 13 . Let S be a set. Then a transformation

n n n ^on S IS a function from S into S . If f is a trans-

formation on S , then (x^,...,x) is said to be
1 n

transformable into f(x,...:,x) hy f. If T = {/,...,/}

is a set of transformations on S then (x^,....x) e. s^
1 n

is said to be transformable into (y -.,'• ,y) e s" by T

if there exists a finite sequence /• ,...,/. g T such that
^ 3

(yj."-.y^) = f, ...f.(x^,...,xj

Definition 14. Let f. be a function from S into S.
t

Then /. is said to induce the transformation f. which

is the function from S into s defined by

Definition 15. An element (x^y.-.^x j of S is trans form-

able into (y.^'-'^y) ^ S by a set of functions (from
I n

S into S) , F = {/7J • • • J /, }j if (x ,...,x) is transformable

into (y-,i---,y) by the set of transformations induced

by the elements of F; i . e . , by the set T = (/^ j • • • j /t,) •

Theorem 8 . Let P be a partially ordered set with minimum

element and chains of finite length. Let F - {f-,,---jf }

be a set of monotone functions from P into P and let

G. = {g. a function from P into P I g < f } • Then the

maximum element of P into which (0,0,..., 0) is transform-

-34-

n
able by G = [_J G. is the element s, to which the

i=l ^ '^

sequence s^,s ,... in (9) converges.

Proof : Let us first show that (0,0,..., 0) is transformable

into s, by F. This follows from the fact that

s„ = (0,...,0) and s. ^ < f, ... f (s.). Therefore

Sj^ 1 (fj -' f^)^(0,.. .,0). But s^^^ > yj(s^) for all

1 < j < n. Since s, = s,. = s, _ = ..., we have that— — k k+1 k + 2

(}y.-}j^(0,...,0) ^s^^ = s^ < (}^..-f^)^(0,...,0)

which gives us the desired result. Since F c G, (0,0,..., 0)

is transformable by G into s,.

Let s be some other element to which (0,...,0) is

transformable by G. Then

3 = 9^- g j;
. . . g . (0, . . . ,0) where g. G g.

^i ^2 '^m ''k k

so that

s 1 /^ fi -' -fi (0,.. .,0) < (fy..f^) (0,. . .,0) < s^. Q.E.D.
12 n

The application of the above formalism to the first

method of type determination is clear. If P is our type

lattice then P is the set of all possible type status

vectors which can describe a program of n definitions at

any instant of its execution. If we let /. be as defined

in (7) , then by (4) , the execution of a particular definition

d . corresponds to the application of a particular g'^. to

the type status, where g. ± f-- The compile time type

-35-

information which we are able to develop is defined by

the maximum type status vector to which (tz ,...,tz)

is transformable by all possible such functions g.

By Theorem 8 and its proof, this is given by the vector

(11) (x^3'..,x) = (f^-.-f) (tz,...,tz)
1 n In

where k is the smallest integer such that

X. = f.(x^,...yX) for all 1 < i < n .

V -^ % 1 n — —

This shows that a useful upper bound of the types which

a variable appearing at a specific place in the program may

take on is obtainable algorithmically . The algorithmic

process just described is our first method of type

determination.

7 . The Second Method of Type Determination .

We now continue the heuristic discussion of the second

method of type determination begun in Section 3 with a view

to formalizing the results. Recall that the second method

of type determination discovers the type of an object from

the way in which it is subsequently used and assumes

program correctness to the extent that objects of a

specific type are not used in a way which is incompatible

to that type

.

Let w be a use of a variable x within a definition,

df. By baoktype (u) we will denote the type of x as

determined from the use u . The question of what

-36-

"environmental" influences will be used to determine

baaktype (u) is an important one. In the simplest system,

only the operator appearing within df and the position of

u as an operand of that operator will determine baaktype (u)

.

For example, if u is an input to a hd operation, then

baektype(u) = tt\[tg]; if it is the first argument of

a npow operation {int npow set returns the subset of the

power set of set whose elements have cardinality int)

then baaktype (u) = ti ; if it is the second argument of an

npow operation then baaktype (u) = tn\{tg}. Such a system,

however, will probably be too weak to produce any

significant results. By the nature of very high level

languages, the operator symbols which are most commonly

used are those which apply to a wide variety of object

types. In SETL, for example, almost nothing can be deduced

from the fact that a use is an argument of a plus operation

since a variable used in such a manner may be an integer,

bit string, character string, set or tuple. Unless the

type calculus were rich enough to provide a type symbol

for "not a blank atom or the undefined atom" which would

increase the complexity of the calculus greatly, such a use

can only be identified as being of type tg

.

For the above reasons, we have chosen to make use of all

available information about the type of the output variable

of df in determining baaktype (u) . In the above example,

if u appears in definition df and the output variable

-37-

of df is known to be of type ti (either by the first method

of type determination, e.g. if type(u) = tg but the type

of the companion argument to the plus operation is known

to be of type ti ; or by the second method from a later use

of the output variable of df) then backtype (u) = ti . For

an example showing how types could be propagated backwards

using such a scheme, see (2) above and the discussion which

follows it.

Another possibility is to use the types of any

companion arguments which appear together with u as inputs

For example, if u were "plussed" with a set we would know

that baaktype (u) = tn\{tg}. This possibility, however,

will not be explored further. Our discussions will focus

on the use of information concerning operators and the

type of their output object to determine the type of

their input objects.

Given a definition d and a block b, let du(d,b) be

the set of all uses of the output variable of d which are

chained to d and which appear in the block b.

Consider a basic block b which, for simplicity,

we will assume does not appear in a program loop.

That is, we assume that there is no possible execution

path from the exit of b back to its entry. If it happened

that all the uses to which definition d is chained appeared

in the same basic block b in which d appeared, then the

type ascribed to the output of definition d by our second

-38-

method of type determination would be the quantity hack(d)

defined by the equation:

(12) back(d) = [con: u Gdu(d,b)]backtype (u) .

The following argument justifies this equation:

(a) all the uses in du(d,b) and no others may employ

the value stored by definition d-, and

(b) baaktijpe (u) represents type infonnation deducible from

the way that the value represented by u is used, so

that we may use backtype (u) for each u s du(djb)

to determine the type of the output variable of d.

Next consider the case of a basic block bl with

immediate successors bl^...,bn and a definition d which

appears in b 1 . We again assume that bl does not appear

in a program loop. We also assume that all uses to which

d is chained appear in these n blocks. All the uses in

du(d,bl) will contribute to our second method of type

determination in deducing the type of d since each of them

must use the value stored by d. However the uses in

du(d,bl) , . . . ,du(d,bn) need not necessarily use the value

stored by d. As already noted in section 3 (see Figure 3

and the associated discussion) , this is because control may

may flow from bl to any of b2,...,bn depending on the type

of the value stored by d. The most that can "he said about

the type of the object created by d is that it is describable

by the disjunction of the types indicated by the uses in each

-39-

of b2,...,bn. Under the above assumptions, we may formally

state this assertion by defining:

(13) back(d) = con([con: u^du (d,bl)]backtype (u)

,

[dis :2<_i<^n] ([con: uedu(d,bi)]backtype (u))) ;

or, more generally, if oesor(b) represents the set of blocks

which are immediate successors of h under the multivalued

successor function, by defining:

(14) back(d) = con ([con: u^du (d,bl) Jbacktype (u)

,

[dis:b£cesor (bl)] ([con: u^du (d,b)

]

backtype (u)))

.

As noted previously (in Section 3), if bl is a program

exit; then none of the uses appearing in any of the blocks

of cesorib 1) are valid determinants of the type of the

output variable of d. Similarly, (see Figure 4 and the

accompanying discussion), if a member of oesor(bl) appears

on an alternate path from bl past a redefinition of the

output variable of d, the uses which appear in that member

of aesor(bl) are invalid in determining the type of the

output variable of d.

If we drop our previous assumption that block b

does not appear in a loop then one further possibility

must be considered. Let us consider the case in which

there does exist a path from b back to itself on which d

-40-

is the only definition which defines the output variable

X of d. Let us further assume that uses of x occur in

block b prior to the definition d. Such uses are clearly

in du(dyb) since they appear in b and may access the value

stored by d. However it is possible that these uses do

not access that value since control may flow from b along

some alternative path which does not return to b before

the output variable of d is redefined. Such uses act as

if they occurred in a separate predecessor block of b

and unlike those uses in du(d,b) which appear after d,

they cannot act as absolute determinants of the type of d

but must have their deduced types disjoined with the

deduced types of uses which exist along alternate paths.

It is therefore convenient to introduce a formal means of

"splitting" the block b into two separate blocks; one of

which will contain all uses of the output variable of d

which occur prior to d, and the other of which will contain

all uses of the output variable of d occurring past d.

Given a program graph G = <B, cesor> , where B is a set

of basic blocks, cesor is the successor function from B

into 2 and each block is an ordered set of definitions;

and given a definition d in a block be B, we may define

G' , the graph of G divided at d as follows:

Let G' = <B' ,aesov'> where B' = (B - {b}) u [b ,b~ }

B '

and oesor' is a function from B' into 2 defined by:

-41-

(i) aesor'(b') = oesorfb') if b' & E and b ^ aesor(b') ;

(ii) aesor'(b') = (cesor(b') - {b}) u {b~ } if b ' e B

and b G oesor(b')

(iii) aesor ' (b) = {b } ;

(iv) aesor'Cb) = cesor(b) if b ^ cesor(b) ; and

(v) oesor' (b) = oesor(b) u {i } if i e cesor(b) .

The block b includes all definitions in b

occurring prior to and including d , and b includes all

definitions in b occuring past d. The essential

property of the graph G' is that all uses chained to

d which occur in a particular block may be treated

uniformly in determining the type of d.

We define the function du' on the Cartesian product

of the set of definitions by the set B' of all blocks in

G' as follows:

du'(d,b') = du(d,b') if b' e B;

du' (d,b) = {u&du(d,b) \ u appears in b }
-, and

du'(d,b~) = {u&du(d,b) \
u appears in b].

Having completed these preliminaries, we can write

a system of equations which describe the information

concerning the type of a definition d at entries and exits

of blocks of the graph divided at d. These equations are

stated in terms of a function tfu, defined on such block

entries and exits. In what follows all references to

blocks are to blocks of the program graph divided at

-42-

definition d. The equations which follow are straightforward

generalizations of (12) -(14) and the accompanying discussions.

If i is a block, let e(b) be its exit point and ij(b)

its entry. The inverses of these two functions are indicated

by b(e) and bCy) respectively. Then

(15) tfuje) = tg

if e is a program exit or if b(e) contains a redefinition

of the output variable of d . This reflects the fact that

no use occurring past a program exit or redefinition can

contribute type information about a defined variable.

(16) tfu^(e) = [dis: p G aesor ' (b (e))]tfu.(y (p))

for all other block exits, e. This equation states that

the type information known at the exit from a block is the

disjunction of the information known at the entry points

of all immediate successor blocks.

(17) tfuj(y) = aon (tfuj(e (b (y) J J , [con: u&du(djb (y))]

backtype (u)

)

for all block entries, y. This equation states that the

type information known at entry to a block b is the

conjunction of any information known at exit from b,

together with information which can be deduced by examin-

ing uses within the block itself.

Finally, if b is the block of the original program

-43-

graph which contains a definition d, we define

(18) baak(d) = tfu^(e(b~))= tfu^(y(b^)) .

The question of how to compute the function tfu-,

algorithmically now arises. We postpone discussion of this

problem until the next section and focus instead on the

computation of back(d). Note that baok(d) is defined by-

equations (15) -(18) in terms of the quantities backtype (u)

for the uses u of the program. Backtype (u) is itself

determined by the operator to which u is an input and by

information concerning the type of the result produced by

this operator. Thus, formulae (15)-(18) give a system of

relationships among the types of the objects defined in a

program. Moreover, backid.) may be written as g.(x ,...,x)

where, as before, x. represents available information

concerning the type of the output of d.. Of course,

(19) type(d.) < baok(d.)

since back(d.) only describes a range of type possibilities

implied by the uses of the output variable of d- and not

the actual type of this variable.

Note also that, under the assumption of program correct-

ness, information developed by the second method reduces the

range of type possibilities which the first type determination

method must confront. That is to say, inequalities (4) and (19)
imply that

(20) type(d) ± con(fovward(d) ,back (d)) .

•44-

Let h.(x^,...,x) = con(forwarcK d .) sback(d .)) . Then our

system of type detearmination relationship is expressed

by the following inequalities:

(21) x-<h.(x^i...,x) for 1 < i < n .

V — V 1 n ' — —

To insure correctness of our type determinations we must

choose a maximum solution to the system (21) . By the

corollary to Theorem 7 and a corollary to the proof of

Theorem 6, if the functions h. are monotonic, such a

solution is given by:

(22) (x^i...,x) = {h ^ . . . h)^ (tq , . . . i tq) ;

where p is the smallest integer such that

(23) x.=h.(x^...x) for all 1 < i < n .

V V 1 n ^ — —

Since the functions aon and forward are both monotone

in x,,....x , the monotonicity of h. will follow once weIn -^
t

establish the monotonicity of baok. By the definition of

back ((15) -(18)), this will follow from the monotonicity

of baaktype (u) considered as a function of the type of the

output variable of the definition in which u appears.

Clearly, as the output variable of a definition is

restricted in type, the input variable's types are

restricted in corresponding fashion. This is true with

one possible exception which occurs if the output variable

is of type tz. In this case, the input variables may be

-45-

of arbitrary type, i.e. type tg. For example, tl+ti = tz

will hold in our type calculus if tl is a set type, a tuple

type, a bit string type or any other type except ti and tg

.

The disjunction of all these possible types is tg. However,

if tl + ti = ti holds, then tl must be of type ti or tg

and dis(ti,tg) = ti . Since ti <_ tg , monotonicity does

not hold in this case.

Recall, however, that the entire type determination

algorithm is based on program correctness. Thus we must

assume that an object is identified as being of type tz

not because an error has occurred; but because the object

has been left undefined. It is impossible for the output

variable of a definition d to remain undefined unless that

definition is never executed or if its inputs are undefined.

If d cannot be executed, then there is no path from any

definition to any of the uses u appearing in d, so that

the definition of hacktype (u) is immaterial. On the other

hand, if d's inputs were undefined then it is reasonable

to define baoktype(u) = tz. We therefore can adopt the

convention that if the definition in which u appears is

of type tz, then backtype (u) = tz. Since tz is the minimum

element of our lattice, monotonicity of backtype holds.

We have therefore shown that (22) is indeed a solution

to the system (21)

.

In general, however, (22) gives a very weak upper

bound on the types of the definitions appearing in a program.

46-

Indeed, if the types of all definitions are initially

set to tg , the first method of type determination will

not provide much information and the information developed

by (22) is that of the second method alone. Further, we

cannot effectively use the type of output variables to

provide information about the types of the input variables

since the types of all output variables are initialized

to tg

.

Fortunately, we can obtain a much sharper bound on

the types of the definitions appearing in a program.

An initial upper bound is obtained by using the first

^ k
method alone. If we let (ij^,'-',y) = (f^ ...f) (tz,tz, . . . ,tz)

as in (11) , then to the system of inequalities in (21)

we may add the system:

(24) X . ^ y . for 1 <_ i <_ n .

Note that

h.(y^,...iy) = con (forwavd(d .

)

ibaaki d .)

)

= COn(f.(y.,---3y) } back(d .)) £ con (y . :>back(d .)) <_ y . ,
X- 1 Yl X- X i^ u

for all 1 < i < n.

Thus, by a corollary to the proof of Theorem 6, the

maximum solution to the combined system (21) and (24) is

^ q
(25) {x^y...yX) = (h ...h) (y -,,-•' ,y„)

J. Yl 1 Yl 1 ' *

where ? is the smallest integer such that

-47-

X. = h.(x^j...,x) for all 1 < i < n .

V ^ 1 n — —

The vector (x ^, . . . ,x) in (25) gives much more preciseIn
type information than the corresponding vector in (22)

.

8. Computing Types Algorithmically .

The general outline of an algorithmic process of type

determination is now clear. Let x^,...,x be type

symbols representing the types of the definitions of the

program d ^, . . . , d . Let f . (x ^^ . . . , x) and h . (x ^, . . . , x)^ ^ 1' ' n •'tin tin
be as defined in Sections 5 and 7 respectively. That is,

(26)
•'t r ^ n

h.(x^j...3X) = con (forward(d .) .back (d .)) .tin '' t t

Then our algorithm may be given as follows:

Step 1 : Repeatedly apply (f ...f) to the vector of types

which is initially (tz,...,ts) to obtain a

vector (yj,--',ij^) = (f2---fn^(y2>--->yn^-

Step 2 : Repeatedly apply (h . . .h) to the vector of

types which is initially (y -,,•'• ,y) to obtain

the vector (x^....,x) = (h^...h)(x^...x).
1' n 1 n I n

The type x. is then an upper bound (in our
^^

lattice) of the set of types which the object

defined by d. may take on.

-48-

Note that if y ^ = tz for some 1 1 i 1 n after step 1,

an error will occur if d- is ever executed. Of course,

it may also be an indication that d- cannot be executed

because of the cesor function of the program graph. There-

fore, if this condition is recognized after step 1 one

of two situations confronts us. Either program correctness

has been violated (so that there is no point in executing

step 2 which uses the second method and therefore assumes

program correctness); or definition d. is inaccessible

(so that it is pointless to attempt to apply the second

method to it) . Similarly if in executing step 2, the type of

some object is found to be tz, then that object has been

used in ways which are incompatible; and we have detected

an error for which a diagnostic can be emitted.

These observations allow us to sidestep the issue of

the monotonicity of h . which was raised at the eud of

Section 7. The only value for which the function h. might

fail to be monotonic is tz . However, except in the presence

of a source error, h . will never be applied to a vector

which contains tz as a component. For greater elegance

in the treatment of this type of error situation we may

define h . so that it is monotonic everywhere by defining

baektype (u) = tz if the definition in which u appears

is of type tz ; this was suggested towards the end of

Section 7.

-49-

Several clarifications and refinements in the above

general algorithm will now be made. The first concerns

the method to be used for computing the function t/u ,

defined by (15)-(17); this function is employed in defining

baak(d.) in (18) and thus ultimately in defining h..

Let us assume that we have constructed the divided

graph at a definition d. Our remaining task, therefore, is

to solve equations (15) -(18) for that graph. The type

information which may be deduced from a use u chained to d

depends on what paths exist from d to u and what other uses

exist along those paths and along any alternate paths from d.

This information can be mechanically extracted from the

divided graph by constructing the tree of the program graph

rooted at a node. Given a program graph and a node of that

graph, we form this tree in the following fashion. Establish

the given node as the root of the tree and set the tree

successors to be the graph successors as long as no cycle

occurs. An example is shown in Figure 6.

To determine baok(d.) we can form the graph divided

at d . , form the tree of the divided graph rooted at b ,

set tfu. at the leaf exits to tg and apply equations (15)- (17)

using the tree successor function and the entries and exits

of tree nodes. Baek(d-) is then the value of tfu^ at the

entry of the root.

This method, however, still requires us to construct

the divided graph for each definition d_^. The effect of

-50-

J<
>'

-> 3

program graph

3

4 5

_Jc
,

,
—J^—

I

2 5

tree rooted at 3

tree rooted at 1

Figure 6 . A Program Graph and its Program Trees

Rooted at Nodes 3 and 1.

-51-

this division can be obtained in another fashion, which

makes it unnecessary to actually build up the divided graph.

Instead of creating the tree from a constructed divided

graph, we create it from the original program graph.

However, in "walking" the tree we treat the root node

differently from any other node.

Recall that the original motivation for introducing

the divided graph was to insure that all uses in a given

block which are chained to a given definition are treated

uniformly. In treating the set of uses {u} chained to a defi-

nition d and which appear in the same block b as d we must

separate {u} into two disjoint subsets. The uses u

which appear in b past d are absolute determinants of

the definition's type. This is because if d is executed

these uses must subsequently be encountered and must use

the value defined by d. However, uses u of d which

appear in b prior to d need not necessarily use the

output of d even if they are chained to d, This is because

control may flow either from d to those uses or from some

other definition to those uses, depending perhaps on the

type of the defined variable.

We therefore compute separately the conjunctions of

types indicated by those uses appearing in b past d and

those uses appearing in b prior to d. The latter conjunc-

tion is ignored in the computation of tfu, until we find

some other node n which is an immediate graph predecessor

-52-

of b. The conjunction is then disjoined with the disjunction

of types obtained from the tree successors of n. This

process will be depicted more fully in the SETL type finding

code presented in a later chapter.

Note, however, that we must still construct a separate

tree for each node of the program graph. The use of graph

theoretic spanning algorithms might greatly improve the

efficiency of the above process but this possibility has not

been investigated nor implemented. A simpler speedup, albeit

one which loses some information, is to only construct the

trees up to some maximum depth. This possibility has also

not been investigated.

An additional refinement in the type analysis algorithm

concerns the manner of application of /,•••/" and h-....h .

Each transformation /. and h. only changes one

definition's type and involves only the application of

/. and h . . Many of the types in the type status vector

become fixed at their final values long before the entire

system stabilizes. An extreme example is that of a value

read into a variable and then output immediately, after

which the variable is at once redefined; all within the

same basic block. After a single iteration, the variable

which is the target of the read operation is identified

as being of type tg and it remains at that type throughout

all succeeding iterations.

-53-

Let us assume that we have computed (f^---f)'^
(tz, . . . , ts)In

and wish to compute (fj---f)'' (tz, . . . ,tz) . Let us

further suppose that during the jth application of (f^-.-f),

we have identified {/. ,...,f. } as being the only subset
/v ^ 1 m

of {fji''-,f] which could change the type status vector.

Then, clearly, instead of applying (f ...f) for a (j>I) st

time, we need only apply (f. .../.). Our task, therefore,
1 m

is to identify the subset {i,...i } of {l,,,.,n}.J 1 m

For any definition df , let us define

s (df)'^{d.^defs\one of the input uses to d. is in

(27) LJ duidf.h}} ,

s ^ (df) ={d .^de fs
\
for some use u input to df, d-^ud(u)}.

A change of type of df represents a change of type to one of

the input uses to every d. in s^(df), so that forwardfd)

and therefore /. and h. must be recomputed. Similarly,

if u is an input use to df , baoktype (u) may have changed

its value. If '^^ G ud(u)
, this may cause a change in

back(d.) so that h. must be recomputed.

The overall algorithm may therefore be given as follows;

-54-

step. la : Initialize the types of all constants.

Initialize the types of all definitions to tz.

Set wovkset equal to the set of all definitions

in the program

lb : If wovkset = then go to step 2. Remove a

definition d from workset. Set oldtype

to the type of d. Set the type of d to forward(d)

If oldtype equals the type of d repeat step lb.

Ic : Set workset to workset u s (d). Repeat step lb.

Step 2a : Set workset equal to the set of all definitions

in the program.

2b : If workset = then halt.

Remove a definition d from workset.

Set oldtype to the type of d.

Set the type of d to con (forward(d) ,baGk(d))

.

If oldtype equals the type of d, repeat step 2b.

2c ; Set workset to workset u s^(d) U s^(d).

Repeat step 2b.

-55-

CHAPTER II

EXAMPLES

In this chapter we present a number of codes processed

by the type determination algorithm of Chapter I, and

describe the information concerning these codes which the

algorithm was able to develop. This information was produced

by a version of the algorithm written in the BALM language

on the CDC 6600 at NYU. Each of the SETL routines to be

presented was hand transcribed into quadruples (showing

result operator and inputs) and the quadruples were

manually grouped into basic blocks with a given successor

function. The sets of basic blocks together with the

successor function served as input to the BALM program.

The output was a statement of the type of the output variable

of each quadruple.

All the SETL routines processed were subroutines

expecting one or more input parameters. Presumably, actual

parameters would be passed by a calling routine. However,

since our input did not include the calling routines it was

necessary to insert preliminary quadruples which in effect

performed a read operation for each of the parameters.

The 'forward' method of type determination described in

Chapter I can of course detect no information about an

object which is read in. Moreover, because of the generality

of SETL, the routine would work correctly on any one of

-56-

a large variety of different input object types. This

means that if no indication of parameter types is given, we

can expect only weak information to result from the way

objects are used. For this reason we inserted quadruples

which in effect "declared" the type of all parameters on

entry to the routines. In an actual compiler, these types

could either be determined by a type determination process

to which the calling routine was available, or by a limited

set of declarations governing subroutine parameters.

All secondary subroutines used in an example were

inserted in-line.

We present our examples by first listing the SETL

code analyzed in each case , and then noting what type

information was found; types are described using the type

symbols introduced in Chapter I. We also indicate the

way in which the types were discovered and what aspects

of the potentially available compile time type information

were missed. In Section 7 we present a summary of all our

results

.

-57-

Example 1. Floyd's Tree3ort3 .

Source: Algorithm 2 45, Collected Algorithms from CACM.

This algorithm sorts a tuple m of length n.

definef treesort (m,n)

;

i = n/2;

(while i c[e 2 doing i = i-1;)

si ftup (i ,n) ;

;

i = n;

(while i 26 2 doing i = i-1;)

siftup(l,i)

;

<m(l),m(i)> = <m(i) ,m(l) >;

end while;

return

;

end treesort;

10

15

definef siftup(i,n);

copy = m(i); ii = i;

loop: j = 2*ii;

if j l£ n then

if j It n then

if m(j + l) ^t m(j) then j = j + l; ;

end if;

if m(j) 2i copy then m(ii) = m(j);

ii = j; go to loop; end if; 20

end if;

m(ii) = copy;
return

;

end siftup;

-58-

Line

1 n detected as ti from use in line 2

m detected as [ti]

2 i detected as ti

3 i 2^ 2 detected as tb ; i detected as ti

5 i detected as ti

6 i cfs 2 detected as tb ; i detected as ti

8 m(l) and m(i) detected as ti\tu . Note that

we did not detect that i lay in domain of the

tuple m; tu is actually impossible. Similarly,

after the assignment, m was detected as [ti] \tt

rather than as [ti] .

12 i and n detected as ti

13 oopy detected as ti\tu; ii detected as ti

14 J detected as ti

15,16 J le n and j It n detected as tb

17 j + 1 detected as ti',

m(j+l) and m(j) detected as ti\tu;

m(j + l) 2i rn (j) detected as tb ; j detected as ti

19 m(Q) detected as ti\tu ; m(Q) ^t copy as tb ;

m, after indexed assignment, as [ti] \tt .

20 ii detected as ti

22 m detected as [ti]\tt .

-59-

2 . Huffman Encoding.

Source: On Programming, II , p. 149.

The algorithm is given a set of characters, chars

and a frequency function freq which gives the number of

times that each character appears in a particular text.

The algorithm sets up an encoding code wherein those

characters which appear most frequently have the shortest

binary encoding.

definef huf tables (chars, freq)

;

work = chars; wfreq = freq; H = n£; r = n£ ;

(while #work ^t 1)

cl = getmin work; c2 = getmin work;

n = newat; £ (n) = cl; r(n) = c2; 5

wfreq (n) = wfreq (cl) + wfreq (c2);

n in work;

end while;

code = n^; seq = nulb;

walk (3 work i£ top) ;
10

return <code , ^ , r , top>

;

end huftables;

-60-

definef getmin set;

<keep,least> = < 9 set is_ x, wfreq(x)>;

(Vx G set) 15

if wfreq(x) It least then <keep, least>=<x,wfreq (x) > ;

;

end V ;

keep out set; return keep;

end getmin;

define walk (top); /* seq^l^r are global */ 20

if £(top) ne_ Q. then

seq = seq + f_; walk (^ (top)) ;

seq = seq + t; walk (r (top))

;

else code (top) = seq;

end if; 2 5

seq = seq(l: #seq-l)

;

return

;

end walk;

-61-

Line

1 chars declared as {to}; freq as {<to,ti>)

2 work detected as {to); wfreq as {<ta,ti>}

I as tn ; r as tn

;

3 #work detected as ti ; logical as tb

;

4 cl and o2 detected as ta\ta\tu

5 n detected as ta ; I and r as {<ta, ta\tc>]\tn .

6 wfreq(cl) and wfreq(o2) detected as ti;

wfreq detected as {<ta\ta,ti>}

7 work detected as {ta\tc}

9 code detected as tn ; seq as tb

10 top detected as ta \ to

11 <oode , l,r,top> detected as <{<ta\tc, tb>]
\
tn,

{<ta,ta\ta>}\tny {<ta^ ta\tG>]\ tn, ta\tc>

14 X, keep detected as ta\to\tu; least as ti\tu

16 logical recognized as tb ', first wfreq as ti

second as ti\tu ; keep as ta\ta\tu ; least as ti\tu

18 set detected as {ta\ta]\tn

21 l(top) detected as ta\to\tu; logical as tb

22 seq detected as tb', l(top) as ta\to\tu

23 seq detected as tb ; r (top) as ta\tc\tu

24 code detected as {<ta\tc,tb>}

26 seq detected as tb

In converting this example into quadruples, the stacks for

implementing recursion were explicitly programmed. The stack for

the variable top was found to be [ta\ to] \tt.

-62-

3. Multiplication of Permutations .

Source: On Programming, II, p. 146.

The algorithm is given an ordered tuple, seqperms

.

Each component of this tuple is itself a set representing

a permutation in cyclic form. The elements of such a set are

tuples representing disjoint cycles. The algorithm multiplies

the permutations and returns the resultant permutation in

cyclic form.

definef multa 11 (seqperms)

;

seq = nult; marked = n^ ;

(Vperm(m) s seqperms, eye € perm)

(Velt(m) 6 eye) seq(#seq+l) = elt; ;

seq(#seq+l) = cyc(l); 5

(#seq) in marked;

end V ;

result = n£ ;

(while 3 e (m) G seq
[
n m g marked)

eye = <seq(m)>; elt = seq(m+l); iq

loc = m+1; m ill marked;

<loop:>(loc < Vn < #seq|seq(n) e£ elt and n n^marked)

n in narked;

elt = seq(n+l) ;

end V

;

15

if elt ne^ cyc(l) then cyc(#cyc+l) = elt; loc=l; go to loop;

else eye in result; ;

end while;
return result;

end multall; 20
-63-

Line

1 seqperms declared as [{[ti]]]

2 seq detected as tt', marked as tn

3 m detected as ti; perm as {[ti]}\tu ;

cya as [ti]
|

tu. Note in line 3 we index a tuple

by an integer in its domain and take an arbitrary

member of a set in a V loop header. These operations

cannot give rise to ^, but this fact is not detected

by our algorithmT

4 m and ^seq+1 detected as ti; elt as ti\tu.

5 seq detected as [ti]|tt ; cya(l) as ti\tu

6 marked detected as {ti}

8 result detected as tn

9 m detected as ti; e as ti\tu ; logical as tb

.

10 cyo detected as <ti\tu> ; elt as ti\tu

11 loo detected as ti ; marked as {ti]

12 n detected as ti ; logicals as tb

13 marked detected as {ti]

14 elt detected as ti\tu

16 cyo(l) detected as ti\tu; loc as ti;

cyo as [ti \ tu] \ tt

17 result detected as {[ti\tu]\tt]

-64-

4 . Interval Analysis

Source: On Programming, II, pp. 269-271.

This algorithm is given a program graph in the form

of a set of nodes, an entry node and a graph successor

function, aesor. It returns the set of intervals of the

graph. Each such interval is represented as a tuple

of nodes.

definef intervals (nodes /entry, cesor)

;

ints = n£_; seen = {entry}; follow = nl_; intov = n£ ;

(while seen ne nVj node from seen;

interval (nodes , node, cesor) is^ i iri ints;

follow(i) = followers; 5

(1 £ Vk ^ #i) intov(i(k)) = i;;

seen = seen + followers;

end while;

return ints;

end intervals; 10

definef interval (nodes ,x, cesor)

;

npreds = {<x,0>, x eenodes};

(Vx G nodes, y e cesor (x)) npreds (y) = npreds (y) +1 ;

;

int = nult; followers = {x}; count = {<y,0>, y e nodes};

count (x) = npreds (x)

;

1^

(while {yefollowers |npredes (y) e^^ count(y)}i_s newin ne n2^)

(Vzenewin) int(#int+l) = z; z out followers;

(Vyecesor(z) |y ne x) count (y) ^count (y) +1

;

y in followers;

-65-

end Vz; 20

end while;

return int;

end interval;

line

1 nodes declared as {ti}; entry as ti;

oesor as {<ti ^ {ti}\tn>]

2 intSj follow, intov detected as tn; seen as [ti]

3 logical detected as tb ; node as ti\tu . Note that

although seen cannot be the empty set at this point,

so that node should really be ti , our algorithm

cannot detect this.

4 i detected as [ti]\tt; ints as {[ti] tt]

5 follow detected as {<[ti]\tt>, {ti}\tn]

6 k detected as ti ; i(k) as ti \tu ;

intov as {<ti, [ti] \tt>] .

7 seen detected as {ti}\tn.

12 npreds detected as {<ti\tu,ti>}

13 x,y detected as ti\tu ; npreds as {<ti\tu,ti>}

14 int detected as tt ; followers as [ti] ;

count as {<ti\tu,ti>]

15 count detected as [<ti\tu, ti>]\tn; npreds as ti\tu

16 logicals detected as tb ; newin as {ti]\tn

17 int detected as [ti]\tt', z as ti\tu;

followers as {ti}\tn

18 logical detected as tb ; y as ti \tu ;

count as {< ti
|
tz^, ti > } ; followers as {ti}.

-66-

5 . Ford-Johnson Tournament Sort

Source: On Programming, II, p. 67.

The program is given an integer sequence items and

returns a sorted sequence.

definef fordj titems) ;

if (litems) eg^ 1 then return items;;

au = n£_; bu = nl_; i = 1;

(while i]^ #items doing i = i+2;)

X = items (i); y = items (i+1) ; 5

if X It y then <x,y> = <y,x>;;

au(#au+l) = x; bu(#bu+l) = y;

end while;

oddone = items (i); a - fordj (au) ; b = nil ;

(1 <_ Vj 1 #a) 10

dummy = 1 £3n <_ #a|au(n) eg^ a(j);

au(n) = fl; b(n) = bu(j);

end Vj;

b(#b+l) = oddone;

lia = 1; jbot = 1; j top = 1; length = 1; 15

(while jbot le #b)

(jtop ^ Vj >_ jbot) low = lia-1; high = j;

(while (high-low) gjt D mid= (high+low) /2

;

if b(j) le a (mid) then high = mid;

else low - mid;

;

end while;

-67-

20

(lia 1 Vi ^ low)a(i-l) = a(i);;

a(low) - b(j); lia = lia-1;

end V j

;

jbot = jtop+1; length = 2*length + 1; 25

jtop = (lia + length) min #b;

end while;

return { <p (1) -lia+1 , p(2)>, p G a};

end fordj

;

Line

1 items declared as {<t-£jtt>}

2 litems detected as ti; logical as tb

3 au,bu detected as tn ; i as ti

4 logical detected as tb; i as ti

5 Xj y detected as ti

6 logical detected as tb ; x,y as ti

8 au and bu detected as {<ti,ti>}

9 oddone detected as ti\tu; a as {<ti ,ti\tu>}\tn

10 J detected as ti

11 dummy detected as tb ; n as ti

12 au,h detected as {<ti ^ ti>]\tn ; buj as ti\tu

14 b detected as {<tt,tt>}|tn

15 lia^ cbot, jtop, length detected as ti

16 logical detected as tb ; ^b as ti

17 J detected as ti ; low, high as t-i

18 logical detected as tb ; mid as ti

19 logical recognized as tb -, b (j), a(mid) , high, low as ti

-68-

22 i detected as ti ; a(i) as ti\tu ; a as {<tij ti\ tu>}
\
tn

23 lia detected as ti ; b(j) as ti\tu ; a as {< ti ^ ti |
tu> }

|
tn

25 jbot^ length detected as ti

26 jtop detected as ti

28 pri/) detected as ti ; ^(^2^ as ti
]
tu ; set as •'' < ti ^ ti

|
tu> }

6 . Topological Connectivity Analysis

Source: On Programming, II, pp. 262-263.

This algorithm is given a mapping color from a set of

bricks, each represented by an ordered pair giving its

position, into the Boolean set (t, f} where t represents

the color black and f_, the color white. nrows and nools

are the number of rows and columns respectively. The routine

returns a mapping such that all the bricks in a connected

region of a single color are mapped onto a single

representative brick of the region.

definef topanalyze (color, nrows ,ncols)

;

inside = ni_; represent = n£ ;

(1 <_ Vnc _< ncols) represent (<1 ,nc>) = <1,1>;;

poffset =0;

(2 <_ Vnr <_ nrows) represent (<nr, 1>) = <1,1>; 5

(2 ^ Vnr £ ncols)

pnaybs=<<nr-l ,nc-pof fset>

,

<nr-l,nc-pof fset+1 min ncols> , <nr,nc-l>>

;

-69-

if n nayb (n) Spnaybs I color (nayb) e£

color (<nr,nc>) then continue; 10

else represent (<nr,no) = nayb;

if n eoj^ 2 and color (pnayb (3)) eg

color (pnayb (2)

)

then if truerep (nayb) ne truerep (pnayb (3)

)

then represent (pnayb (3)) =nayb ; 15

else <nayb, pnayb (1) >in inside;

end if; end if;

end if;

end Vnc;

poffset = 1-poffset; 20

end Vnr;

return {< truerep (x (1)), truerep (x (2)) >, x e inside};

end topanalyze;

definef truerep (brick)

;

b = brick; 25

(while represent (b) ne f^) b = represent (b) ; ;

re turn b

;

end truerep;

-70-

Line

1 aolor declared as {<<tiiti>^ tb>}; nrows ,naols as ti

2 inside, represent detected as tn

3 no detected as ti ; represent as {<<ti ,ti>y<ti ,ti>>]

4 poffset detected as ti

5 nr detected as ti ; represent {<<tii ti> , <ti, ti>>}

6 no detected as ti

7 pnaybs detected as <<ti , ti> , <ti , ti> ,<ti , ti>>

9 logicals detected as th ; n detected as ti ;

nayb as <tiyti>]tu; aolor(nayb) and aolor (<nr,no>)

as tb
I

tu

11 represent detected as {<<ti , ti> , <ti, ti>>}
\
tn

12 logicals recognized as tb ; pnayb(2), pnayb(2)

as <ti , ti>
\

tu

14 logicals detected as tb

15 represent detected as {<<ti , ti> , <ti , ti>>} \
tn

16 inside detected as {<<ti , ti>\tu,<ti , ti>\tu>]

20" poffset detected as ti

22 set detected as {<<ti , ti>\tu,<ti ,ti>\tu>}

25,26 b recognized as <ti,ti>\tu ; logical recognized as tb

-71-

7. Summary of the Results .

In this section we present some statistics and summarize

the results obtained using the typefinder on the examples

of the previous 6 sections. In general, we may say that,

when given only a small amount of declaratory information

(in most cases, a declaration of the types of the parameters

of a subroutine), the typefinder performs rather well.

Of course the type information assigned to a variable

is always 'larger' (in the sense of the type lattice) than

the disjunction of the actual types which the variable's

value can take on during program execution. In over

70% of the cases, the detected types were "exact fits" —

that is, they were the best description possible within

our type calculus for the actual run time types of objects.

There were three distinct groups of cases in which

the best description was not obtained.

1) An object defined by a function application is often

described as possibly being of type tu (the undefined atom)

even when a more precise static analysis would show that

the function parameter will be within the domain of the

function. A good example of this occurs in line 6 of

section 4:

(1 <_ Vk <_ #i) intov(i(k)) = i;;

Here, i(k) is described as being of type ti\tu despite

the fact that i is known to be of type [ti]\tt (line 4)

and k is clearly in range. Similar situations occur in

-72-

Section 1, lines 8, 13, 17; Section 2, lines 16, 22, 23;

Section 3, lines 3, 4, 9, 10; Section 4, lines 3, 13, etc.

In many cases the fact that such an object is not

of type tu could be established by examining its

subsequent uses. An example of this occurs in Section 2,

line 16:

if wfreq(x) It least then <keep,least> = <x,wfreq (x) > ;

;

Here, the first occurrence of wfreq(x) is recognized as

being of type ti because it is used in a comparison operation;

but the second occurrence is described as being of type ti
\
tu.

Another very common instance of this type of imprecision

occurs in 'forall' loops. Consider again Section 2,

lines 15-17:

(Vx e set)

if wfreq(x) It least then <keep,least> =<x,wfreq (x) > ;

;

end V

;

which when expanded for analysis reads as follows:

1 temp = set;

2 loop: if temp ne n^ then x = arb temp;

3 temp = temp less x; if wfreq(x) It least etc.;;

4 go to loop;

5 end if;

If the instruction x = arb temp in line 2 is executed, temp

cannot be equal to nl_ and thus x cannot equal fl. However

this is not detected by our typefinder, since the fact that

temp ^ nl_ depends on the semantics of the test. Thus we

-73-

find that in Section 2, line 16, keep is described as

ta\ta\tu rather than ta\ta.

We will call this kind of imprecision, in which an

object is incorrectly described as possibly being of type

tu, a type I imprecision. Of course, it is not always the

case that such an identification is incorrect. For

example, consider Section 2, line 21 where I (top) is

correctly identified as being of type ta\ta\tu , although

the identification of I (top) in line 22 as ta\to\tu

represents a type I imprecision. Similarly in line 9 of

Section 5, oddone is correctly identified as being of

type ti\tu. - , , .

2) A type II imprecision occurs when a set or a tuple

is incorrectly identified as possibly being null. Often

this is a direct result of a type I imprecision, as in

the following example, taken from Section 4, lines 16-17:

16 (while {yGfollowers Inpreds (y) e£ count (y) } is^ newin ne_ nl)

17 (VzGnewin) int(#int+l) = z; z out followers;

In line 17, newin cannot be of type tn (the null set)

but this fact is not detected, so that z is identified as

being of type ti\tu (a type I imprecision). When the

indexed assignment is then made to int , int should be

identifiable as [ti]. However, since our analysis

algorithm judges that we might be assigning Q. to the

first position of a tuple of length 1, int is incorrectly

identified as of type [ti]\tt.

-74-

other examples of type II imprecisions are in

Section 1, lines 8, 19, 22; Section 2, lines 5, 18;

Section 3, line 16; Section 5, lines 9, 12, 22, 23, etc.

3. A third type of imprecision occurs when an object

which is incorrectly identified by a type I or type II

imprecision is inserted into a set or tuple. An example

occurs in Section 5, line 28:

return {<p (1) -lia+l,p (z) >
, p G a};

p(l) is detected as being of type ti from its use in

a subtraction operation. p(2), however, is detected as

of type ti\tu -- a type I imprecision. The set which

is returned is therefore incorrectly described as being

of type {<ti , ti\tu>} . (Note that in our type calculus

we do not convert <ti,ti\tu> to [ti] since the former

gives more information than the latter.)

Such imprecisions will be disregarded in the statistics

which follow, since the objects which they identify are

correctly determined as to their primary type — non-null

set or non-null tuple.

For each of our six examples the following table

indicates the number of quadruples, the number of exact

detections, the number of type I and type II imprecisions

and the percentage of exact detections.

-75-

I

CHAPTER III

A SETL SPECIFICATION OF THE TYPE-FINDING ALGORITHM

1. Representations of Programs and Preliminary Processing .

In this chapter we specify the type determination

algorithm in SETL. A running SETLB version of this speci-

fication exists and was used in the development of the

'production' variant of the algorithm. We shall give our

specification in a top-down style, first presenting the

global algorithm and then specifying the various necessary

subroutines

.

A program is represented as a 5-tuple of the forro

<nodeSfProgrphjentri/jaesorjOonSjexits>, where

:

nodes is the set of basic blocks of the program;

progrph is a function which maps each member of nodes

into a tuple representing the operations occurring

in that basic block in order of execution. Such a

tuple will be called a block tuple. Each operation

is itself represented by a tuple consisting of an

output variable, an operator, and input variables.

Such an operation will be called a defining tuple',

entry is an element of nodes which is the entry block to

the program;

r- J • ^ ^nodes , . , ^oesor IS a mapping from nodes into 2 which for

each basic block, gives the set of its successors;

-77-

eons is the set of constants occurring in the program;

exits is the set of exit blocks of the program.

Preliminary processing of the program

5-tuple, by a method incorporating interval analysis and

use-definition chaining, produces the following auxiliary

objects

.

defs the set of all definitions appearing in the program.

A definition corresponds to a defining tuple, but

is represented by a triple consisting of a defined

variable, the basic block in which the defining

tuple occurs and an integer which gives the posi-

tion of the defining tuple within the basic block.

A use of a variable is similarly represented by a

quadruple consisting of the variable used, the basic

block within which the use appears, an integer which

gives the position among all the defining tuples

of a basic block of the defining tuple t within

which the use appears, and an integer which gives

the position of the use among all the uses which are

part of t. For example if

prgrph (b) (4) = <y , op , ZyW , t> then the definition of

y is represented by <y,b,4> and the use of w by

<w,b,4,2>. To simplify the code which follows we

shall make use of the following macros:

-78-

+*blk(x) = x(2) ** /* the block in which x appears */

+*blkpos(x) = x{3)**/* the position of x within the block*/

+*usepos(x) = x(4)** /* the position of a use x among the

uses of a definition */

ud a mapping which associates with each use of a

variable the set of all definitions which are

chained to that use (see Chapter I, Section 4).

du a mapping which associates with each definition of

a variable the set of all uses which are chained

to that definition.

constyp a mapping which, given a SETL constant, produces its

type using the type representation which will

be discussed below.

The algorithms for obtaining these auxiliary items are

straightforward extensions of the algorithms presented in

(Schwartz, 1973b)

.

The SETL operators with which we deal in the running

SETLB typefinder are represented by integers. We name these

and describe their meanings as follows:

ohd SETL hd operation oarb SETL arb operation

otl SETL tl_ operation oass assignment operation

oad plus operator osb minus operator

oml asterisk operator odv slash operator

orm double slash operator opw SETL pow operation

onpw SETL npow operation oset SETL set former

otpl SETL tuple former omxm SETL max operation

omnm SETL min operation oabs SETL abs operation

-79-

OS is # operator

ooat SETL oct operation

oor SETL or operation

oelm G operator

oeq

• comparison operators

one

olt

o le

ogt

oge

ondx substring/subtuple op

odxs indexed assignment

odea SETL dec operation

onot SETL not operation

oand SETL and operation

ord SETL read operation

owth SETL with operation

olss SETL less operation

olsf SETL lesf operation

oina SETL incs operation

oof functional application

e.g. f (x)

oofa multivalued functional

application, e.g. f{x}.

These operators can be categorized according to the

number of their operands. ord has no arguments so that

read x is represented by the defining tuple <x,ord> .

Simple assignments' such as x = y are represented by

<x,oass ,y > . Unary operators are combined with assignment

so that X = hA y is represented by <x,ohd,y> . The

operators which take only one argument are

ohdj otl, oarbj, oass, opw, odec, ooat, oabs^ osiz and onot.

There is a single ternary operator, ondx; x = y(z:w) is

represented by <x,ondx, y, z, w> . Three other operators

have an indefinite number of arguments; these are oset, otpl,

and odxs. x = {y , z,w, t] is represented by <x, oset^ y , z,w, t>

and similarly for x = <y , z,w, t> . Indexed assignment {odxs)

-80-

is unusual in that it is the only operator in which the

previous type of the defined variable is a determinant

of its type after the operation is performed. E.g. if x

is a tuple, x(S) = y causes x to remain a tuple, and if

X is a set then the operation causes x to remain a set.

For this reason, the defined variable is repeated as one

of the input uses in the defining tuple. For example,

f(x) = z is represented by <f,odxSyXyZyf> and f(x,y) = z

by <f,odxSjX,yyZ,f>. All other operators are binary.

The details of the operators used and the manner in

which defining tuples are represented are of course

unimportant in discussing the high level logic of the type

determination algorithm; but these details are critical in

actually programming and implementing such an algorithm.

2 . Representation of Type Symbols .

We now give a scheme for representing type symbols as

we have defined them in Chapter 1, Section 2.

The scheme has the advantage of enabling us to

perform alternations elegantly and efficiently.

Other schemes might do just as well, but the con

and dis routines below would have to

accommodate a particular method of representation.

Elementary types except for tz and tg are represented

by distinct bit strings of length 8 (which is the number

-81-

of elementary type symbols other than tz) . A bit string

representing an elementary type symbol has

exactly one nonzero bit. Thus ti might be represented

by bit string 00000010b while tu might be represented by

00000001b. ts is represented by a bit string of all zeros

and tg by a bit string of all ones. The alternation of two

elementary types is represented by the inclusive "or" of

the two representations. This scheme automatically ensures

that tg and tz are the absorptive and identity elements

for alternation.

We associate the names of type symbols with their bit

string representations allowing us to refer to the objects

tUj ti , trij tty tg, ta, tz, tb and to in the ensuing

algorithms

.

If t is a type symbol and r its SETL representation,

we represent the type symbol {t} by the SETL object <2, tz, r>

and the type symbol [t] by the SETL object <3, tz, r>

.

If tl,...,tn are type symbols with representations r'l,...,r'n

respectively then the type symbol <tl,...,tn> will be

represented by the SETL object <4, tz, rl, . . . , rn>.

An alternation between a grosstype represented by

<r(1) ,tz,r(3) , . . .> and an elementary type represented by rr

will be represented by the SETL object <r> (1) ,rr, r (3),...> .

For example, <2,tn,ti> represents the type symbol {ti}\tn

and <4,tt,ti or tb,ti> represents the type symbol

<ti
I

tb, ti>
I

tt .

-82-

We define some useful macros:

=* set = 2 ** +* unt = 3 ** +* knt = 4 **

=* isel(x) = type x e£ bits **

+* isset(x) = if isel(x) then f else x(l) eg 2 **

+* isunt(x) = if isel(x) then f else x(l) eg 3 **

+* isknt(x) = if isel(x) then f else x(l) eg 4 **

+ * grostyp(x) = if isel(x) then 1 else x(l) **

We now present the routines for

disjunction and conjunction. First we give a SETL routine

dis which when given two type representations returns the

representation of their disjunction (see Chapter 1, Section 2) .

definef dis(a,b);

if grostyp(a) ^ grostyp(b) then return dis(b,a);;

if el (a) then /* form the alternation of a and b */

if isel(b) then return a or b;;

return <b(l) , a or b(2) > + t£ t£ b; ;

if (isset(a) and isset(b)) or (isunt(a) and isunt(b)) then

/* disjunction of two sets or of two tuples

of unknown length */

return <a(l),a(2) or b(2), dis (a (3) ,b (3)) > ; ;

if isunt(a) then /* disjunction of an unknown and known

length tuple */

return <unt, a (2) or b (2) ,dis (a (3) ,

[dis: 2<i<#b]b(i)) >;

;

-83-

if isknt(a) then return /* a and b are both known

length tuples */

if #a e£ #b then /* disjunction of two tuples

of same length */

<knt,a(2) orb(2)>+[+: 2<i<#a] <dis (a (i) ,b (i)) >

else /* disjunction of two tuples of differing

lengths */

<unt,a(2) orb(2), dis ([dis : 2<i<#a]a(i),

[dis: 2<i<#b]b(i))>;;

/* otherwise the disjunction reduces to the general type*/

return tg;

end dis;

We also make dis available as an infix operator.

define a dis b;

return dis (a,b)

;

end;

Next we present the SETL routine con, which when given

two type symbol representations returns the representation

of their conjunction (see Chpater 1, Section 2)

.

definef con(a,b);

if grostyp(a) gjt grostyp(b) then return con(h,a);;

if isel(a) and isel(b) then return a and b; ;

ela = if isel(a) then a else a(2); /* elementary

alternand of a */

/* at this point 'tJ is known to be non-elementary */

-84-

eltyp = /* the elementary alternand of the result */

ela and b (2) ;

if isknt(b) then tup - <knt, eltyp>

;

if isunt(a) then

/* conjunction of unknown and known length tuple */

(2 < Vi ^ #b) tup(i) = con(b(i) ,a(3)) ; ;;

if isknt(a) and #a e^^ #b then /* two tuples of same

length */

(2 < Vi £ #a) tup(i) = con{a(i) ,b(i)) ; ;;

if #tup e3^2or2<3il #tup|tup(i) eg. tz

then return eltyp;

else return tup;

;

end if;

if grostyp(a) e^^ grostyp(b) then

if con (a (3) , b (3)) e£ tz then return eltyp;

else return <a{l) ,eltyp,con (a (3) ,b (3)) > ; ;

end if;

return eltyp;

end con;

We also make oon available as an infix operator;

define a con b;

return con(a,b);

end;

-85-

3. The Global Type Determination Algorithm .

Before presenting SETL code for the type determina-

tion algorithm, we describe the mapping typ which will

be constructed by that algorithm. This mapping from the

set defs + cons into the set of type representations

corresponds to the 'type status vector' of Chapter 1,

Definition 11. If x is a definition or a constant, tijp(x)

is the type of that object as determined by our algorithm

at a given point. Recall that the mapping

constyp when given an element of aons returns the type

representation of that constajit.

The type determination algorithm is as described in

Chapter 1, Section 8, but is preceded by a short initializa-

tion section. The steps noted in the comments below are

the steps of that algorithm as presented at the end of

that section, to which the reader is referred. In steps

Ic and 2c we use two sets, S, (df) and S-(df) which were

defined by

s (df) = {d-^defs\one of the input uses to d- is in du(df))

and

Sr,(df) = {d.^defs\for some use u input to df, d^^ud(u)].

We now give SETL code to compute these two sets, and

then give the code for the type determination algorithm

itself. The variables defs, ud, du , progrph and aonstyp

are assumed global. We use an auxiliary macro defined by

-86-

+*deftup(x) = prgrph (blk (x)) (blkpos (x)) ** which, when

given a definition or use x, returns either the defining

tuple which x represents (if x is a definition) , or (if

a; is a use) returns the defining tuple in which x occurs.

definef si (df)

;

/* returns the set of definitions which may use the

quantity defined by df */

return [+: u G du (df)] {dGdef s
|
U- df eg_ u(2:2)};

end si;

definef s2 (df) ; /* returns the set of definitions chained

to the uses which are inputs to df */

used = /* the tuple of variables which are inputs to d */

t£ U deftup (df)

;

return {+ : v(j)Gused] ud(<v, blk (df) , blkpos (df)
,
j >)

;

end s2;

The type determination algorithm uses routines

forward(d) and haak(d) to compute the type of d as determined

by the first and second methods of type determination respec-

tively (see Chapter I , Sections 5 and 7) . These routines will

be given shortly.

-87-

define typedeterm;

/* initialization section */

typ = nZ ;

(Vx e cons) typ(x) = constyp (x) ; ; /* initialize types

of constants */

(Vx e defs) typ(x) = tz;; /* initialize type status

to <tSj . .
.

,

tz> *

/

/* end of initialization */

work = defs; /* step la */

(while work ne nJ^)

/* step lb */

d from work;

oldtype = typ(d);

typ(d) = forward(d);

if oldtype ne typ(d) then /* step Ic */

/* adjust work to include those definitions

whose type may be changed in the

the next forward pass */

work - work + sl(d);

end if;

end while;

/* we now begin step 2, the joint forward and backward pass*/

work =defs; /* step 2a */

(while work ne n&)

/* step 2b */

d from work;

-88-

oldtype = typ(d);

typ(d) = forward(d);

if oldtype ne_ typ(d) then /* step 2c */

/* adjust work to include those definitions

whose type may be changed in the next

forward or backward pass */

work = work + sl(d) + s2 (d) ;

end if;

end while;

end typedeterm;

4 . The First Method of Type Determination .

In specifying the routine forwardi d) which gives the

type of definition d as determined by the first method of

type determination, v/e make use of a function oalc as

specified in Chapter I, Section 5. We assume the existence

of a SETL routine oalc which takes two arguments. The

first, op is an operator representation; and the second,

types, is a tuple of type representations which are the

types of the variables input to op. oalc returns that

type representation which designates an object resulting

from operator op acting on objects of type types.

The aalc function is of course dependent on the

programming language the types of whose variables we are

determining. The body of the function consists essentially

-89-

of a collection of tables enumerating all basic combinations

of type and operator. Because of its length and detailed

nature, aala will be given in an appendix.

The routine forward notes the operator and input of a

definition d, determines the types of the inputs using

formula (3) of Chapter 1 and calls oalo in accordance with

formula (4) of Chapter 1. ud and progrph are assumed global.

definef forward(d);

types = nult ; /* initialization */

tup = /* the defining tuple corresponding to d */

deftup (d)

;

uses = /* the tuple of input variables */

ti t& tup;

(Vv{j) e uses)

u = /* the use which the jth variable of tup represents*/

<v,blk(d) ,blkpos (d)
,
j>

;

/* apply formula (3) of Chapter 1 */

types (j) = [dis: df G ud(u)] typ(df);

end V

;

op = /* the operator of d */

tup (2) ;

/* we now call calc in accordance with formula (4) */

return calc (op, types)

;

end forward;

-90-

5 . The Second Method of Type Determination

We now give SETL code for the second method of type

determination which was presented in Chapter 1, Section 7.

Our aim in writing this code is to solve the system of

equations (15) -(18) of that chapter algorithmically for a

definition d , producing a quantity baak(d). This

quantity gives the type of the variable defined by d as

deduced from its subsequent uses.

As noted in Section 8 of Chapter 1, the quantity haok(d)

can best be computed by creating the tree of the program

graph rooted at the block containing d. We shall first

present a function progtree (node) which, when given a

block, node, of a program graph and a global graph successor

function, aesov, returns this tree. The tree is represented

by a triple <t y oont, succ> , where:

t is a blank atom representing the root of the tree;

cont is a function from the blank atoms which are the nodes

of the tree into the blocks of the original program graph;

suQc is the multivalued descendant function of the tree.

Recall that if p is a program graph and b a block of that

graph, the tree of p rooted at Z? is a tree whose root is b

and such that the tree successors of a node are chosen from

among its graph successors, but with avoidance of cycles.

The function progtvee sets the root of the tree to a blank

atom t and initializes cont(t) to node. It then adds blank

atoms to suaa(t) corresponding to the elements in

-91-

cesor(aont(t)); as long as this does not create a cycle.

An auxiliary function tpred is kept, which for each tree

node returns the set of all its predecessors (including

itself) .

definef progtree (node)

;

/* aesor is global */

succ = n^; tpred = ni_; cont = n^; t = newat ;

cont(t) = node;

work = {t}; /* work is the set of leaves of the tree,

as so far constructed */

tpred (t) = {t};

(while work ne n_fc) tnode from work;

succ(tnode) = nl ;

(Vcscesor (cont (tnode))

)

/* check if adding node o to suae (tnode) would

cause a cycle */

if c n e cont [tpred (tnode)] then /* if not */

/* create a new tree node */

b = newat ; cont(b) = c;

/* propagate the predecessor function */

tpred (b) = tpred (tnode) with b;

/* update the successor function */

b in succ(tnode);

b in_ work; /* b is now a leaf */

end if;

end V;

end while;

return <t , cont, succ> ;

end progtree; -92-

Recall that equations (15) -(18) of Chapter 1, Section 7

are to be applied to the program graph G _, divided at a

definition d and not to the program graph G originally

given. Accordingly, the routine prog tree should in principle

be applied to G _. and not to G. However, as already pointed

out, such an approach would be prohibitively inefficient

since it would mean recalculating a new program graph for

each definition.

Our original motive for introducing the auxiliary object

G _, in Chapter I was simply to regularize the discussion by

making it possible to treat all uses appearing within a block

uniformly. However, instead of actually introducing the

new graph G. , we can simply use the graph G, but in

processing a definition d, calculate as if G, had been

introduced. To do this, we establish two distinct subsets

among the uses of d appearing in b(d). The first set, which

we shall call be fore (d) , are those uses appearing prior to

d in b(d)', the second set, which we shall call after (d) , are

those uses appearing after d. The elements of be fore (d)

(resp. after(d)) correspond precisely to those uses which

would belong in the divided graph G, to the first (resp. the

second) of the two blocks into which the block b(d) would

be divided. Let backtype (u) be the function which deter-

mines the type of a use u from the operator applied to it

and the type of the resulting object (see Chapter I, Section 7),

and let orm be the auxiliary function defined by

-93-

definef a orm b; return if a e^ Q. then b else a; end orm ;

Then in processing the divided graph G. the type information

which we would associate with the first of the two blocks into

which b(dJ would be divided is simply

prevtyp =
[con ; uebefore(d)] backtype(u) orm tg.

Thus we can compute haok(d)

without constructing G, as follows (cf. Chapter I,

Section 8) . Given a definition d , we construct the

tree t rooted at b(d) from the original program graph.

In using equations (15) -(18) to pass type information up t,

we check each node n to see if n is a graph predecessor of

b(d), the root node of t. That is, we calculate the boolean

quantity blk(d) G oesor (oont (n)) . If this has the value

true , prevtyp must be disjoined with the type information

calculated from the tree successors of n.

We now present the recursive SETL routine pass type which

is responsible for passing type information up the tree t.

It is called with two arguments; the first, d is the

definition whose type is being determined; and the second,

t is a node of the program tree at whose entry we wish to

determine the type of J.

In the routine which follows, we use the macro dub

defined by: +* dub(d,b) = {u e du(d) |blk(u) eg b} ** .

This macro returns the set of all those uses which are

chained to a definition d and which appear in a block b.

-94-

definef passtype (d, t) ;

/* Gont, suoo, prevtyp, progrph, cesor, exits are

assumed to be global */

node = cont(t); /* node is the basic block

corresponding to the tree node t */

blktyp = /* the type of d as determined from its

uses within node */

[con: uGdub (d,node)] backtype(u) orm tg;

if node s exits /* node is a program exit */

or /* node contains a redefinition of d's variable */

3 dftup(j) s progrph (node) |dftup(l) e£ d(l)

then return blktyp;

/* in accordance with Chapter I , (15) and (17) */

end if;

val = dis(if blk(d) s cesor(node) then prevtyp else tg,

[dis ; sb e succ(t)] passtype (d, sb) orm tg)

;

/* in accordance with Chapter I, (16) and the

preceding discussion */

return con (blktyp, val) ; /* chapter I, (17) */

end passtype;

We now present the routine baak(d)

It creates the program tree rooted at the block of d,

calculates prevtyp and calls on passtype

.

-95-

definef back(d);

/* prevtyp i cont, suco, exits, progrph, cesor are

assumed global */

<t,cont, succ> = progtree (blk (d) _is node) ;

bluses = dub (d, node) ; /* uses of d appearing in node */

before = /* uses appearing before d */

{u e bluses Iblkpos (u) le blkpos(d)};

after = /* uses appearing after d */

bluses - before;

prevtyp =
[con ; u e before] backtype(u) orm tg;

blktyp =
[con : u G after] backtype(u) orm tg;

/* note that in calculating blktyp we only consider

those uses appearing in after */

if node s exits /* node is a program exit */

/* note that here we do not have to worry about

a redefinition since if one occurred, no uses

in any other block could be chained to d */

then return blktyp; /* Chapter I, (15) and (17) */

end if;

val = dis(if blk (d) G cesor(node) then prevtyp else tg,

[dis: sb e succ(t)] pass type (d, sb) orm tg)

;

/* Chapter I, (16) */

return con (blktyp, val) ; /* Chapter I, (17) */

end back

;

-96-

CHAPTER IV

CONCRETE ALGORITHMICS OF THE TYPEFINDER

In this chapter, we shall suggest methods for coding

the typefinder in languages of lower level than SETL when

it is to be used in a practical compiler system. In

particular, we shall describe the realization of the type-

finder in two medium level languages -- BALM and PL/I.

A BALM version but not a PL/I version has actually been

implemented.

1. The Data Structures in the SETL Version .

In order to contrast the SETL implementation of the

typefinder with lower level language implementations of this

same algorithm, we first enumerate the data structures and

control flow mechanisms used in the SETL implementation.

Then we describe the problems which must be faced in

transcribing these structures and mechanisms into BALM and

PL/I. In describing these concrete algorithmic issues,

we will also point out features of the medium level languages

which enhance or hinder the clarity and efficiency of the

resulting code.

a) The function progrph (Chapter III, Section 1) is used

in the SETL implementation to map each basic block into a

tuple of defining tuples, where each defining tuple represents

a definition. From the basic mapping prograph , preprocessing

-97-

creates the set defs (Chapter III, Section 1) . This set defs

represents the set of all definitions in the program, where

each definition (i.e., each element of defs) is represented

by a triple consisting of an output variable, a block and a

position within that block. The set defs is our initial

workset and is the domain of the mapping typ which the

typefinder aims to construct. In processing a definition d

to determine its type by the forward and backward methods

(Chapter III, Sections 4 and 5 respectively) we must

often retrieve the defining tuple which d represents. To

this end the SETL typefinder uses the macros

+* blk(d) = d(2) ** /* returns the block of definition d */

+* blkpos (d) = d(3) /* returns the position of d within blk(d)*/

+ * deftup(d) = progrph(blk(d)) (blkpos(d)) **

/* returns the defining tuple of d */

Note that retrieval of the defining tuple dtup from a

definition requires four indexing operations and that

retrieval of a component from dtup requires yet another index-

ing operation. Since these retrievals are all frequent

operations, we must aim to implement them efficiently in

lower level versions of the typefinder.

b) Another group of SETL data structures, specifically

the mappings ud and du , appear in connection with use-

definition chaining (Chapter III, Section 1). The first.

98-

ud, is a mapping from the set of uses into the power set of

defs + oons {cons is the set of constants) and produces the

set of definitions or constants which are chained to a

particular use. Note that use u is represented in much the

same way as a definition; i.e. as a tuple whose first

component is the variable used, whose second component is

the block containing u, whose third component is the position

within that block of the defining tuple which contains u,

and whose fourth component is the position of u among the

uses within the defining tuple of u. The macro deftup is

used to retrieve the defining tuple of a particular use.

The mapping du is the inverse of ud. For each

element d of defs, du(d) is the set of uses chained to d.

When we apply one of the mappings ud or du we index a set

by a tuple. The SETL system is designed to maximize the

efficiency of such use of sets m as mappings. This is

achieved by storing sets of tuples as hashtables and hashing

the index i appearing in a reference m(i) to produce the

position of the functional value.

To realize the functions ud and du in a lower level

language we must aim to set up a data structure in which the

functional values ud(u) and du(d) can be retrieved by a single

lookup.

c) For each basic block b the function oesor returns the

set of successor blocks of b in the program graph. Like

ud and du, cesov is a multivalued function. It can be

-99-

realized efficiently if we represent basic blocks by

successive integers and the map aesor itself by a tuple.

The objects entry and exits which are the entry block and

set of exit blocks of the program can be represented by

an integer and a set of integers respectively.

d) The last major data structure which appears in the

SETL implementation of the typefinder is the program tree

rooted at a given node. The tree rooted at a given block

b is returned by the coded routine progtree (b) (Chapter III,

Section 5) . Each node of the tree is represented by a blank

atom on which two functions, cont and suca, are defined.

The function suae is a multivalued tree successor function

which returns the set of successor nodes of a given node.

If n is a tree node, aont(n) returns the program block

which n represents.

In the SETL implementation, progtree (blk (d)) is called

each time a definition d is to be processed. This is

clearly inefficient; it is better to precalculate a data

structure progtree2 which collects together all the trees

which would be returned by repeated individual calls to

progtree •

e) The scheme by which type symbols are represented in the

SETL implementation was discussed in Chapter III, Section 2.

Elementary types are represented by bit strings so that the

disjunction and conjunction of elementary types are

calculation by 'and'ing and 'or'ing their representative bit

-100-

strings. Complex types are represented by tuples whose first

component is an integer representing the gross type, whose

second component is a bit string representing a possible

elementary altemand, and whose remaining components

represent the constituent components of the complex type

symbol

.

For each definition d of the program, the function typ

defined on defs + cons returns the type symbol representation

momentarily assigned to the output of d; for a constant c,

tijp(a) gives the type symbol representation for c.

2 . Implementing the Type finder in BALM.

Two problems must be overcome in translating SETL

programs into a lower level language. The first concerns

the representation of sets since in the SETL typefinder we

often deal with sets. For example, ud(u) is a set of

definitions while du(d) is a set of uses. The programmer

can use a variety of data structures to represent sets in

lower level languages. Among these are arrays, lists and

bit strings. Arrays are most useful when the sets they repre-

sent have a fixed number of elements, since in such a case

the entire array can be allocated at once and the values

-101-

filled in as objects are created and put in the set.

In the more common case of a set whose cardinality is

unknown but which grows to some final size, a list repre-

sentation is more useful since objects can be added to the

head of the list as they are added to the set. Note,

however, that arrays and lists are only convenient for sets

which are built up and then used as index sets to control

some iteration. In such cases, one iterates over the array

or list performing some process once for each member.

However, arrays and lists are unsuitable for membership

testing since such testing will often require a search

through most of the list or array. Of course one can

implement a set as an array using hashing but this type

of code, used internally within SETL, is not easy for a

programmer to manage.

An alternative representation of a set 5 is a bit

string. Such a representation can be used when S is known

to be a siibset of some stable larger set S' whose elements

can be put into a one-to-one correspondence with the integers

from 1 to #5'. The set S can then be represented by a bit

string S, where #B = US'. An element a. e 5' is a member

of S if and only if B(i) = 1. The bit string representation

has the advantage of wasting only one bit for each absent

element; often it will more than make up this small space

loss by not replicating the individual elements of the

superset S'. Bit string representations are most useful in

dealing with highly volatile sets for which insertions and

-102-

deletions are constantly being performed. To insert an element

a. e 5' into S one merely sets B(i) to 1 ; to delete a. ,

t t

one merely sets B(i) to 0. This may be contrasted with the

way in which the same operations must be carried out when a

list representation is used. To insert an element a in a set

represented as a list, one must check each element of the

list to see if a is not already a member. Membership testing

is also very efficient for sets represented as bitstrings.

However, the bit string representing can lead to an

inefficient realization of iterations over S, especially if

S is sparse with respect to 5 '
. In such cases, many bits

must be passed over before one finds a member a . of S ' which

is also a member of S.

A second problem which must be faced in translating SETL

programs into lower level languages is that of realizing

the operation of indexing by compound objects. For example,

in the SETL typefinder, uses and definitions are represented

by tuples. Such tuples appear as indices to the mappings

ud and du. However, in BALM the only indexable object is

the vector, and vectors can be indexed only by integers. As

we shall see, this forces us to represent uses and defini-

tions in BALM by integers. These integers are used to index

two vectors, UD and DU, and also to index a vector DEFS

which defines the actual definition which corresponds to each

'definition representing' integer. This 'cross-indexing' of

integers to put them in correspondence with compound data

-103-

objects is a fundamental device of lower level prograimning.

Having made these general remarks, we turn to a specific

discussion of the data structures used in the BALM implementa-

tion and of their relation to the corresponding SETL data

structures.

a) A definition in the SETL implementation is represented

by a triple consisting of an output variable, a block number

and a position-within-block number. The latter two data are

used as indices to the structure progrph which contains all

defining tuples. Concerning the SETL typefinder, we have

noted that given a definition d, retrieval of the operator

op(d) required five indexing operations. This is clearly

unsatisfactory in an efficient implementation.

To increase efficiency in the BALM implementation, we

eliminate the object progrph entirely and incorporate all

information about the definitions of the program into a

vector DEFS. Each component of DEFS is itself a vector

representing a defining tuple, and consists of the following

items:

1) an integer representing the basic block in which the

definition appears

2) the variable being defined

3) an integer representing the operator

4) the input variables.

Note that it is no longer necessary to store the

position of a definition within its basic block, since

•104-

definitions are ordered within the vector DEFS according to

their appearance in the program.

Given the data object DEFS, a definition is represented

by its integer index within DEFS. Given an integer I, the

defining tuple of definition I is recovered by accessing

DEFS [I] and the operator is recovered by DEFS [I] [3].

Note that the number of indexing operations necessary to

recover an operator from a definition has been reduced from

five to two.

The advantage of using the SETL object progrph was that,

given a basic block b, the expression progrphCb) accessed

the set of definitions appearing within b. If

only the vector DEFS were available, DEFS would have

to be searched sequentially to find an I such that DEFS [I] [1]=B,

To avoid this and to enable quick access to the set of

definitions appearing within a basic block, we introduce two

cross indexing functions — LODEF and HIDEF. If B is an

integer representing a basic block, LODEF [B] is the index

(to DEFS) which represents the first definition within block B

and HIDEF [B] is the index which represents the last definition

within B.

In a similar way, uses are represented by integers. These

integers can be considered as indices to a virtual data object

USES (because of the availability of other cross indices, an

actual data object USES is unnecessary) . For each use U,

UDEF[U] gives the definition to which U serves as input.

-105-

If D is an integer representing a definition, LOUSE [D] is the

index (to USES) which represents the first argument to the

operation defining D and HIUSE [D] is the index which repre-

sents the last argument to this operation.

b) We noted earlier that it is desirable to implement the

fixnctions ud and du in a way that allows their functional

values to be retrieved by a single lookup. Given that we

are using an integer encoding of uses and definitions,

this goal can be achieved by introducing two vectors UD and

DU. The uses which are chained to a definition D can then

be accessed by DU[D] and the definitions chained to a use U

can be accessed by UD [U] . However, the question of how

to represent the values DU[D] and UD [U] reamins. Since

these sets do not change during the execution of the

typefinder routine, and since they are primarily used for

iteration, we choose to represent them as BALM lists. This

representation is not the best for use during the

use-definition chaining process when the objects UD and DU are

being created and are constantly involved in membership tests.

However, since BALM does not provide bit strings of arbitrary

length and since the overhead of simulating long bit strings

(using vectors of integers) turns out to be substantial,:

we use lists to represent UD[D] and DU[D] even during the

chaining phase.

c) The block successor function oesor is also represented

by a vector of lists. Thus if B represents a block, CESOR[B]

is the list of integers which represent the successor blocks

-106-

of B. ENTRY is the entry node to the program and EXITS a

list of exit nodes.

d) Instead of the coded routine pvogtree which is called

each time the program tree rooted at a given node is

needed, the BALM implementation provides a vector PROGTF^E

which is indexed by integers representing basic blocks.

This vector is created once at the start of the typefinding

process.

A program tree T is represented by a list whose first

element is an integer representing the block B which is the

root of T and whose other elements are lists representing

the subtrees rooted at the successors of B. Thus, the SETL

aont(t) corresponds to the BALM HD T and the SETL succ(t)

corresponds to TL T.

To illustrate the consequence of the concrete algorithmic

design which has just been sketched, we present a BALM

version of the SETL routine passtype (Chapter III, Section 5).

This routine is responsible for passing type information up

a program tree. The routine is annotated using PL/I - SETL

style comments (/* THIS IS A COMMENT */) although the actual

BALM comment convention is different.

PASSTYPE = PROC(D,T) , /* D IS A DEFINITION, T A PROGRAM TREE */

BEGIN (NODE, BLKTYP, DUD, UDFL,OUTVBL,K,SUCC,L)

,

NODE = HD T /* ROOTNODE OF T */

-107-

BLKTYP = TG /* CORRESPONDS TO THE orm tg IN THE

SETL VERSTION */,

DUD = DU[D] /* SET OF USES CHAINED TO D */

WHILE DUD REPEAT DO /* ITERATE OVER SET OF USES */

L = HD DUD /* A PARTICULAR USE */,

DUD = TL DUD /* UPDATE SET FOR FURTHER ITERATION */,

DF = DEFS [UDEF[L]] /* THE DEFINING TUPLE WHICH

CONTAINS THAT USE */,

IF DF[1] EQ NODE THEN /* THE USE APPEARS WITHIN

THE TREE ROOT NODE */

BLKTYP = CON (BLKTYP, BACKTYPE(L))

/* IN ACCORDANCE WITH CHAPTER I, (17) */

END,

IF MEMBER(NODE, EXITS) /* THIS MEMBERSHIP TEST WILL BE

INEFFICIENT */

THEN /* r]ODE IS A PROGRAM EXIT */

RETURN BLKTYP,

OUTVBL = DEFS [D] [2] /* THE DEFINED VARIABLE OF D */,

FORK = (LODEF [NODE] , HIDEF[NODE]) REPEAT

/* ITERATE OVER ALL DEFINITIONS IN THE BLOCK */

IF DEFS [K] [2] EQ OUTVBL THEN

/* THE BLOCK CONTAINS A REDEFINITION OF

D's VARIABLE */

RETURN BLKTYP,

SUCC = TL T /* SET OF TREE SUCCESSORS */

-108-

VAL = IF MEMBER (DEFS[D][1], CESOR[NODE]) THEN

PREVTYP ELSE (IF SUCC THEN TZ ELSE TG)

,

/* SEE CHAPTER I, (16) AND THE DISCUSSION IN

CHAPTER III, SECTION 5 */

WHILE SUCC REPEAT DO

/* ITERATE OVER TREE SUCCESSORS */

IF VAL EQ TG THEN RETURN BLKTYP

/* NO TYPE INFORMATION MAY BE OBTAINED FROM

THE SUCCESSOR NODES SINCE THERE IS A PATTERN

OF USES ALONG SOME PATH WHICH IMPLIES TYPE TG */,

L = HD SUCC, SUCC = TL SUCC,

VAL = DIS(VAL, PASSTYPE(D,L))

END,

RETURN CON (BLKTYP, VAL) /* CHAPTER I, (17) */

END END;

Note that in the above BALM routine we have explicitly

incorporated an optimization which was not used in the SETL

version. As soon as it is detected that the uses along some

subtree imply a result type tg , we return from PASSTYPE

without bothering to see what happens along the other

subtrees

.

e) Next we address the question of type representation in

BALM. Using the BALM vector capabilities, types can be

represented in much the same way that they are represented

in SETL. Elementary types are represented by BALM bit strings

-109-

(actually, integers interpreted as bit strings) and grosstypes

are represented by such BALM objects as [2 TI] for {ti}

,

[3 TT TB] for [tb]\tt and [4 TI TI TC [2 TI]] for

<ti,tc, {ti}>\ ti . This allows us to use BALM's vector

creation and concatenation operations to construct type

representations

.

To illustrate the concrete algorithmic situation which

results, we present the BALM routine which forms the conjunc-

tion of two type symbols. This routine is modeled after

the SETL routine aon of Chapter III, Section 2. Note the

use of the BALM built-in function LAND which, given two

integers I and T, returns an integer whose binary repre-

sentation is the boolean conjunction of the binary repre-

sentations of I and J.

CON = PROC(A,B)

,

BEGIN(ELA,ELTYP,I,TUP,CONj)

,

IF GROSTYP(A) GT GROSTYP(B) THEN RETURN CON(B,A),

IF ISEL(A) AND ISEL(B) THEN /* 2 ELEMENTARY TYPES */

RETURN LAND (A, B)

,

ELA = /* ELEMENTARY ALTERNAND OF A */

IF ISEL(A) THEN A ELSE A[2];

ELTYP = /* THE ELEMENTARY ALTERNAND OF THE RESULT */ '

LAND(ELA, B [2]) ,

IF ISKNT(B) THEN DO TUP = VECTOR (KNT, ELTYP)

,

IF ISUNT(A) THEN /* CONJUNCTION OF UNKNOWN

AND KNOWN LENGTH TUPLES */

-110-

DO TUP = CONCAT (TUP, MAKVECTOR (SIZE B-2)
)

,

FOR 1= (3, SIZE B) REPEAT DO

CONJ - CON(B[I] ,A[3]) ,

IF CONJ EQ TZ THEN RETURN ELTYP,

TUP [I] = CONJ

END

END,

IF ISKNT(A) AND SIZE A EQ SIZE B THEN

/* 2 TUPLES OF SAME LENGTH */ DO

TUP = CONCAT (TUP, MAKVECTOR(SIZE B-2)),

FOR I = (3, SIZE B) REPEAT DO

CONJ = CON (A [I], B[I]),

IF CONJ EQ TZ THEN RETURN ELTYP,

TUP [I] = CONJ

END

END,

RETURN TUP

END,

IF GROSTYP(A) EQ GROSTYP(B) THEN

/* 2 SETS OR TUPLES OF UNKNOWN LENGTH */

DO CONJ = CON (A [3], B[3]),

IF CONJ EQ TZ THEN RETURN ELTYP,

RETURN VECT0R(A[1], ELTYP, CONJ)

END,

RETURN ELTYP

END END;

-111-

3. The Typefinder in PL/I .

For programming the typefinder, BALM has several advan-

tages over PL/I. BALM allows its user to concatenate two

vectors explicitly while in PL/I he must allocate the

necessary storage and manually copy the information.

BALM also allows its user to allocate vectors of

dynamically determined size without specific declaratory

information becoming necessary. It also makes it

convenient to use "jagged" arrays; that is linear arrays

each of whose elements is itself an array of undetermined

length. In PL/I of course, the size of the second dimen-

sion of a two-dimensional array is the same along each

cross-section of the first dimension; though PL/I does

allow the "jagged" effect to be obtained using pointers.

In BALM, vectors and lists are maintained in a garbage

collected environment, which frees the programmer from the

problem of keeping track of all his pointers and explicitly

releasing storage when an object is no longer necessary.

In the present section we shall explain how the data

structures needed in the typefinder can be represented in

a PL/I version, and also write some samples of PL/I type-

finder code.

a) As in BALM, definitions and uses will be represented

by integer indices into an object DEFS and a virtual object

USES. In BALM, DEFS was a vector of defining vectors. Each

defining vector contained a block number, an output variable.

-112-

an operator and several input variables. In PL/I, we

simulate "jagged" arrays using structures and pointers.

The object DEFS can be declared as follows:

DCL 1 DEFS (NUMDEFS)

,

2 BLOCK FIXED,

2 OUTVBL PTR,

2 OP FIXED,

2 INVBLS PTR;

OUTVBL is a pointer to the symbol table entry which

represents the defined variable of a definition; INVBLS is a

pointer to a list each of whose elements is declared by

DCL 1 LISTVBL BASED (P),

2 VBL PTR,

2 NEXT PTR;

VBL is a pointer to the symbol table and NEXT is a list

pointer to the next LISTVBL in the same list.

As in BALM, the arrays LODEF and HIDEF will be used

to access the first and last definitions of a block;

LOUSE and HIUSE will be used to access the first and last

uses input to a definition and UDEF will specify the

definition to which each particular use is an argument.

b) The functions ud and du can be declared by

DCL(UD(NUMUSES) , DU(NUMDEFS)) PTR;

That is, UD and DU are arrays of pointers. DU(D) and UD(U)

point to objects of the form declared by

-113-

DCL 1 LISTINT BASED (Q)

,

2 INTEG FIXED,

2 NEXT PTR;

Such a representation is well suited for the typefinder,

since DU(D) and UD(U) are used primarily as bases for

iteration. Note that, unlike the current version of BALM,

PL/I provides 'long' bit strings. During the use-definition

chaining process, in which the objects DU and UD are

constructed it is more efficient to represent DU and UD

by arrays of bitstrings. These would be declared by

DCL UDBIT(NUMUSES) BIT (NUMDEFS + NUMCONS)

,

DUBIT(NUMDEFS) BIT (NUMUSES)

;

In passing from use-definition chaining to typefinding, the

arrays UD and DU can be created from UDBIT and DUBIT.

c) In the typefinder, the function cesor is used primarily

for membership testing but must support iteration when

we build the program trees from the program graph. A reverse

pattern of usage is seen in the use-definition chaining

algorithm, in which cesor is used primarily for iteration

although some membership testing is needed. Thus for

efficiency reasons, it probably pays to keep cesor both

as an array of lists and bitstrings. We declare CESOR by

DCL 1 CESOR (NUMBLKS),

2 BITCES BIT (NUMBLKS)

,

2 LISTCES PTR;

-114-

Th^LISTCES will point to a structure of the form previously

declared as LISTINT. ENTRY will be an integer and EXITS, used

exclusively for membership testing, will be a bitstring.

These objects are declared by

DCL ENTRY FIXED, EXITS BIT (NUMB LKS) ;

d) In PL/I, PROGTREE will be an array of pointers declared by

DCL PROGTREE (NUMBLKS) PTR;

Each element of PROGTREE will point to a structure declared

as follows:

DCL 1 TREE BASED (R)

,

2 NODE FIXED,

2 YOUNGER_BROTHER PTR,

2 OLDEST_SON PTR;

Both YOUNGER_BROTHER and OLDEST_SON will point to structures

declared as TREEs.

Having reviewed these declarations, we can now give an

example of a PL/I routine which might be used in the type-

finder. The following function PASSTYPE is a PL/I version

of the SETL pass type (Chapter III, Section 5) and the BALM

PASSTYPE (Chpater IV, Section 2) . We assume it to be

internal to a block in which all of the preceding declara-

tions have been made. PASSTYPE returns a pointer to a type

structure (see the following subsection) , as do the

functions CON, DIS and BACKTYPE . TG , TZ and PREVTYP are

global pointers to type structures representing tg^ tz

and prevtyp

.

-115-

PASSTYPE: PROC(D,T) RECURSIVE RETURNS (PTR) ;

DCL D FIXED, /* D is an integer representing a definition*/

T PTR, /* T points to a TREE */

(BLKTYP,VAL) PTR, /* pointers to type structures */

OUT PTR, /* pointer to symbol table */

DUD PTR, /* pointer to list of LISTINTs */

SUCC PTR, /* pointer to a TREE */

(L,K,DF) FIXED; /* represent definitions or uses */

BLKTYP = TG; /* corresponds to orm tg in the SETL version */

DUD = DU(D); /* ptr to list of uses chained to D */

LOOP: /* iterate over set of uses chained to D */

DO WHILE (DUD "1= NULL) ;

L = DUD -» INTEG; /* get the next use from the list */

DUD = DUD -»- LISTINT.NEXT; /* update pointer for

further iteration */

DF = UDEF(L); /* the definition in which the use

L appears */

IF BLOCK (DF) = T -> NODE THEN

/* the use appears in the root node of the tree */

BLKTYP = CON (BLKTYP, BACKTYPE (L)) ; /*Ch.I, (17)*/

END LOOP;

IF SUBSTR(EXITS, T^-NODE , 1) THEN

/* NODE is a program exit */ RETURN BLKTYP;

/* in accordance with Ch. I, (15) */

OUT = OUTVBL(D) ; /* a pointer to the symbol table entry

of the variable defined by d */

-116-

REDEF: /* iterate over all definitions in the block,

searching for a redefinition */

DO K = LODEF(T -> NODE) TO HIDEF(T -> NODE) ;

IF OUT = OUTVBL(K) THEN

/* a redefinition has been found */ RETURN BLKTYP;

/* in accordance with Ch. I, (15) */

END REDEF;

SUCC = T -> OLDEST_SON;

IF SUBSTR(BITCES (T ^- NODE), BLOCK (D) , 1) THEN

/* the block containing D is a successor of

the current node */ VAL = PREVTYP;

/* see Ch. I, (16) and the discussion in Ch. Ill,

Section 5 */

ELSE

IF SUCC = NULL THEN /* no tree descendents */

VAL = TG; /* corresponds to orm tg

in SETL version */

ELSE VAL = TZ; /* identity value

for disjunction */

SUBTREES: /* iterate over all subtrees */

DO WHILE (SUCC -| = NULL) ;

IF VAL = TG THEN /* there is a pattern of uses

along some path which implies type tg so no

type information may be obtained from uses

along alternate paths */

RETURN BLKTYP;

-117-

VAL = DIS(VAL, PASSTYPE(D,SUCC)) ; /* Ch. I, (16) */

SUCC = SUCC ^ YOUNGER_BROTHER;

/* update for continued iteration */

END SUBTREES;

RETURN (CON (BLKTYP, VAL)) /* Ch. I, (17) */

END PASSTYPE;

e) In BALM, the typestatus vector was represented by the

BALM vector TYPE indexed by a definition D. Each TYPE [D]

was either an integer representing an elementary type or a

vector representing a grosstype. In the case of an object

of type 'set' or 'unknown length tuple', this vector was

of length 3 but in the case of an object of type 'known

length tuple' the vector was of arbitrary size.

PL/I, however, does not permit arrays which are not

homogeneous; that is, all the elements of a PL/I array

must be of the same size. One solution is to make TYPE

an array of pointers. If this is done TYPE(D) will point

to an integer in the case of an elementary type and a struc-

ture in the case of a grosstype. This adds an extra level

of indirection and also creates the problem of how to tell

whether the target of a pointer is an integer or a

structure

.

An alternative is to declare the array TYPE as follows:

-118-

DCL 1 TYPE (NUMDEFS + NUMCONS),

2 GROSTYP FIXED,

2 ELTYP BIT (8)

,

2 COMPONENTS PTR;

In the case of an elementary type, GROSTYP will be 1,

ELTYP will contain the bitstring representation of the type

and COMPONENTS will be NULL. In the case of a grosstype,

GROSTYP will equal 2, 3 or 4 (depending on whether the

object is of type set, unknown length tuple or known length

tuple) , ELTYP will be the elementary alternand and COMPONENTS

will point to a list of type structures declared by:

DCL 1 TYPELIST BASED(S),

2 LISTGROS FIXED,

2 LISTEL BIT (8) ,

2 LISTCOMP PTR,

2 LISTNEXT PTR;

If TYPE (D) .GROSTYP is 2 or 3, then COMPONENTS (D) will

point to only a single structure of type TYPELIST; otherwise

it will point to an entire list of type structures chained by

the pointer LISTNEXT.

Note that the programmer will himself have to allocate

and free structures of type TYPELIST. As soon as a TYPELIST

is no longer needed it must be freed or the proliferation

of TYPELISTs will soon devour all of available memory. This

problem was entirely ignored in presenting the routine

PASSTYPE above. For example, after executing the statement

-119-

VAL = DIS(VAL, PASSTYPE(D, SUCC)) , the TYPELIST which was

pointed to by PASSTYPE (D,SUCC) must be freed. A similar

situation exists in the statement BLKTYP = CON(BLKTYP,

BACKTYPE(L)). The TYPELISTs to which the old values of VAL

and BLKTYP were pointing must also be freed.

The fact that it is necessary to free TYPELISTs causes

a problem with the objects TG and TZ. We assumed in

programming PASSTYPE that TG and TZ were constant pointers

to type structures representing tg and tz respectively.

However, if TG or TZ is returned by a routine which results

in a type value and the TYPELISTs to which TG and TZ point

are freed, then we can no longer use TG and TZ to

represent tg and tz. To solve this problem, we will

declare TG and TZ as structures as in the following way:

DCL 1 TG,

2 TGGROS FIXED INIT(l),

2 TGEL BIT{8) INIT (' 11111111 ' B)

,

2 TGCOMP PTR INIT (NULL),

2 TGNEXT PTR INIT (NULL); and

DCL 1 TZ,

2 TZGROS FIXED INIT(l),

2 TZEL BIT(8) INIT (' 00000000 ' B)

,

2 TZCOMP PTR INIT (NULL),

2 TZNEXT PTR INIT (NULL) ;

We now present a useful auxiliary routine FR which,

when given a pointer to a TYPELIST, frees all the storage

occupied by that type structure.

-120-

FR: PROC(P) RECURSIVE;

DCL P PTR,

IF P ^- LISTNEXT —1= NULL THEN CALL FR(P ^ LISTNEXT) ;

IF P -> LISTCOMP —1= NULL THEN CALL FR(P ^ LISTCOMP) ;

FREE P ^ TYPELIST;

END FR;

Next we present a PL/I version of the routine CON which

forms the conjunction of two types.

CON: PROC(A,B) RECURSIVE RETURNS (PTR) ;

DCL(A,B) PTR, /* pointers to type structures */

(AAUX, BAUX, RAUX,RES,CONJ,TRES) PTR,

/* pointers to auxiliary type structures */

IF A -> LISTGROS > B -> LISTGROS THEN RETURN (CON (B , A)) ;

ALLOCATE TYPELIST SET (RES);

/* RES will point to a resulting elementary

type structure */

RES -> LISTGROS = EL;

RES -> LISTEL = A ^ LISTEL & B ^ LISTEL;

/* elementary alternand of the result*/

RES ^ LISTCOMP, RES ^ LISTNEXT = NULL;

IF ISKNT(B) THEN /* 5 is a known-length tuple, so result

must be a known- length tuple or

elementary */

-121-

BKNT: DC-

ALLOCATE TYPELIST SET(TRES);

/* TRES points to a structure representing

the resultant tuple */

TRES ^ LISTGROS = KNT;

TRES ^ LISTEL = RES ^ LISTEL;

IF ISUNT(A) THEN /* conjunction of known-length

and unknown-length tuples */

AUNT: DO;

AAUX = A ^ LISTCOMP; /* component of A */

BAUX = B ^ LISTCOMP; /* first component of B */

CONJ = CON (AAUX, BAUX);

IF CONJ ^ TYPELIST = TZ THEN DO;

/* free extra storage and return RES */

FREE CONJ ^ TYPELIST;

FREE TRES ^ TYPELIST;

RETURN (RES) ; END;

/* otherwise, insert first component of result */

TRES ^ LISTCOMP = CONJ;

RAUX = CONJ; /* pointer to last filled-in

component of result */

OVER: /* repeat for each component of B */

DO WHILE (BAUX ^ LISTNEXT "l = NULL);

/* get the next component */

BAUX = BAUX -* LISTNEXT;

-122-

CONJ = CON (AAUX, BAUX)

;

IF CONJ -> TYPELIST = TZ THEN DO;

/* free extra storage and return*/

FREE CONJ ^ TYPELIST;

CALL FR(TRES) ;

RETURN (RES) ; END;

/* insert component into result */

RAUX -> LISTNEXT = CONJ;

RAUX = CONJ; /* lart filled component*/

END OVER;

END AUNT;

IF ISKNT(A) THEN /* conjunction of two known-

length tuples */

AKNT: DO;

/* get first components of A and B */

AAUX = A -> LISTCOMP; BAUX = B ^ LISTCOMP;

CONJ = CON (AAUX, BAUX)

;

IF CONJ -> TYPELIST = TZ THEN DO;

/* free extra storage and return RES*/

FREE CONJ -V TYPELIST; FREE TRES^- TYPELIST;

RETURN (RES) ; END;

/* otherwise, insert first component

of result */

TRES ^ LISTCOMP = CONJ;

RAUX = CONJ; /* pointer to last filled-in

component of result */

-123-

AGAIN: DO WHILE /* both A and B still have

components which were not processed*/

(BAUX^- LISTNEXT-|=NULL &

AAUX ^ LISTNEXT "1= NULL) ;

BAUX = BAUX H. LISTNEXT;

/* next component of B */

AAUX = AAUX -> LISTNEXT;

/* next component of A */

CONJ = CON (AAUX, BAUX)

;

IF CONJ -^ TYPELIST = TZ THEN DO;

/* free extra storage and return*/

FREE CONJ ^- TYPELIST;

CALL FR(TRES)

;

RETURN (RES); END;

RAUX -> LISTNEXT = CONJ;

/* insert component into result */

RAUX = CONJ; /* last filled component*/

END AGAIN;

/* Ensure that A and B were of same length */

IF BAUX -> LISTNEXT —| = NULL
|

AAUX -> LISTNEXT = NULL

THEN /* unequal length so return RES*/

DO; CALL FR(TRES)

;

RETURN (RES) ; END;

END AKNT;

/* otherwise, free EES and return TRES */

124-

FREE RES ^ TYPELIST; RETURN (TRES)

;

END BKNT;

IF A ^ LISTGROS = B ^ LISTGROS & A ^ LISTGROS -|=1 THEN

/* two sets or tuples of unknown length */

SETSORUNTS: DO;

CONJ = CON (A ^ LISTCOMP, B ^ LISTCOMP)

;

IF CONJ -> TYPELIST = TZ THEN DO ;

FREE CONJ ^ TYPELIST;

RETURN (RES) ; END;

RES -> LISTCOMP = CONJ;

RES ^ LISTGROS = A ^ LISTGROS;

END SETSORUNTS;

RETURN (RES) ;

END CON;

We are now in a position to present a revised version

of the routine PASSTYPE which frees storage when appropriate

and which uses the revised declarations of TZ and TG.

This should be compared with the previous PL/I version of

PASSTYPE; the complications caused by forcing the programmer

to do his own storage management stand out with reasonable

clarity.

-125-

PASSTYPE: PROC(D,T) RECURSIVE RETURNS (PTR) ,

•

DCL(D,L,K,DF) FIXED,

(T, BLKTYP, VAL, OUT, DUD, SUCC, TEMP 1,TEMP2) PTR;

ALLOCATE TYPELIST SET (BLKTYP)

;

BLKTYP -^ TYPELIST = TG;

DUD = DU(D)

;

LOOP: DO WHILE (DUD —i = NULL)

L = DUD ^ INTEG; DUD = DUD -" LISTINT.NEXT ;

DF = UDEF(L) ;

IF BLOCK (DF) = T ->- NODE THEN DO;

TEMPI = BLKTYP;

TEMP2 = BACKTYPE(L);

BLKTYP = CON (TEMPI, TEMP2)

;

CALL FR (TEMPI)

;

CALL FR(TEMP2) ; END;

END LOOP;

IF SUBSTR(EXITS, T > NODE, 1) THEN RETURN (BLKTYP) ;

OUT = OUTVBL(D)

;

REDEF: DO K=LODEF (T ->- NODE) TO HIDEF (T -> NODE);

IF OUT = OUTVBL(K) THEN RETURN (BLKTYP)

;

END REDEF;

SUCC = T ^ OLDEST SON;

-126-

IF SUBSTR(BITCES (T -> NODE), BLOCK(D), 1) THEN VAL=PREVTYP;

ELSE DC-

ALLOCATE TYPE LI ST SET (VAL)

;

IF SUCC = NULL THEN VAL -> TYPELIST = TG;

ELSE VAL -> TYPELIST = TZ ;

END;

SUBTREES: DO WHILE (SUCC —> = NULL) ;

IF VAL -^ TYPELIST = TG THEN RETURN (BLKTYP) ;

TEMPI = VAL;

TEMP2 = PASSTYPE(D,SUCC)

;

VAL = DIS (TEMPI, TEMP2) ;

CALL FR(TEMPI) ;

CALL FR(TEMP2)

;

SUCC = SUCC -^ YOUNCER_BROTHER;

END SUBTREES;

TEMPI = VAL;

VAL = CON (TEMPI , BLKTYP)

;

CALL FR(TEMPI)

;

CALL FR (BLKTYP) ;

RETURN (VAL) ;

END PASSTYPE;

-127-

4 . Summary and Conclusions .

Several conclusions may be drawn from a comparison of

the SETL version of the typefinder and the two more concrete

versions which have been presented in the preceding pages.

We note in the first place that the stepwise translation

of complex algorithms into successively lower level

languages is a valuable programming tool. The SETL version

of the typefinder shows the basic features of the algorithm

with reasonable clarity and is not badly cluttered with

irrelevant detail. For this reason, SETL was found to be

a convenient language for initial development of the

algorithm.

Once a SETL algorithm is debugged and running, its

transcription into BALM is a straightforward process. The

key problem to be faced in this transcription is how to

represent all necessary SETL data objects in BALM. This

decision must be made by noting how each SETL data

structure is used in a particular algorithm and by deciding

how such uses can be mimed most efficiently in BALM.

Once these decisions are made, the actual coding of the

BALM routine is a simple matter. During such coding,

numerous optimizations possible at the lower level of

language will turn up. The transcription of BALM code into

PL/I may be described in similar terms.

-128-

We may also note the convenience of garbage collection

in developing an algorithm such as the typefinder.

One argument against garbage collection is that it is

unnecessarily expensive and that the programmer can free

data structures himself when the phase of an algorithm

which uses these data structures is completed. This is

true if a few large data structures are used continually

in some identifiable subsection of an algorithm to produce

specific results which are used in the next subsection.

However, in an algorithm like the typefinder, compound type

symbols are being created and discarded constantly. These

type symbols are not part of a single large data structure

which can be allocated and freed as a whole. Rather, each

type symbol is a small independent data structure which

must be allocated and freed independently. The complications

forced on the programmer if he must manage storage manually

are large and detract from his ability to solve the problem

neatly and efficiently.

We note that it is doubtful whether a PL/I algorithm

for type determination could have been developed from the

SETL algorithm with even a small fraction of the ease with

which it was developed from the BALM version. This is

because in going from SETL to BALM to PL/I, the process of

transcription is broken up into two parts; first one

transcribes data structures, then one introduces storage

management. This process of stepwise refinement is invaluable

-129-

in transforming a complex (SETL) algorithm into a version

of itself written in a language (PL/I) of very

substantially lower level.

-130-

CHAPTER V

MODIFICATIONS AND EXTENSIONS OF THE TYPEFINDING ALGORITHM

1 . Removing Type I Inprecisions

In Chapter II, Section 7 we defined a type I imprecision

as occurring when an object is incorrectly identified as

possibly being of type tu -- the undefined atom. Such an

imprecision typically arises when a function / is being

indexed by an element x which must belong to the domain of /

but the typefinder is unable to detect this membership.

An example of this, noted in Chapter II, is the statement

(1 ^ Vk < #i) intov(i(k)) = i;;

for which the typefinder classifies i(k) as being of type

ti
I

tu despite the fact that i is known to be of type

[ti]\tt and k is clearly in range.

The second method of type determination can often

establish that an object is not of type tu by examining the

subsequent uses of the object. For example, in the

statement

if wfreq(x) lt_ least then <keep,least> = <w,wfreq (x) > ; ; ,

the first occurrence of wfreq(x) is recognized as being of

type ti since it is used as an operand to a comparison

operator while the undefined atom may not be used in such

a manner. However, the second occurrence of wfreq(x), which

•131-

is not used in this way, can only be identified as being of

type ti\tu. Of course, in a compiler incorporating an

algorithm to eliminate redundant computations, this impreci-

sion would be removed.

Let us reconsider our first example. Even without using

the fact that k is within the domain of i we can show that

i(k) cannot be n since i(k) is used as an index to the

mapping intov and 9. cannot be used in this manner. This

fact should be detectable by our second method. It is not

detected only because of the coarseness of our type calculus.

Since almost any object, including a set, tuple, integer,

bit string, etc., can serve as an index to a mapping, very

little information can be gleaned from the fact that a

variable is used as an index. The disjunction of all the

disparate types which can be indices is tg; however an

object used as an index cannot be of type tu.

To avoid losing the fact that an index cannot be 9.,

we should introduce a new type symbol td to designate "some

SETL object not equal to 9.." The disjunction of a set and

a tuple would then no longer be tg but td. In the preceding

example, if u represents the use of i(k), then backtype(u)

would be td rather than tg; the presence of such a symbol
^

in our type calculus would then allow us to identify i(k)

as ti rather than ti
\
tu.

Introduction of the symbol td would somewhat complicate

the formation of conjunctions and disjunctions. It remains

-132-

to be seen on an experimental basis whether the added

information which could be obtained is worth these complica-

tions .

Some type I imprecisions arise in connection with loops

containing type II imprecisions. The following loop

exemplifies this:

(while seen ne n^) node from seen;

end while;

Although seen cannot equal n£ within the loop, this fact is

not detected by our algorithm, so that seen is incorrectly

identified as of type {ti]\tn. This is a type II imprecision,

Since node is an arbitrary element of a possibly null set,

its type is taken as ti\tu leading to a type I imprecision.

Moreover, at the point immediately after the while loop,

seen must be of type tn but this fact is also missed by

the type finder.

As the following example indicates, a similar situation

can arise in "forall" loops:

(Vz s newin) int(#int+l) = z; ...

The loop header is translated into a test of the condition

newin oo^ nl_; if the test fails z is extracted and the

loop body executed. However, the typefinder does not detect

the fact that when the loop body is executed, newin cannot

be n£. For this reason, z is imprecisely classified as

being of type ti\tu.

133-

A solution to this problem is to have the compiler

automatically insert dummy statements after all loop

headers to make explicit the logical type conditions which

those headers imply. This can be done by assigning constants

of known type to variables or by defining variables using

operators which will produce the correct types. These

dummy statements would of course not be executed but would

exist only in the compilation phase to aid in the type

determination process.

2 . Mappings of One Argument

In Chapter II it was pointed out that subroutine

parameters are treated by the typefinder as items of

general type. The only way to identify the types of such

objects, barring a general cross-subroutine type determina-

tion process, is by their subsequent use; i.e., by the second

method of type determination.

Parameters p which are themselves mappings will generally

be used only in function applications of one of the forms

p(x), p{x}, etc. If only the form p(x) occurs and x may

be an integer, the question of whether p represents a tuple

or a set is left indeterminate. Indeed, this indeterminacy

may be intended by the programmer, who may wish to keep open

the final choice of a data structure to represent some one

of the mappings which he uses. Unfortunately, however, the

disjunction of the set type and tlie tuple type in our calculus

-134-

is tg -- the general type. In our typefinder, parameters

representing mappings are therefore apt to be classified

as being of type tg , so that even the fact that the parameter

is a mapping will be lost.

In treating the examples described in Chapter II, we

avoided this difficulty by explicitly declaring the types

of all parameters. However, it is desirable to detect the

fact that an object is a mapping without having to resort

to declarations.

As a first step toward this goal, we can introduce a

new type symbol representing a 'mapping of one argument'.

The following definition makes explicit one way in which

this can be done.

Definition ; Let tl be a type symbol such that con(ti^ti) = ti

and let t2 be any type symbol. Let nl(tl) < 3 and

nl(t2) < 3. Then the symbol (tl,t2) designates "a one-

argument mapping from items of type tl to items of type t2"

.

The type (tl,t2) is meant to serve as the disjunction

of the type symbols {<t2,t2>} and [t2] . (Note that [t2]

itself is the disjunction of the symbols

<t2>^<t2^t2>,<t2,t2,t2>,...). Note the restriction

con (tij ti) = ti that appears in the preceding definition.

When this condition fails to hold then a mapping from objects

of type tl to objects of type t2 will be recognized as being

of type {<tl, t2>} since a tuple can only be indexed by

an integer.

-135-

To add to our calculus the new grosstype which appears

in the preceding definition we must amend the definitions

of conjunction and disjunction. Some of the necessary

modifications follow:

if aon (tl, ti) = ti

dis({<tl,t2>}, [t2]) = (tl^t2)

dis({<tl,t2>},<t2, . . . ,t2>) = (tl,t2)

dis((tl,t2) , [t2]) = dis ((tl,t2) ,{<tl,t2>])

= dis((tl,t2) ,<t2,. . . ,t2>) = (tl^t2)

dis((tl,t2) ,{[t2]}) = (tl,dis(t2, [t2]))

dis((tl,t2) ,{<t3,t4>]) = (dis(tl,t3) ,dis(t2,t4))

dis ((tl^t2) A<t2,t2,t2>}) = (tl , dis (t2 ,<t2 ,t2>))

con((tl,t2),{<tlyt2>}) .= {<tl,t2>}

aon((tl, t2) , [t2]) = [t2]

oon((tl,t2) ,<t2^ . . . ,t2>) = <tl, . . . ,t2>

Gon((tl,t2) , (t2,t4)) = (oon(tl,t2) ,con(t2,t4))

if oon (t2, t4) ^ tz

Gon((tl,t2) , (t3,t4)) = tn\tt if oon(t2,t4) = ts

e to.

Even with the improvement just suggested, a subroutine

parameter which is recognized as a mapping will be classi-

fied by our typefinder as of type (tg^tg). The typefinder

has no way of determining the domain and range of a function

from its uses, since even if the function is always indexed

by an object of given type, the function might still record

values for other indices of differing type. We can only

-136-

expect to determine the types of the domain and range of

a map by applying the first method of type determination

at the time that the map is passed as a parameter. Clearly,

this requires that we develop some method of cross-sub-

routine optimization.

3 . Applications of the Typefinder .

In the introduction of Chapter I we mentioned some of

the applications which a type determination algorithm for

compilers of very high level languages might be expected

to have. In this section we describe some of these

applications in more detail, and present more optimizations

which can be realized once a typefinder is available.

A primary application of the typefinder is to enable

a compiler to insert direct in-line code to perform a

certain operation op. Without a knowledge of the types of

the objects on which op is to be performed, one will prefer

to call a run time routine which must dynamically determine

the types of its operands and then call yet another run

time routine to actually perform op. When types are known

at compile time, we may even be able to eliminate the

type-tags which objects must otherwise carry. When this

is possible, objects such as integers can be kept in their

actual machine representation m rather than in some more

complex form I. We then avoid the packing and unpacking

operations which must be done to convert from m to I and

vice versa.

-137-

Although SETL allows long integers; that is, integers

which cannot be contained within a single machine word, most

SETL programs do not utilize this feature. The programmer

who uses only short integers should not be penalized by

the existence of language features which he does not use.

This suggests that SETL should provide two modes of compila-

tion. In the first mode, all integers identified by the

typefinder are assumed to be short, allowing them to be

represented directly in machine format. In the second mode,

long integers are provided and long integer arithmetic is

performed by calls on runtime subroutines. Note that

even if the second mode is used, a savings can be realized

by identifying objects as integers since only a single bit

b need be kept at runtime to identify the integer as being

short or long. This bit need not be kept packed in

the same word as the integer but can be kept together with

other such bits at a specific position of a run time bitstring.

For integer operations one can then compile in-line code to

test b and to execute a subroutine call if b is set but to

execute in-line instructions otherwise. This will avoid

expensive packing and unpacking operations. Note also that

since this strategy allows removal of the type field from

run time integers, longer integers can be considered "short"

than would otherwise be possible. Thus we attain faster

execution speed on a larger set of integers. Long/nolong

mode selection can be done by the SETL user via a special

declaration.

-138-

Similar optimizations can be performed in connection

with SETL real numbers which are ordinarily represented by

a root word which points to a two word block. If an

object is identified as a real, it can be represented

directly as a floating-point number in machine format

which requires only one-third of the space which would

othewise be needed. Tuples t of reals can then be repre-

sented as arrays of machine words containing real words

rather than pointers. An invalid real bit pattern can be

used to indicate the presence of an undefined atom within t.

Sets of reals can be represented by hashtables which

directly contain reals rather than pointers to reals.

Of course, if machine format reals are used, there is

no room in the word for a pointer to chain together set

elements which has to the same value so that a rehashing

system of resolving hash clashes rather than the chaining

system which is currently used would be necessary.

Another optimization of the same sort is in the

manipulation of logical values. As currently specified,

logicals are represented by generalized bit strings of

length 1. Thus each true/false value takes up an entire

word complete with type indicator and possible chaining

pointer. However, in most programs the only occurrences

of bit strings are as logical values. If analysis shows

an object to be a bit string of length 1, only a single

bit need be kept to represent it. To save space, all such

-139-

logical bits can be packed in a single bit string with a

specific position reserved for a specific logical value.

For faster execution, it may be preferable to use a full

word to store each logical value but that word can be kept

in machine logical form without extra markers. To determine

whether all bit strings in a program were logicals, we

might require a programmer to declare whether or not he

was using bit strings other than logicals, and compile his

program accordingly. Alternatively, the type calculus can

be extended to include two types, tl and tb , where tl

represents "a logical value (i.e. a single bit)" and

tb represents "a bit string of length possibly not equal

to one." The type determination process itself would then

determine whether or not a bit string is a logical.

Another advantage which may be gained from compile time

type determination is that storage may be allocated at load

time rather than dynamically during execution since storage

needs for identifiers whose types have been determined are

known at compile time. Further, the type determination

process will identify type errors in a program, thus signifi-

cantly assisting in program checkout.

Another point which may be made is that programs on

which the typefinder is successful are "better" programs than

those on which it fails, in the sense of being both more

transparent to understand and less error prone. Thus, in

some sense, the typefinder can serve as a guide to program

-140-

style and quality. Those cases where a "good" (i.e.

typefinder-analy zable) program cannot be constructed are

signals of weaknesses in a particular language and are

areas where new language features might be needed.

-141-

Appendix: Tables for the calc and backtijpe functions .

In this appendix, we present the SETL code for the

functions aalc and baaktype referred to in Chapter III.

In these functions we use the routine nstahk whenever a

type symbol is made a component of a set or tuple type

symbol. nstohk accepts a type symbol t and returns the

type symbol t ' which is the same as t but with a nesting

level limit of 2. Thus, when t' is inserted into a set

or tuple type the resulting nesting level limit will be 3.

definef nstchk(x); t = x; /* to avoid changing x */

if isel(t) then return t;

;

(3 <_ Vi < #t) if n isel(t(i)) then

/* t(i) is a gross type */

ti = t(i)

;

(3£Vj <_ #ti) /* search through each component

of t(i) */

if n isel(ti(j)) then

/* nesting level of 3 */

ti(j) = tg; t(i) = ti ;

end if;

end Vj;

end if;

end Vi; return t;

end nstchk;

-142-

We now define the set el types of all non-erroneous

elementary types; this set will be global to all subsequent

routines

.

eltypes = { ti, tb, tc,tt, tn, tg, ta, tu}

;

We also define a macro is type which takes two arguments

and returns a logical result. istype (tl , t2) is true if and

only if tl >^ t2 in our type calculus.

+* istype (tl, t2) = con(tl,t2) e^ t2 **

We also define a set of macros which represent

specific elementary alternations as follows.

+* tbcu = tb dis tc dis tu **

+* tin = ti dis tu **

+* tic = ti dis tc **

+* tbct = tb dis tc dis tt

+* tibc = ti dis tb dis tc

**

**

We also define an auxiliary function nontu which is given

a type symbol t and returns a type symbol which is the same

as t but does not include tu as an alternand. We assume that

tu is represented by the bit string 00000001b.

+* nontuconst = 11111110b **

definef nontu(x);

t = x; if t e£ tg then return tg;

;

if isel(t) then return t and nontuconst;

t(2) = t(2) and nontuconst; return t;

end nontu;

-143-

We are now in a position to give the code for the

function aalo. This routine calls on the routines

elun, amurij elelbin, omelbiriy cmcmbin and elambin

which will be defined later.

definef calc (op, types)

;

/* given an operator, op (see Ch. Ill, section 1 for

the macros which represent operations), and a

tuple of input types, types, calc returns the type

which results (in our type calculus) when op is

applied to types */

initially

opmap = /* a mapping which sends each operator either

to the type of its output or to a label where

that type is determined */

{/* the following operators return integer results */

<odv, ti> , <oabs, ti> , <omxm, ti>, <omnm, ti>,<osiz,ti>,

/* the following return bitstrings */

<oeq, tb>, <one, tb> , <ole , tb> , <ogt, tb> , <oge, tb>,

<oelm, tb> , <olt, tb> , <onot, tb> ,<oor, tb>, <oand, tb>,

<oinc, tb>

,

/* the following returns tg */ <ord,tg>,

/* the following are unary operators whose resultant

type depends on the type of an input argument.

unary is a label */

-144-

<ohd, unary> , <otl, unary> , <oarb, unary > , <opw, unary >

,

<ooct , unary> , <odec, unary> , <oass ,unary>

,

/* the following are binary */

<oad, binary > , <osb,binary> , <oml,binary> , <orm,binary>

,

<owth, binary > , <olss , binary > , <olsf ,binary> , < oof , binary >

,

<oofa, binary >, <onpw,binary>,

/* the substring/subtuple operation is ternary */

<ondx, ternary>

,

/* the following have an indeterminate number of

arguments */

<oset,setlab> , <otpl, tuplab>, <odxs, indexass> }

;

end initially;

ntypes = /* length of types tuple; i.e. number of operands*/

types;

tl = /* type of first operand */ hd types;

opmop = opmap(op)

;

if type opmap e^^ bits then

/*the operator always returns a specific type*/

return opmop;

;

/* else */

go to /* the label at which the resultant type will be

computed from the input types */

opmop

;

unary: /* single operand whose type is tl */

if isel(tl) then /* tl is elementary, code for the

routines elun and amun will be given below */

return elun (op, tl) ; ;

-145-

/* tl is a grosstype. elun will return the type result

for the elementary alternand, and cmun for the

nonelementary alternand */

return dis (cmun (op, tl) , elun (op, tl (2)))

;

binary: /* case of a binary operator */

t2 = types (2); /* type of the second operand */

if isel(tl) then

if isel(t2) then /* .2 elementary operands */

return elelbin (op, tl, t2) ; ;

/* code for elelhin, cmelbin , omombin , and elombin

will be given below */

/* first operand elementary, second not */

return dis (elcmbin (op, tl, t2) , elelbin (op, tl, t2 (2)))

;

end if;

if isel(t2) then /* first operand nonelementary,

second elementary */

retun dis (cmelbin (op, tl, t2) , elelbin (op, tl (2) , t2));

;

/* both operands non-elementary */

return cmcmbin (op, tl , t2) dis elcmbin (op, tl(2) , t2)

dis cmelbin (op, tl,t2 (2)) dis elelbin (op, tl (2) , t2 (2))

;

ternary: /* the only ternary operator is ondx */

ell = /* elementary alternand of indexed quantity */

if isel(tl) then tl else tl(2);

/* check to make sure the second and third operands

are integers */

if n istype(types (2) , ti) or n istype (types (3) , ti)

then return tz; ;

-146-

ternmap = /* a map from elementary input types to

corresponding types under ondx */

{<tb,tb>, <tc,tc>,<tt, tu>,<tg, tbcu, tg>};

x = /* tentative result type */ tz;

(Vt e eltypes) ttt = ternmap(t);

if tt n£ Q. and istype (ell, t)

then X = dis (x, ttt) ;

;

end V

;

if isunt(tl) then /* tl is an unknown length tuple

being indexed */

X = dis (x, <unt, tu, tl(3) >) ; ;

if isknt(tl) then /* tl is a known length tuple */

X = dis (x,<unt, tu, [di_s:3 £ i 1 #tl] tl(i)>);;

return x;

setlab: /* the operator is oset, the set former */

/* check for tz among the components */

if 3t(i) e types
|
nontu(t) e£_ tz then return tz;;

return <set , tz, [dis : 1 <^ i <_ntypes] nstchk (nontu (types (i)))> ;

tuplab: /* the operator is otpl, the tuple former */

/* check for tz among the components */

if 3t(i) G types
I

t e^. tz then return tz; ;

return <knt,tz> + [+: l<_i<ntypes] <nstchk (types (i))> ;

indexass: /* the operator is odxs , indexed assignment of the

form f(a,b,o) - y which is represented by

<fj odxs , a,b , Q ,11 , f> and where types =

<type (a) , type (b),type(a),type(y),type(f)> */

-147-

X = tz; /* initial approximation of result type */

ftype = /* type of object being indexed */

types (n types)

;

if ntypes §3^ 3 and istype (tl, ti) then

/* indexed assignment to a possible tuple,

bitstring or character string */

if ftype e^ tg then return tg;

;

if istype (ftype, tb) then x = dis (x, tb) ;

;

if istype (ftype, tc) then x = dis(x,tc);;

if istype (ftype, tt) then /* indexed assignment

to null tuple */

/* check whether assigned value is Q. */

asstyp = types(2);

if istype (asstyp, tu) then x = dis (x, tt) ;

;

/* check whether assigned value can be

anything except Q, */

if asstyp ne tu then

x=dis (x, <unt, tz, dis (asstyp, tu) >) ;

;

end if;

if isunt(ftype) or isunt(ftype) then

x=dis (x, <unt, tz,dis (types (2) ,

[

dis ; 3<i<#ftype]

types (i)) >) ;

;

end if;

/* we consider the possibility that ftype is a set */

if istype (types (ntypes-1) , tu) then

/* we must remove a tuple from ftype */

-148-

t2 - calc (otpl, types (1 :ntypes-2) +<tg>)

;

X = dis (x, calc (olss ,< ftype , t2>)

;

end if;

if types (ntypes-1) ne tu then /* add a tuple to ftype */

types (ntypes-1) = nontu (types (ntypes-1))

;

t2 = calc (otpl, types (l:ntypes-l)

;

X = dis (x, calc (owth, <ftype, t2>)

;

end if;

re turn x

;

end calc;

We now present the function elun which, given a unary

operator op and an elementary alternation t, will return the

resulting type symbol.

definef elun (op, t);

initially

elunmap = /* a map from operators and elementary input

types to result types */

{<ooct, tc,ti> , <odec,tc, ti>, <ooct, ti, tc> , <odec, ti , tc>

,

<ooct , tg, tic> , <odec , tg, tic> , <oarb , tn , tu>

,

<oarb, tg, tg> , <opw, tn , <set, tz , tn>>

,

<opw, tg, <set, tz, <set , tn , tg>>> , <ohd, tt ,tu>,

<ohd, tg,tg>, <otl, tt, tu> , <otl, tg, <unt, tt, tg> >}

;

end initially;

if op e^ oass /* assignment operation */ then return t;

;

-149-

X = tz; /* initial output type */

(Vttte eltypes
|
istype (t, ttt)

)

elres = elunmap (op, ttt)

;

X = dis(x, elres orm tz) ;

end V;

return x;

end elun;

We now present code for the function amun , which is given

a unary operator op and a grosstype t and returns the type

which results when op is applied to the non-elementary

alternand of t.

definef cmun(op,t);

initially

cmunmap = /* a map from operators and grosstype classes

to labels at which result types are computed */

{<ohd, unt,hdtpl> , <ohd,knt ,hdtpl> , <otl,unt, tlunt>,

<otl,knt, tlknt>, <oarb, set,hdtpl> , <opw, set ,pwset>};

end initially;

if op eg^ oass /* assignment operation */ then return t;;

cmres = cmunmap (op, grostyp (t))

;

if cmres e^ '^ then return tz ; ;

go to cmres

;

hdtpl: return t(3);

tlunt: return <iint , tt, t (3) > ;

-150-

tlknt: if #t e£ 3 then return tt;

;

return <knt,tz> + t(4:#t);

pwset: tl = t; tl(2) = tz;

return <set , tz,nstchk (tl) >;

end cmun;

The routine elelhin is called with an operator and two

elementary alternations and returns the resulting type.

The code follows:

definef elelbin (op, argl, arg2)

;

initially

/* we first set up the necessary tables */

intgad = /* an integer is being added */

{<ti, ti>,<tg, ti>};

bitsad - /* a. bitstring is being "added" */

{<tb, tb>,<tg,tb>};

charad = /* a cha.racter string is being "added" */

{<tc, tc>,<tg, tc>};

nsetad = /* the null set is being "added" */

{<tn,tn>,<tg, <set, tn, tg>>};

ntplad = /* the null tuple is being "added" */

{<tt,tt>, <tg,<unt, tt, tg>>};

gnrlad = /* a general type is being "added" */

{<ti,ti> ,<tb,tb>,<tc, tc>, <tn, <set, tn, tg>>,

<tt,<unt, tt, tg>>, <tg, tg>};

-151-

addmap = /* map for the plus operator */

{< ti,intgad>, <tb,bitsad> , <tc, charad>

,

<tn,nsetad> , <tt,ntplad> , <tg, gnrlad> }

;

nsetsb = /* something is "siibtracted" from the null set */

{<tn,tn>, <tg,tn>};

gnrlsb = /* something is being "subtracted" from tg */

{<ti, ti> ,<tn, <set, tn, tg>> , <tg, <set , tin, tg>> }

;

submap = /* map for the minus operator */

{<ti, intgad> , <tn,nsetsb> , <tg,gnrlsb> }

;

intgml =m/* an integer is being "multiplied"*/

{<ti,ti>,<tb,tb>,<tc,tc>,<tg,tibc>};

nsetml = /* the null set is being "multiplied" */

{<tn, tn>,<tg,tn>};

gnrlml - /* tg is being "multiplied" */

{<ti, ti>,<tb,tb>,<tc, tc>,<tn,tn>, <tg, <set, tibcn , tg>> }

;

mulmap - /* map for the "times" operator */

{<ti,intgml>, <tn,nsetml>, <tg, gnrlml > };

gnrlrm = /* tg is used in a remainder operation */

{<ti,ti>,<tn,<set,tn,tg>>,<tg,< set, tin, tg> > }

;

remmap = /* map for the // operator */

{<ti,intgad>, <tn,nsetad>, <tg,gnrlrm> }

;

bitsof = /* indexing a bitstring */

{<ti, tb>, <tg, tb>} ;

charof - /* indexing a character string */

{<ti, tc>,<tg,tc>};

-152-

ntplof = /* indexing the null tuple */

{<ti, tu>, <tg, tu>};

oofmap = /* map for the oof operation */

{<tb,bitsof>, <tc,charof>,<tt,ntplof >,<tn, tu>,

<tg,tg>};

intnpw = /* integer used in an onpw operation */

{<tn, <set,tn, tn>, <tg, <set, tn, tg>> }

;

npowmap = /* map for onpw operation */

{< ti , intnpw> }

;

lessmap = /* map for olss operation */

{<tn, tn>, <tg, <set, tn, tg>>}

binbinmap - { <oad, addmap> , <osb, submap>, <oml,mulmap>

,

<orm, remmap>, <olss, lessmap> , <olsf , lessmap>

,

< onpw, npowmap > , <oof ,oofmap> , <oo fa, lessmap > }

;

end initially;

if op e£ owth then /* special case for owth operator */

if istype (argl,tg) then return <set , tz, tg> ; ;

if istype (argl, tn) then a2 = nontu (arg2)

;

if a2 ne_ tz then return <set , tz, a2> ; ; ;

end if;

X - tz; opermap = binbinmap (op) ; if opermap e^^ 9. then

return x;

;

(Vt G eltypes I istype (argl, t)

)

(VtttGeltypes | istype (arg2 , ttt))

opt = opermap (t);

if type opt ne set and opt ne Q.

then X = dis(x,opt);

-153-

else if opt ne^ fi then

optt = opt(ttt)

;

if optt ne_ Q then x=dis (x, optt) ; ;

end if;

end if;

end Vttt;

end Vt;

return x;

end elelbin;

The routine elambin is called with an operator, an

elementary alternation avgl and a grosstype arg2 and

returns the type which results when the binary operator

is applied to argl and the non -elementary alternand of

arg2 .

definef elcmbin (op, argl, arg2)

;

/* we first set up a set of mappings for each operation

from an elementary type and a grosstype to a

resulting type */

a2 = nontu(arg2);

setarg2 = <set , tz,nstchk (a2) >; stng=<set, tn, tg>

;

stzg = <set,tz,tg>;

if a2 62. tz then setarg2 = tz;;

elcmad = /* plus operation */

{<tn, set,arg2>, <tg,set , stzg> , < tt, unt , arg2>

,

<tg,unt,<unt,tz,tg>> , < tt,knt , arg2> , <tg,knt, <unt , tz, tg>> }

;

-154-

elcmsb = /* minus operation */

{<tn,set, tn> , <tg, st, stng>}

;

elcmofa = /* oofa operation */

{<tn,set, tn>, <tn, unt, tn>, <tn,knt, tn>, <tg, unt, stng>

,

<tg, set,stng> , <tg,knt , stng>};

elcmlss = /* less operation */

{<tn, set, tn> , <tn, unt, tn>, <tn,knt, tn> , <tg, set, tg>

,

<tg,unt, tg>, <tg,knt, tg>}

;

elcmrm = /* // operation */

{< tn, set, arg2> , < tg, set, stng> };

elcmwth = /* with operation */

{ <tn, set, setarg2> , < tn, knt , setarg2> , <tn,unt , setarg2>

,

<tg,set,stzg>, <tg, unt , stzg> , <tg,knt , stzg>}

;

elcmof = /* oof operation */

{<tn,set, tn >, <tn,unt , tu> , <tn,knt, tu>, <tg,set, tg>

,

<tg,knt, tg>, <tg,unt, tg> }

;

elcmnpw = /* npow operation */

{<ti , set, setarg2> , <tg, set, setarg2> }

;

/* we now establish a mapping from the binary operators

into the correct mapping */

elcmmap = {<oad,elcmad> , <osb, elcmsb> , <oml ,elcmsb>

,

<orm, elcmrm> , <owth, elcmwth> , <olss ,elcmlss>

,

<olsf ,elcmlss> , <oof, elcmof > , <oof a, elcmofa>

,

< onpw , e lcmnpw> }

;

X = tz ;

-155-

opermap = elcmmap(op) ; if opermap e^ Q then return x;;

(Vt e eltypes I istype (argl, t)) opt=opermap (t, arg2 (1))

;

if opt ne^ Q then'x = dis(x,opt);;

end V

;

return x;

end elcmbin;

The routine amelbin is called with an operator, a

gross type argl and an elementary alternation arg2 and returns

the type which results when the binary operator is applied

to the non -elementary alternand of argl and to arg2.

definef cmelbin (op, argl,arg2)

;

initially

/* set up mappings from the operator and the grosstype

of argl to a label where the result type is computed*/

cmelmap = {<osb, set,cmelsb> ,<owth,set,cmelwth>

,

<olss , set, erne Is s> , <olsf , set, cmelss>

,

<oof , set, cmof st> ,<oof , unt, cmofunt> ,

<oof ,knt,cmofknt> , <oofa, st ,cmofast> } ;

end initially

if opS{oad,osb, orm} then /* commutative operator */

return elcmbin (op, arg2 , argl) ;

;

label = cmelmap (op, argl (1))

;

if label eg^ f2 then return tz; ;

go to label;

cmelsb: return dis(if istype (arg2 , tn) then targl else tz,

if arg2 eg^ tg then <set, tn, argl (3) >else tz) ;

-156-

cmelwth: ret = nontu (dis (arg2 , argl (3)))

;

if ret §2. tz then return tz;;

re turn < set, tz, ret>;

cmelss: return<set , tn, argl { 3) >;

cmofst: return fnappl (targl, targ2)

;

/* code for fnappl will be given below */

cmofunt: return if istype (arg2 , ti) then dis (tu, argl (3)) else tz;

cmofknt: return if istype (arg2 , ti) then dis (tu,

[dis : 3<_i<_#argl] argl(i));

cmofast : return <set, tn ,nstchk (fnappl (a,b)) >;

end ctnelbin;

The routine amambin is called with a binary operator op,

and two grosstypes, argl and ar'g2. It returns the type

which results when op is applied to objects of the types

given by the non -elementary alternands of argl and arg2.

definef cmcmbin (op,argl, arg2)

;

initially

/* set up mappings for each operator from the two gross

-

types into a label where the result type will

be computed */

cmcmad = /* the plus operation */

{<set,set,ssad>#<unt,unt,ssad>,<k.nt,knt,kkad>,

<unt,knt, ukad> , <knt , unt,kuad> }

;

cmcmsb = /* the minus operation */

{<set, set, sssb> }

;

-157-

cmcmml = /* the times operation */ {<set , set , ssml>}

;

cmcmrm = /* the // operation */ { <set, set, ssrm> }

;

cmcmlss = /* the less operation */

{<set,set,sssb>, <set,unt, sssb> , <set,knt, sssb >}

cmcmwth = /* the with operation */

{<set,set ,sswth> , <set, unt ,sswth> ,<set,knt, sswth>}

;

cmcmof = /* the oof operation */

{<set,set, ssof > , < set, unt, ssof>,<set,k.nt, ssof>};

cmcmofa = /* the oofa operation */

{<set,set,sofa>}

;

/* we now set up the mapping which takes each operator

into its proper map */

cmcmmap = {<oad, cmcmad>, <osb , cmcmsb> , <oml, cmcmml>

,

<orm, cmcmrm> , <owth, cmcmwth >

,

<olss, cmcmlss > , <olsf, cmcmlss >

,

<oof , cmcmof >, <oofa , cmcmofa>}

;

end initially;

opermap = cmcmmap (op)

;

if opermap e^^ fi then return tz;;

opt = opermap (argl (1) ,arg2 (1)) ;

if opt eg^ f2 then return tz;;

go to opt;

ssad: return <argl (1) , tz,dis (argl (3) ,arg2 (3)) > ;

kkad: return<knt , tz> + t^ ti^ argl + t_a t£ arg2;

knad: <arg2,argl> = <argl,arg2>;

ukad: return <unt, tz,dis (argl(3) , [dis: 3^i£#arg2] arg2 (i)) >;

-158-

sssb: return <set, tn, argl (3) >

;

ssml: return <set, tn, con (argl (3) , arg2 (3)) >;

sswth: ret = nontu (dis (argl (3) ,nstchk (arg2)))

;

if ret 62^ tz then return tz; ;

return <set , tz , ret>

;

ssof: return fnappl (argl ,arg2)

;

sofa: return <set, tn,nstchk (fnappl (argl, arg2))>

;

ssrm: return <set , tn, dis (argl (3) , arg2 (3)) >

;

end cmcmbin;

We now present code for the routine fnappl which takes

two arguments a and b. a is a set type and b an elementary

alternation. fnappK a,b) returns tne type which results

when an object of type h is used as a functional index to

an object of the type of the non-elementary alternand of a.

definef fnappl(a,b);

compa = /* the components of a */ a(3);

if isel (compa) then /* elementary components */

return if compa e^^ tg then tg else tu; ;

if isset(compa) then /* set components */ return tu;

;

if #compa le 3 then return tu;;

if con (compa (3) ,b) e^^ tq then return tu; ;

if isel(b) then /* b is elementary */

if isknt (compa) then

if #compa eg^ 4 then return dis (tu, compa (4)) ; ;

-159-

return< knt,tu> + compa(4: #compa) ;

end if;

/* b is elementary and a is of grosstype unt */

return <unt , compa { 3) ,compa (3) >

;

end if;

/* b is a set or tuple */

X = tu;

if isknt (compa) then

if #compa e^^ 4 then x = dis (x, compa (4)) ;

else X = dis (x, <knt, tz>+compa(4: #compa)) ;

;

end if;

/* compa is a tuple of unknown length */

X = dis (x, <unt, compa (3) ,compa(3) >)

;

return dis (x, fnappl (a,b (2)))

;

:

end fnappl

;

This concludes the set of routines which are necessary

for computation of the oalc function and the forward method

of type determination in SETL.

We now present the routine baaktype which is used in

the second method of type determination (see Chapter III,

section 5) . The routine accepts a use u and returns the

type information concerning u which can be deduced from

the operator to which u is an argument and the type of object

which this operator produces. Only information which cannot

be deduced from the forward method is returned.

-160-

definef backtype(u);

tup = /* the defining tuple in which u appears */

deftup (d) ;

op - /* the operator applied to u */ tup(2);

pos = /* the position of u as an input use */ u(4);

if op € /* the set of operations which apply only

to integers */

{oabs , odv, omxm, omnm, olt , ole , ogt , oge } or

(op 6 {ondx,onpw} and pos g^ 1 then return ti;;

if op G /* set of operators applying to general types */

{oeq,one, oof , oset, otpl , odxs,osiz } or

(opG{owth,olss ,olsf , oofa} and pos e£ 2) or

(op e£ oelm and pos e^^ 1) then return tg;;

if op G /* set of operators applying only to sets */

{opw, oarb, oinc,owth,olss, olsf ,onpw,oelm,oof a)

then return <set, tn, tg> ;

;

if op G /* set of operators applying only to bitstrings*/

{onot ,oand, oor} then return tb ;

;

if op G /* set of operators applying only to tuples */

{ohd,otl} then return <unt , tt, tg> ;

;

if op e_q_ ondx then return <unt, tbct , tg> ; ;

dtype = /* the type of the defintion to which u is input*/

type(<tup(l) ,u(2) , u(3) >) ; x=tz;

if op G {ooct,odec} then

if istype (dtype ,ti) then x = dis (x, tc) ; ;

if istype (dtype, tc) then x = dis (x, ti) ;

;

return x;

end if;
-161-

/* at this point, op is either oad, omly osb, oass or orm */

if op ec[oad and isknt(dtype) then

return <unt,dtype (2) , [dis : 3<i<#dtype] dtype (i) >;

;

if op ne^ oml then return dtype;;

/* at this point, op is oml */

if pos ec[2 then

if isset(dtype) then x = dis (x, <set, con (tibc, dtype (2))

,

tg>);;

if is type (dtype ,tn) then x=dis {x,< set, tn , tg>) ;

;

if isel (dtype) then x=dis (x, con (dtype, tibc));

;

end if;

if isel (dtype) then del=dtype;

else del=dtype(2) ; ;

if istype (del, tibc) then x = dis(x,ti);;

if istype (del, tn) then x = dis (x, <set, tn , tg>) ;

;

if isset (dtype) then x = dis (x, <set, tz, tg>) ;

;

return x;

end backtypa;

-162-

Bibliography

[1] Allen, F. E., Program Optimization , Annual Review

in Automatic Programming, Pergamon Press, New

York (1969), Volume 5, pp. 239-307.

[2] Allen, F. E., Control Flow Analysis , SIGPLAN

Notices, Vol. 5, No. 7 (1970), pp. 1-19.

[3] Allen, F. E., A Basis for Program Optimization ,

Proceedings of the IFIPS Congress 19 71,

North-Holland Publishing Company, Amsterdam, Holland.

[4] Allen, F. E., Interprocedural Data Flow Analysis,

IBM Research Report RC 4633, IBM Research Center,

Yorktown Heights, New York (19 73)

.

[5] Bauer, A. and Saal, H., Does APL Really Need

Run-time Checking ? Software Practice and

Experience, Vol. 4, No. 2 (April-June 1974).

[6] Brown, S. and Harrison, M. , The BALM Programming

Language, Courant Institute of Mathematical Sciences,

New York University (19 73)

.

[7] Kennedy, K., An algorithm for live-dead analysis

including node-splitting for irreducible program

graphs , SETL Newsletter No. 38, Courant Inst. Math.

Sci., New York Univ. (1972).

[8] Kildall, G. A., A unified approach to global program

optimization , ACM Symposium on Principles of Program-

ming Languages, Assoc, for Computing Machinery,

New York, N. Y. (19 73)

.

-163-

[9] Ledgard, H. F. , A Model for Type Checking — With an

Application to ALGOL 60 . Communications of the ACM

Vol. 15, No. 11 (November 1972).

[10] Owens, P. and Kennedy, K., Initial Description of an

Algorithm for Use-Definition Chaining in Optimization ,

SETL Newsletter No. 37, Courant Inst. Math. Sci.,

New York Univ. (1971)

.

[11] Schwartz, J. T., More detailed suggestions concerning

"data strategy" elaborations for SETL , SETL Newsletter

No. 39, Courant Inst. Math. Sci., New York Univ.

(1971) .

[12] Schwartz, J. T., Deducing the logical structure of

objects occurring in SETL programs , SETL Newsletter

No. 71, Courant Inst. Math. Sci., New York Univ.

(1972)

.

[13] Schwartz, J. T., On Programming: An in';erium report on

the SETL project, Courant Inst. Math. Sci., New York

Univ. (1973a, b). Installment 1: Generalities.

Installment 2: The SETL language, and examples of

its use.

[14] Schwartz, J. T., Automatic and Semiautomatic Optimiza-

tion of SETL , SIGPLAN Notices, Vol. 9, No. 4,

(April 1974 a), pp. 43 ff.

[15] Schwartz, J. T., Some optimizations using type informa-

tion , SETL Newsletter No. 132, Courant Inst. Math. Sci.,

New York Univ. (1974 b)

.

-164-

[16] Schwartz, J. T., Inter-Procedural Optimization ,

SETL Newsletter No. 134, Courant Inst. Math. Sci.,

New York Univ. (1974 c)

.

[17] Sintzoff, M. , Calculating Properties of Procrams by

Valuations on Specific Models , SIGPLAN Notices,

Vol. 7, No. 1 (1972)

.

[18] Tenenbaum, A., Revised and Extended Algori thms for

Deducing the Types of Objects Occurring in SETL

Programs . SETL Newsletter No. 118, Courant Inst.

Math. Sci., New York Univ. (1973).

[19] Warren, H., SETL Compiled Code: Calls to SETL

Procedures , SETL Newsletter No. 60, Courant Inst.

Math. Sci., New York Univ. (19 71).

-165-

INDEX

absorptive element 6,12,13,82

absorptive laws 14

after 93

ALGOL 60 16 4

Allen, F. E. 163

alternand 4,9,84,85,119,121

143,146,150,15 4,156,15 7,15 9

alternation 4,5,9,12,81,82

149,151,154,156,159

APL 16 3

array 101,102,112,113

114,115,118,139

assignment 79,80,149,150

associative 6,11,13,14

b'^ 41,42,44,50

b~ 41,42,44

back 39,40,44,45,48,50

54,87,91,94,95,96

backtype 36,37,39,44,45,46,54

93,94,142,160,161

BALM 56,97,103,104,106,107

109,110,112,113,114

115,118,128,163

basic block 17,24,38,39,41,53

56,77,78,95,97,99

100,104,105,107

Bauer, A 16 3

before 93

binary operator 81,145,146

154,156,157

bitstrings 3,100,101,102,103

106,109,110,114,115,138

139,140,143,149

blk 79,98,100

blkpos 79,98

block 17,19,21,22,24,38,39,40

41,42,43,52,53,56,77,78,91

93,94,95,96,98,99,100,10 4

105,106,10 7,10 8,113,117,139

block tuple 7 7

bounded lattice 15

Brown, S. 16 3

aalG 28,89,90,142,144,160

calculus 26,37,72,75,132,134

136,140,143

CESOR 106,114

oesor 40,41,42,49,65,77,91,92

95,96,99,100,106,114

oesor' 41,42

chain 15,31,34

chained 25,38,39,42,50,52,87

94,96,99,106,108

cmombin 144,146,157

omelbin 144,146,156

cmun 144,145,146,150

Cocke, John 2 6

commutative 6,11,13,14,28,156

CON 110,121

con 85

con 12,14,15,45,81,84,85

110,136

conjunction 12,13,43,52,83,84

85,100,110,121,12 3,132,136

connectivity 6 9

cons 78,86,99,101

constant 16,55,78,79,86,88,99

101,134

oonstyp 79,86

-166-

oont 91,95,96,100,107

correctness 23,36,44,45,49

cross subroutine

optimization 134,137

cycle 50,63,91

declaration 57,72

115,125,135,138

defining tuple 77,78,81,97,90

97,98,99,104,108,161

definition 16,17,22,23,24,25

28,29,30,35,36,37,38,39,41,42

45-50,52-55,78,79,86-89,91,9 3

94,97-99,100,101,103-107, 112

113,116,118,161

DEFS 103,104,105,112,113

defs 24,78,86,97,99,101,112

deftup 87,98,99

diagnostic 49

dis 84

dis 9,14,15,81,83,136

disjunction 9,11,12,18,21,25

26,30,39,43,53,72,83,84, 100

117,132,134,135,136

divided graph 41,42,50

52,93,94

domain 131,132,136,137

DU 106,113,114

du 38,39,42,86,98

101,106,113

du ' 42

dub 94

elementary types 2,3,81,82,84

100,109,110,118,119,121, 145

146,149,151,15 4,156,159,16

eltypes 143

elun 144,145,146,149

ENTRY 10 7,115

entry 17,25,38,42,43,50,77,94

100,106

entry 65,77,100

error 49,140

error type 3,12

exit 17,21,38,40,42,43,50,78,95

96,100,107,108,116

EXITS 107,115

exits 77,78,95,96,100

fi 29,35,36,47,48,54

finite chain 15,16,31,34

first method 17,21,26,36,38,47

87,137

flow 17,18,19,20,21,39,52,163

Floyd, Robert 58

fnappl 157,159

Ford-Johnson Tournament sort 6 7

forward 29,44,45,48,54,87,89

FR 120,121

function 30,31,33,34,45,49,72

131,134,136

garbage collection

general type

9,-

129

4,134,135

44

e lambin

e le Ibin

144,146,154,156

144,146,151

grosstype 82,101,110,118, 119

136,146,150,154,15 6,15 7,16

grostyp 83

-167-

Harrison M

hashing

h

HIDEF

163

99,102,139

45,47,48,49,50,54

105,113

HIUSE 106,113

Huffman encoding 60

identifier 1,4,17,18,140

identity element 6,82,117

imprecision 73-76,131,132,133

indexed assignment 80,147,148

infinite chain 16,31,32

infix operator 84,85

interval analysis 26,65

isel 83

isknt 83

isset 83

istype 143

isunt 83

Kennedy, K. 16 3,16 4

Kildall, G- A. 163

knt 83

lattice 2,8,14,25,28,35

46,48,72

Ledgard, H. F. 164

length of a chain 15

list 101-103,106, 107

113,114,116,119

live-dead analysis 163

LODEF 105,113

logical 139,140

long integers 138

loop 18,21,22,38,39,40

73,133,134

LOUSE 106,113

mapping

maximal element

maximal solution

maximum element

maximum solution

minimal element

minimum element

minimum solution

monotone

132,134,135

14

34

14,15,31,34

45,47

14

14,15,30-33

34,46

32,33

28-34,45,46,49

nesting level 2,6-?

n I

nodes

node-splitting

non tu

non tuaons

t

ns tahk

,15,16,142

2,4-7,135

77

163

143

143

142

oabs 79,80,144,161

oad 79,145,155,156,158,162

oand 80,144,161

oarb 79,80,145,149,150,161

oass 79,80,145,149,150,162

odea 80,145,149,161

odv 79,144,161

odxs 80,81,145,147,161

oelm 80,144,161

oeq 80,144,161

oge 80,144,161

ogt 80,144,161

ohd 79,80,145,149,150,161

oina 80,144,161

ole 80,144,161

olsf 80,145,155,156,158,161

olss 80,145,153,155,156

158,161

-168-

olt 80,144,161

oml 79,145,155,158,162

omnm 79,144,161

omxm 79,144,161

ondx 80,145,146,147,161

one 80,144,161

onot 80,144,161

onpw 79,145,153,155,161

ooct 80,145,149,161

oof 80,145,153,155

156,158,161

oofa 80,145,155,156,158,161

oar 80,144,161

op 24,89,104,137

144,149,150,157,162

operator 24,26,28,37,38,77

79,80,81,89,90, 93, 104, 105

131,144,145,146,149,150, 151

153,156,157,158,160,161

optimization 134,137,139

163-165

opw 79,80,145,149,150,161

ord 80,144

orm 93,94

orm 79,145,155,156,158,162

osb 79,145,156,158,162

oset 79,80,145,147,161

osiz 80,144,161

otl 79,80,145,149,150,161

otpl 79,80,145,147,161

Owens, P. 16 4

owth 80,145,153,155

156,158,161

parameter 56,57,72,134-136

partially ordered set 14,30

31,34

partial ordering 30,31

PASSTYPE 107,109,115,116

119,120,125,126

passtype 94,95,107

path 21,22,24,38,40,41,46, 50

117

permutation 6 3

PL/I 97,107,112-115,118,121

125,128-130

plus operator 1,26,28,37,38

152,154

pointer 112,113,115,116,118

120,121,122,139

prevtyp 94,95,96,115

primary alternands 4

program 24,29,46,77,78

98,105,140

program graph 41-43,49-51,53

65,91,93,94,99,114,163

programming language 26,89

program tree 50,51,91,94

100,107

progrph 77,78,86,90,95

96,97,104,105

PROGTREE 115

progtree 91-93,100

quadruple

read

56,62,75,78

16,20,56,80

139

62

real numbers

recursion

recursion level 2,6,7,11,13,14

redefinition 22,40,41,43, 95

96,108,117

redundant computation 132

rl 2,4,5,6,7

-169-

s^(df)

s^(df)

root 50,91,94,100,108,116,139

runtime object 2,3,12,13,14

20,72

Saal, H. 163

Schwartz, J. T. 164,165

54,55,86,87

54,55,86,87

second method 20-22,36,38,39

44,87,132,134,160

sequence 32,6 8

semantics 73

set 6,7,17,46,74,75,101,102

103,106,118,119,125

132-134,142,147,148

set 83,139

SETL 1,2,3,17,26,28,53,56,57

77,79,82-84,86,89,94,97, 100

101-105,107,109,110, 115-117

128-130,132,138,139,142, 160

163-165

SETLB 77,79

Sintzoff, M. 165

stepwise refinement 128,129

storage management 125,129

suQO 91,95,100,107

successor 39,43,50,77,94,99

107,108,109,117

successor function 24,41, 50

56,65,91,92,100,106

T

ta

tb

that

tbou

13-15

3,82

3,82,140

143

143

ta

td

Tenenbaum, A.

termination

3,83

132

165

16

ternary operator 80,145,146

tfu
d

42-44,50,52

tg 3-6,9,12,14,15,17,21,37

46,47,50,81,82,109,115, 117

120,132, 135

ti 3,82

tibc 143

tio 143

tin 143

tl 140

tn 3,74,82,133

tournament sort 6 7

tpved 92

transformable 34-36

transformation 30,34,53

TREE 115,116

tree 50-53,91,94,100

107-109,117

Treesort3 5 8

tt 3,82

tu 3,72,73,82,131,132,143

tuple 7,46,6 3,65,74,75,77,78

81,83,84,87,89,90,9 7,99,101

10 3,110,111,118,119,121-12 3

125,132,13 4,135,139,142,14 7

148,153,160

typ 86,98,101

TYPE 118,119

type 24,25,44

type calculus 26,37,72,75,132

140,143,145

typedeterm 88

-170-

type determination 1,16,17,23 usepos 79

24,26,35,36,38,44-48, 56,57 USES 1.05,106,112

77,81,86,87,129,134,137, 140

160 vector 103,105,106,107

typefinder 72,73,79,97,98 109,110,112,118

100,101,106,107,112, 114 very high level languages i

115,12 8,129,131,133,134,136 37,137

138,140,141

type II imprecision 74-76,133 Warren H. 165

type I imprecision 74-76

131,133

TYPELIST 119,120

types 89,144,147

type status 29,30,35,36,53,54

86,88,118

type structure 115,116,119

120,121,133

type symbol 2,4-9,11-15,18

18,28,48,81,82,84,100, 101

110,135,142,143, 149

tz 3,5,6,9,12-15,45,46,48,49

81,82,115,120

UD 103,106,113,114

ud 25,86,90,98,99,101,103

106,113

UDEF 10 5

unary operator 80,145,149,150

unt 83,160

upper bound 8,30,36,46-48

use 20,21,23,25,28,36-44,46

50,54,73,78,79,86,87,93,94

96,99,101,103,105,106, 10 8

10 9,112,113,134,16 0,161

use-definition chaining 26,78

98,106,114,164

-171-

NSO-3 c.l

Tenenbaum

Type determination for very-
high level languages.

N.Y.U. Courant Institute of

Mathematical Sciences

251 Mercer St.

New York, N. Y. 10012

