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ABSTRACT

Very-high-level languages which are declaration free

often incorporate some form of type inference system to

allow for compile-time type determination In order to

guarantee algorithmic termination. typefinHine systems

employing data-flow analysis have been unable to

deduce the types of recursive structures (such as trees)

As these structures are often central to an algorithm, a

substantial amount of type information is lost as a

result We present a method of performing type analysis

upon such objects which detects the presence of recur-

sive structures in a program and determines the internal

structure of such objects Furthermore, the method is

compatible with standard data-flow analysis techniques.

1. Introduction

Very high level languages are often weakly typed

different occurrences of a name can be associated with

values of distinct types The types of many entities are

nevertheless determinable from the structure of the pro-

gram, allowing translators for these languages often to

incorporate some sort of typefinding algorithm One

class of such algorithms employs data-flow analysis to

perform type inference Due to problems of algorithmic

termination, however, these algorithms have been

unable to perform well in the presence of variables that

can assume an arbitrary number of types, in particular

recursive structures such as trees In this paper we

present a typefinding algorithm that both detects the

presence and uncovers the structure of such objects

Furthermore, the method presented is compatible with

the standard data flow analysis framework ttt

t To appear in the proceedings of the 1986 EEE Internationa]

Conference on Computer Languages.

ttVv'ork supported in part by the Office of Naval Research. Grant

NOOOH856K0413.

tttA more comprehensive treatment of the subject together with

We present our algorithm for the programming

language SETL SETL2
is a set-oriented language

developed and implemented at New York University It

is weakly typed and declaration free, and most of its

operators are overloaded As a consequence, there is a

substantial overhead in run-time type checking, and

only interpretive code can be profitably generated by

the SETL translator To remove the burden of run-time

type-checking, and allow the translator to generate

efficient machine code, a typefinding algorithm is

needed to infer the types of program entities from their

use

Section 2 discusses previous work in this area

Section 3 introduces the basic type model of SETL and

programming with recursive data types in that

language Section 4 presents an informal introduction

to typefinding as performed in SETL Section 5 presents

our method, compares it to the existing typefinder and

discusses applicable optimizations, and gives a brief

overview of an implementation of the algorithm, and

section 6 summarizes our results An appendix contain-

ing some example type analyses follows the paper

2. Previous Work

2.1. Data-Flow Methods

Initial work on typefinding was done by Tenen-

baum 10 and his algorithm is the basis of the typefinder

used in the current SETL optimizer Jones and

Muchnick 3
, in presenting the design philosophies of a

programming language with late binding times, also

develop a typefinding algorithm that is simpler and

more general than Tenenbaum's, but requires more

storage, as the resulting system of equations is larger

Kaplan and Ullman also develop a general method of

typefinding and show that their algorithm is yet more

a discussion of the supplementary declarative sublanguage of

SETL can be found in the first author's doctoral thesis
11

.
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comprehensive than Tenebaum's or Jones and

Muchnick's

As the above algorithms employ data-flow and

iterate over the program until convergence, they are

unable to correctly type recursive structures such as

trees or linked lists, because the set of possible types

assumable by such structures is infinite and therefore

the algorithms as given do not terminate Jones and

Muchnick'4 subsequently developed a method to discover

the type structure of various LISP-like objects They

accomplish this using tree grammars which handle the

infinite systems as well as the finite ones The method is

both expensive and requires a framework other than

that of standard data-flow analysis

2.2. Type Unification

Recently, strongly typed languages have been

developed which allow the programmer to omit declara-

tions As. static typechecking is m^sdatory it. such a

language typefinding becomes a necessary portion of

the translation process and not just an optional part of

the optimizer

ML8
,

is a strongly typed language in which most

declarations are optional A typefinding method for ML 1

has been developed based upon Robinsons unification

algorithm The method performs tree equivalencing of

types, checking types for consistency without employing

program flow information Meertens8 has developed

independently a similar method for the programming

language B 7 With regard to recursive data structures.

ML requires explicit declarations of recursive data

types, while B disallows structures whose depths vary

dynamically

3. The Type Model of SETL

The type model of a language is one of the cen-

tral issues of the design of the language Depending

upon the type structure, bindings between objects and

the types allowable by the language may be possible at

translation time or may have to be postponed until

run-time A weakly typed language is defined as one

in which an object may assume different types during

the course of its lifetime A strongly typed language,

on the other hand, disallows such freedom, requiring

objects to have a single type This type may be the

union of two or more simpler types but the strong type

model requires a controlled mechanism (e g the discrim-

inant in an Ada variant record) for determining which

of the possibilities is currently in force This notion of

strong vs weak typing is independent of whether or not

the language is declaration-free The programming

language B7
,

for example, which is strongly typed is

nevertheless declaration-free

SETL allows the components of data aggregates

(l e sets, tuples and maps) to themselves be aggregates

This nesting, or embedding, can be extended to an arbi-

trary depth Due to this facility, there is a rich variety

of types that can be assumed by entities in a SETL pro-

gram The introduction of such structures into a

strongly typed language is problematic in that the

shape and structure of such entities is most often unk-

nown until run-time and therefore can not be

typechecked Furthermore, the set of possible shapes

such structures can assume may be infinite requiring the

introduction of declaration machinery There is no

problem if pointers exist in the language but SETL has

no such notion

3.1. Recursive Data Types

This section focuses upon the class of data types

that are typically given a recursive definition We exam-

ine two basic methods of viewing such structures in

various programming languages

The common definition of a recursive data struc-

ture, RD, is one whose components are homologous to

RD The term recursive often has another meaning

within the context of data structures Given a linked

list, we often say that it is recursive if there is a cycle

within the link structure of the list (eg a circular list)

This definition is of no interest to us and as such we

denote all lists, circular or not, as recursive

The user's view of a recursive structure within

the context of a particular programming language is

biased by whether the language is pointer- or value-

oriented In a pointer language (such as PL/I or Ada),

composite structures whose structure vary dynamically

are not directly supported, but rather are built up of

simple structures linked together by pointers Those

value languages (languages in which objects are not

shared, but must rather be copied) which allow aggre-

gates to be components of other aggregates, on the

other hand, allow for dynamic objects of arbitrary

length and depth, and thus recursive structures are

representable in a more direct fashion The method of

programming in the above two environments is also

affected by this distinction Value based languages are

functional in approach, objects constructed via calls to

functions, while pointer based languages are more

dependent upon the side effects of the assignment state-

ment and parameter modifications



3.2. Programming with Recursive Structures in

SETL

SETL allows for both implementations of recur-

sive structures pointer and value oriented The high-

level form of recursive structure representation is

obtained via arbitrarily nested tuples Using this

approach, each node of a binary- tree, for example, can

be represented by a tuple, of length 3. whose first value

is the left subtree, itself represented in the above

fashion, the second element being the information

attached to this node, and the last element representing

the right subtree

tree tuple(tree, SOMEJTYPE, tree)

SETL, however, does not provide any facility for

selective updating, 1 e partial modification of a struc-

ture, in the manner that LISP allows with REPLACA
and REPLACD Thus, the statement

x(l) =x;

has the same effect as

x = [X, x(2), x(3), . ,x(#x)j,

and thus no circular structures or side-effects can occur

when programming in this manner

In addition, pointer-oriented recursive structures

can be implemented in SETL While essentially a

value-semantics language, the flavor of pointers can be

gotten through use of atoms and mappings (both of

which are SETL primitives) The atom data type of

SETL is akin to the LISP gensym, in that each invoca-

tion of its generator (newat in SETL) yields a name

distinct from all others in the program These can then

be used as domain elements of maps to provide the

same effect as that of pointers As an example, a binary

tree can be represented in SETL, using the data

representation sublanguage by the following three maps

LEFT map (ATOM) ATOM
INFO map (ATOM) INFOJTYPE,
RIGHT map (ATOM) ATOM,

where map (d) r denotes a map with domain d and

range r LEFT and RIGHT in this example play the

roles normally assumed by pointers

The above two representations are characteristic

of two diametrically opposed ways of programming in

SETL The second, using nested tuples, reminiscent of

LISP, takes a functional approach, in which new copies

of the structure are created for any modifications that

are made to the structure A typical algorithm Tavers-

ing such a structure will extract components of the

structure when traversing it, and upon unwinding the

recursion reforms these components into new structures

As an example, consider the following fragment that

inserts an element x into a binary search tree

procedure insert (tree, x),

$ Handling of leaf cases

[val, left, right] = tree,

if x < val then

left = insert(left, x),

else

right = insert(right, x),

end if,

return [val, left, right],

end procedure,

in the situation where the node being examined is not a

leaf, requiring a traversal further down the tree (1 e

inserting the new element into either the left or right

subtree), the three components of the current node are

extracted The appropriate child (left or right) is

traversed Upon returning from the recursive call to

insert, a new tuple is formed, consisting of the data ele-

ment of this node, and the two children, one of them

modified

The first method, employing the maps LEFT and

RIGHT as successor functions, is characteristic of pro-

gramming in a more conventional language, one in

which pointers are available as language primitives

Modifications are made to the structure in this model,

not by creating a new updated copy of it, but rather by

making changes to the domains or ranges of the maps

As an example, a typical routine to insert a value into a

tree represented by the three maps LEFT, INFO and

RIGHT looks like

proc insert(tree, x),

$ Empty Tree

if tree = om then

z = newat,

INFO(z) = x,

tree = z,

return,

SLeft Insertion

elseifx < INFO(tree) then

$ Leaf Xode

if LEFT(tree) = om then

z = newat

INFO(z) = x,

LEFT(tree) = z,

return,

$ Must descend further



else

lnsert^LEFT(tree), x),

end ifLEFT(tree),

$ Right Insertion

else

end if x < INFO(tree),

end proc insert,

Upon examination of these two modes of pro-

gramming recursive data structures, it becomes obvious

that the pointer-oriented method is the more efficient

due to the less amount of run-time allocation required,

and copies of subtrees are not constantly being created

(many of which are needed only temporarily and there-

fore become garbage) With regard to programming

clarity, elegance, and data structure integrity, the func-

tional approach is preferable When maps are employed,

there is no guarantee of a one-to-one correspondence

between nodes in the successor map as the programmer

can inadvertently assign the same pointer to several

nodes This potential hazard is due to the programmer

introducing pointers (represented by atoms) into his

program, bringing with it the problems of aliasing and

side-effects, problems which cannot occur when pro-

gramming in a functional value-oriented style

The above makes it clear that we consider it

preferable to program recursive structures using nested

tuples, and yet want to have the implementation in

terms of pointer based structures Indeed, that is the

essence of copy optimization The typefinding algorithm

presented in this paper provides us with information

that assists us in this transformation Obtaining under-

lying structural information regarding a recursive type

programmed in the high-level fashion is the first step

toward an automatic transformation of the object (and

its corresponding code) into a more efficient pointer-

based representation

4. Data-Flow Typefinding in SETL

4.1. Terminology

The predefined elementary or primitive data

types of SETL are integers, reals, strings, atoms

and om (the undefined value) Two additional types are

introduced for the purposes of typefinding general and

error, the first being the type about which nothing is

known, the second representing an erroneous type, i e

uninitialized value or incompatible usages These primi-

tive types are combined into more complex type

descriptors using set, sequence and tuple construc-

tors, the latter two denoting arbitrary- and fixed-length

sequences respectively

As SETL is weaklv typed, we also allow for arbi-

trary type unions Given types tl and t2, their alter-

nation, denoted tl
|
t2, is the type consisting of the

union of the sets of domain values valid for tl and t2

The appearance of a variable in an instruction is

said to be an occurrence of that variable If it is the

output of the instruction, it is called an ovariable (or

ovar), otherwise it is said to be an ivariable (ivar)

4.2. An Informal Introduction to Data-Flow

Typefinding in SETL

The basic technique of data-flow typefinding is to

scan the program examining the manner in which vari-

ables are defined and used and to determine from such

information the set of possible types assumable by each

variable The information regarding types is obtained in

two separate steps a forward analysis of the program in

which type information is propagated from definitions,

and a backwards analysis in which types are deduced

from the manner in which objects are manipulated For

example

(1)

(2)

(3)

a = 3,

read (b),

y = a + b,

The assignment of an integer to a in statement 1 is car-

ried forward to statement 3 where it is used to deter-

mine that y must be an integer (typefinding assumes

that the program is correct) Working backwards, we

determine that b in statement 3 must also be an integer

and thus the value read in 2 must be an integer

It is possible for a variable in a SETL program to

assume a potentially infinite number of values of dis-

tinct types For example, the statement

s = {s},

assigns to s the singleton set whose element is the previ-

ous value of s (Associated with every operation is a

propagation function which determines the result type

of the operation given the types of the inputs For

example, the result, type of a set-forming operation,

assuming input type t is set(t) ) If the type of s is

integer prior to executing the statement, its type after

the statement becomes set(integer) Furthermore, if

this statement is executed within a loop, the type of s

will never stabilize during the type analysis, but will

rather produce the successive types

set(integer), set(set(integer))

To avoid this problem of nonconvergence, data-

flow typefinding algorithms group the more complex

types into a single class, resulting in a finite number of



distinct classes of types in the system Tenenbaum, for

example, folds any type with four or more nesting levels

of constructors into a type with three levels and

transforms the innermost type into general Though
this approach solves the convergence problem, informa-

tion is lost concerning such types, an important subclass

of which are recursive structures implemented as arbi-

trarily nested sequences or sets Furthermore statically

complex structures that exceed the nesting level are also

folded and information concerning their types is lost as

well

5. An Accurate Typefinding Algorithm in the

Presence of Recursive Data Structures

The algorithm we present is workpile-based and

operates in a manner similar to other data-flow

typefinding algorithms

We initially detect the set of self-embedding vari-

able occurrences (i e occurrences which incorporate as

a proper component their previous value and thus have

a potentially recursive structure) and flag them as

potentially nonconvergent To determine the set of

such occurrences, we define a relation, BREACHES*,
that builds paths of instances Intuitively, given

instances i and j, i £ BREACHES* j if the value of j is

in any manner dependent upon the value of i We ini-

tially define the relation

BREACHES! occ) =
if occ is an lvar then

UD(occ)

else

{ivars of instruction #1} if occ is the

ovar of instruction #1

where UD is the use-definition mapping We now calcu-

late the closure, BREACHES*, which corresponds to

going backwards along a path whose links are the UD
chains and ovar-ivar relationships, that is, the propaga-

tion of a value from an ivar to an ovar

The task of determining which variable

occurrences are self-embedding can now be accom-

plished by examining each ivar in the program and test-

ing it for membership in its own BREACHES*

Once we have found such an occurrence, we

assign it a unique, newly generated type symbol which

we mark as a recursive type symbol Associated with

this symbol is a type structure, described by means of

type constructors and allowing self-reference When
such an occurrence is embedded into some larger entity,

it is the recursive type symbol, rather than the actual

structure of the type that is used This level of indirec-

tion prevents the nonterminating production of arbi-

trarily deep embedded symbols To see this, consider

the following code fragment

(1) s =3,

(2) (while somecondition)

(3) s = {s}, $ s embeds itself

(4) x from s, $ remove an element

$ from s

(5) x = x + 1, $ dangerous, works

$ first time only

(6) end while,

Traditional typefinding types the lvanable s of state-

ment 3 (written as s3 .2 ) successively as

integer, set(integer), set(set(integer)), ...

The recursive structure typefinder, upon discover-

ing that the ivanable s3 o is self-dependent, assigns some

new type name, eg REC_1, to it The type structure

of REC_1 will then be initialized to error, much as

the type of a nonrecursive occurrence We thus distin-

guish between the type name of a recursive occurrence,

which is used for embedding (1 e as input to a type con-

structor), and the type structure which is employed

everywhere else The set-forming operation of statement

3 will thus have as its result type (i.e the type of s81 )

set(REC_l) regardless of the values assigned to the

structure of REC_1 When we propagate the type of

the ovanable s3 , to the ivanable s32 (through the top of

the loop), its type structure will have set(REC_l)
added to it However, when the the type of the ovan-

able s32 is calculated this second time (and for all future

processings of this instruction) the result type remains

set(REC_l), and thus the types of both ivar and ovar

converge (The determination of the type of x is dis-

cussed below ) The above method works equally well for

sequences, tuples as well as mutually recursive struc-

tures

5.1. Ensuring Complete Type Propagation

Propagating a recursive type symbol rather than

its internal structure eliminates the infinite production

of type symbols in the program However, there are

situations when the internal type structure of a recur-

sive variable needs to be examined For example, in the

above code fragment, x is extracted from the set s and

then used as an operand in an arithmetic operation

The propagation function for from is given an input

type set(t), the result type is t The type of s< is

set(REC_l) (it receives its type from s3,2 ), and there-

fore x is assigned the type REC_1 In the next opera-

tion, the propagation function for +- first checks that

the operands are compatible, 1 e that x has integer as



one of its type alternands (since the second operand is

an integer), and to determine this the internal structure

of REC_1 must be examined If a new type is added

to the structure of REC_1, the + operation should be

reprocessed as its result type may be affected by this

new type information

In order to guarantee complete propagation of

type information throughout the program we define a

new map occurrences-dependent-upon whose

domain is the set of recursive type names, and whose

range is the set of occurrences This map contains for

each recursive type symbol a list of all occurrences that

need to examine the internal type structure of that

symbol When the type structure of a recursive type

(which is always associated with an ivanable) is

modified. those occurrences which belong to

occurrences-dependent-upon for that name are

placed into the workpile for repiocessing, in addition to

the corresponding ovanable

The resulting algorithm to typefind recursive data

structures is as follows

Input Quadruple code of SETL program together with

UD chains

1) The workpile is initialized to the set of ©variables

that have a constant right hand side A map,

occurrences-dependent-upon, is initialized to

the empty set

2) Whenever an embedding operation (i e an opera-

tion that applies a type constructor, for example,

set or tuple formers) is encountered, the

BREACHES* of each ivanable of that operation

is calculated If an ivanable appears in its own

BREACHES*, it is marked as self-dependent

3) All self-dependent ivanables are given new,

unique type names which are marked as being

recursive A map type_structure is created

whose domain consists of all such recursive ty-es

4) The type of all nonrecursive, nonconstant

occurrences are set to error The map type-

structure is set to error for each element in its

domain (i e for each recursive type)

•5) An occurrence is removed from the workpile and

processed

5a) If the occurrence in question is an ovan-

able, calculate its type using the type pro-

pagation function appropriate to the

opcode of the associated instruction Furth-

ermore, if the ovanable needs to examine

the type_structure of any recursive symbol,

place the occurrence in occurrences-

dependent-upon for that type name If

the type of the ovanable has changed,

place into the workpile all subsequent uses

of that ovanable

5b) If the occurrence being processed is an

ivanable, calculate its type as the union of

all definitions reaching that occurrence

This becomes the type descriptor if the

ivanable is nonrecursive, and the value of

the type structure otherwise If this value

has changed since the last time this

occurrence has been processed, place into

the workpile the associated ovanable. as

well as any occurrences in occurrences-

dependent-upon if the ivanable is recur-

sive

6) Repeat step 5 until the workpile is empty

In step 5a, examination of the type_structure of a

recursive symbol occurs for most operations It is only

in the event of an embedding operation that the struc-

ture of a recursive symbol can be ignored In all other

cases, however, the structure must be examined to

determine if any of the types within it are legal as input

to the operation For example, if the operation in ques-

tion is a +, and one of the input operands has as its

type the recursive symbol REC_1, and the other

operand is of type integer
|
set(real), then the struc-

ture of REC_1 must be examined to see whether it can

assume integer or a set as its type

5.2. Proof of Termination

Intuitively it is clear that the algorithm should

terminate The operations that cause an infinite

number of types to be generated are tuple and set form-

ers, and any other embedding operators (such as with)

Furthermore, these produce a nonconvergent set of type

symbols only in the event that the value of the output

variable of the operation reaches one of the input vari-

ables It is precisely for such input variables that a

recursive type symbol is introduced (via the self-

dependency test) Since it is this name that is pro-

pagated across the operation, and not the underlying

structure, if the type name reaches one of the defining

variables, it will be embedded at at most one level (if

there are further tuple formers along the path from the

output variable back to the input variable, they will

generate other recursive type names that will replace

the original recursive name) For example, in the follow-

ing code fragment
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(1)



this occurrence of x We can regard this as a constant

(wrt to the typing process) whose implicit type is error

and as such has a nesting depth of and a length of -1

Case LA: Self-dependent operand of an embed-

ding operation (recursive, depth-increasing

occurrence). The typefinding algorithm assigns a new

recursive type symbol to this occurrence whose nesting

depth is (by definition) and whose length is -1

The above three cases have self-defined nesting depths

and lengths The (maximum) nesting depths and

lengths of the other three cases can be computed by cal-

culating their distance (in terms of statements) from an

occurrence belonging to one of the previous three

categories

Case IB. Operand of a concatenation operation

(length-increasing operand). The typefinder flags

any cyclical length-increasing operands and transforms

any sequence type symbol assigned to them into tuples

(whose length is 0) With regard to nesting depth, they

are the same as Case IC (below)

Case IC: All other self-dependent occurrences.

We examine each UD path leading backwards from this

occurrence until we encounter an occurrence of type IA,

IIA or I1B If after traversing d nodes along such a path,

we encounter such an occurrence, the nesting depth of

the type symbol constructed along that path is at most

d

For example, given the following code sequence

(1) a =5,

(2) x = {a},

(3) (while somecondition)

(-1) read (y),

(5) x = x + {y}.

(6) end,

Examining the path

x 5,:- • a,— 5i

we note that the (recursive) type structure of x has con-

stant nesting depth of 1

We must however, examine in some detail the possibil-

ity that we do not encounter one of the three kinds of

self-defining occurrences but rather arrive back at our

starting node (this is a definite possibility as we are

dealing with a self-dependent occurrence) This occurs

in our above example along the path

x s.2
—
'^.l->xs.2

Note that if we are able to reach the occurrence in

question by traversing a UD path, none of the

occurrences along that path could be operands of an

embedding operation, for were that the case, such an

occurrence would be a self-dependent operand of an

embedding operation, one of our self-defining cases, and

our backwards traversal would stop at that point

Therefore, the path from the occurrence back to itself

must contain no operations that increase the nesting

depth of a type symbol (since we are able to traverse its

length) and it follows that such a path can be viewed as

having no effect upon type symbols (wrt their nesting

depth) In the above example, for the cyclic path to

increase the nesting depth of x, there would have to be

some embedding operand along that path, but that

would be a occurrence whose depth is self-defined The

same argument holds if during the traversal we

encounter a self-dependent nonrecursive occurrence, dis-

tinct from the one being analyzed The only paths that

need be examined are the noncychc ones We see there-

fore, that full-cycle paths can be ignored

Case IIC: All other non self-dependent operands.

The analysis is the same as Case IC, but we do not

have to concern ourselves with a cycle as the occurrence

is not self- dependent

Note that in the above two cases, we assumed

that eventually we would reach one of the self-defining

cases This must be the case, as there are only a finite

number of occurrences satisfying Case IIC, and none of

them can lead into a cycle (as they are not self-

dependent) Furthermore, we are ignoring full cycles in

Case IB and as such are only dealing with paths that

are non-cyclic QED

5.3. Completeness of the Algorithm

Completeness. I e insuring that all type informa-

tion reaches all occurrences, is guaranteed by the fact

that each instance I keeps track of all other instances I'

affected by any changes made to I

Theorem: The structure occurrences-dependent-upon

correctly propagates complete type information to any

occurrences requiring that information

Proof: There are three situations for which a variable

occurrence must be placed into the workpile for process-

ing due to a change in some type These are

1) The type of an ivanable is modified In this

instance, the ovanable of the instruction contain-

ing that ivanable must be (re)processed

2) The type of an ovanable has been modified The

types of all subsequent uses (ivanables) of that

definition must be recalculated to take into con-

sideration the change

3) As part of the propagation function of an opera-

tion, the internal structure of some recursive type
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symbol, R, must be examined This occurs if R is

an alternand of one of the ivanables of the opera-

tion in question For example, in the statement.

(4) x -1 + 3,

if one of the alternands of zA is R, when calculat-

ing the type of x.,, we must examine the structure

of R to see whether one of its alternands is

integer

Situation 1 is handled by dumping the ovanable

of an instruction into the workpile whenever the type of

an ivanable of that instruction is modified For case 2,

the members of the DU set of an ovanable are placed

into the workpile whenever the type of the ovanable

changes In case 3, we must show that if an alternand

t, is added to the type structure of R, that information

will be propagated to o prior to termination of the algo-

rithm

As shown above, the internal ^ructur; cf a recur-

sive type symbol R is examined when calculating the

type of an ovanable in an instruction one of whose

ivanables, say l, has R as an alternand When R is ini-

tially made an alternand of i, o is immediately placed

into the workpile (this is an instance of case 1), and

when subsequently processed, o will be inserted into the

occurrences-dependent-upon set for R Thus o will

become part of the occurrences-dependent-upon set

for R prior to algorithm termination

We now show that an alternand, t, added to R's

structure causes the type of o to be recalculated If t is

inserted into R's structure after o has been made placed

into the occurrences-dependent-upon set for R

then the insertion of t (i e a modification to the struc-

ture of R) causes o (as well as all the other members of

occurrences-dependent-upon for R) to be placed in

the workpile for type calculation On the other hand, if

t is placed into R's structure prior to o's insertion into

R's occurrences-dependent-upon set, then at some

later point of the analysis (when R is made an alter-

nand of i), o will placed into the workpile When o's

type is then calculated, t is already a part of R's struc-

ture and will therefore be taken into consideration in

the calculation of the type of o QED

5.4. Complexity of the Algorithm

With regard to the cost of the algorithm, the

actual processing of variable instances is performed in

an identical fashion to Tenenbaum's algorithm (with

the exception of examining internal structures of recur-

sive type symbols which we discuss below) and this

method has been shown to require a number of itera-

tions over the program which may be linear in the

number of variable occurrences, but in general is much

smaller In this regard our algorithm does no worse

than Tenebaum's, and indeed depending upon the con-

structor nesting limit chosen by a particular implemen-

tation of Tenenbaum's algorithm, may converge in

fewer iterations This is because the introduction of

recursive symbols forces immediate convergence of the

type of the ovar of the statement in which such a sym-

bol occurs, whereas Tenenbaum's algorithm requires the

appropriate depth to be reached before convergence

(through transformation to general) occurs

Of course, there is the additional overhead of

testing for self-dependency in the initialization phase

and collecting the internal structures of recursive type

symbols when it is necessary to examine them The

first of these tasks is quadratic with respect to the

number of variable instances in the program (i e every

operation may be self-embedding, requiring the self-

dependency test to be performed upon all ivanables in

the program) Examination of the internal structures of

a recursive type may in the worst case (again when all

ivanables are self-dependent) require examination of the

structure of all recursive type symbols (which can be as

many as the number of ivanables in the program) in

the program each time an ovanable is processed

Nevertheless, in actual programs the number of recur-

sive type symbols generated is quite small (typefinding

a simple recursive descent parser generated -1 recursive

symbols)

5.5. Applicable Optimizations

Typefinding of recursive data structures allows us

to determine the data types of subcomponents of an

object, and the relationship among those subcom-

ponents This allows an increased number of variables

in the program to be strictly typed, not only those that

are instances of the recursive structure, but variables

that receive their value from the structure as well This

in turn can result in more efficient representations (e g

a more compact type descriptor) than possible had the

structure remained untyped

The effect, of performing typefinding upon recur-

sive structures can be summed in a simple statement

type general is no longer introduced into the type

equations of a program except through the read state-

ment or the use of external routines that have no type

specification for their parameters Previously, type gen-

eral appeared in a program whenever the recursive

structures (or static constructs resembling such

structures) were present
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5.8. Implementation

The algorithm described in this paper has been

implemented (in SETL) for all of SETL and has been

run on a number of example programs, the largest being

a recursive descent parser for a simple language In all

cases, the resulting recursive types correspond closely to

those types that a programmer would ve assigned

(using pointers in a Pascal-like language)

The appendix following this paper contains

several sample programs together with the output pro-

duced by our implementation

8. Summary and Conclusions

The algorithm presented in this paper is part of

an ongoing attempt to increase the usability of SETL

One of the main sources of inefficiency of SETL is the

overhead imposed by weak typing Weak typing is

nevertheless indispensable in a value-oriented language

which is to support recursive ,M,ructures Correct

typefinding of recursive structures should allow the

SETL run-time system to manipulate such structures

with the same efficiency as if they had been described in

a lower level language, e g C or Ada

When presented with a program containing no

recursive data structures, Tenenbaum's typefinding

algorithm performs satisfactorily, correctly determining

exact types (i.e the same types the programmer would

himself supply) for the majority of variables The use-

fulness of the analysis is readily apparent the removal

of a large portion of run-time type checks from a pro-

gram However, for programs containing one or more

recursive structures, the algorithm is unable to analyze

the type structure of the program in any reasonable

fashion This is because the recursive structure is typi-

cally a central object of the program from which many

variables receive their values, directly or indirectly As

the algorithm is unable to assign any sort of a precise

type to the structure, all such dependent variables also

remain either untyped or are given some type that is

overly conservative (e g tuple(general) as opposed to

tuple(integer))

The typefinder presented in this paper is capable

of uncovering and precisely typing such recursive struc-

tures, assigning them the same recursive types that the

programmer might This capability greatly enlarges the

class of SETL programs which can be reasonably typed,

as recursive programming using nested tuples is quite

natural in SETL In addition to assigning the recursive

structure a precise type, variables that extract values

from the structure can be strictly typed (i e given a

type with a single alternand) in many cases allowing for

more efficient <• de to be generated for operations on

these variables

Another consequence of the algorithm is the near

disappearance of type general from the resulting type

equations With the exception of input variables and

parameter and result types of external routines which

are not explicitly typed by the programmer, general

need not be introduced into the equations Of course

there may be situations when a type is sufficiently

unorthodox (eg integer
|
tuple(real)

|

set(string))

that we may decide to replace it by general, but this is

our choice and is not a prerequisite to guarantee termi-

nation of the analysis as in Tenenbaum's typefinder In

addition, statically complex structures are no longer

mistaken for nonconvergent but rather can be given

their precise type

In addition to the ability to strictly type a larger

number of variables, we present several approaches

towards exploiting the typing of recursive structures

with respect to efficient storage management We plan

to research further into this area as part of an overall

effort to develop a lower-level, more efficient language

processor for the SETL language
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Appendix: Some Sample Typefindings

The following is a pair of programs together with

the result of performing type analysis upon them using

our method The SETL code was hand-transcribed into

quadruples, suitable for optimization purposes Dummy
conditions (eg while 6=6) are inserted for the while

loop for simplicity of the transcription

The format of the output is as follows The

source code is listed together with the set of recursive

types discovered by the typefinder and the types of the

variables in the program As an example, the type

T_OM
TJNTEGER

|
TJTUPLE
TJNTEGER
REC_~

1

denotes either om, or an integer, or a fixed-length

tuple whose first component is an integer and whose

second component is of type REC_#1 (a recursive

type symbol).

Example 1 A pair of mutually recursive structures

This example shows how the typefinder deals with

mutually recursive structures Note how only one of the

recursive types (REC_#1) has an escape clause,

REC_#2 is defined solely in terms of REC_#1

Original source code:

program examplel,

t = 3,

(while 3 = 3)

s = ['A', t];

t = [3, s],

end while

end program examplel,

Recursive Type Structures

TJNTEGER
|
TJTUPLE

TJNTEGER
REC_#2

{ REC_#2 } =
TJTUPL

T_STRING
REC_# 1

Types

TJTUPLE
T_STRING
REC_#1

|
REC_#2

t

REC_#l

Example 2 The with operator recursion on both

operands

The with operator applied to a tuple (as its first

operand) yields an identical tuple except that the

second operand is appended to it a an additional final

component In the statement

t = t with t,

the tuple t is used both as the tuple and the additional

component The use of t as the first operand (in con-

junction to it being the result variable) causes the

typefinder to transform t from a known-length tuple

(tuple) into an arbitrary-length sequence The use of t

as the second operand causes a self-embedding requiring

the generation of a recursive type symbol Both situa-

tions are properly handled by the typefinder

Original source code:

program example2,

r HI:
(while 6 = 6)

r = r with r,

end

end program example2,
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Recursive Type Structures

{ REC_#1 } =
T_NULLTUP

I
T_SEQUENCE

REC_#1
{ REC_#2 } =

REC_#1

Types

REC_#1
T.SEQUENCE

REC_#1
T_NULLTUP
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