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Lets be a finite set, f: S + s a partially defined 
mapping which admits no cyclic mapping, i.e. Vk ~ 1, x es, 
fk(x) ix. Then we can define for each x ES, f~{x) = y such 
that 3k > O, fk{x) = y and f(y) is undefined {thus fco(x) = x 
for all x for which f(x) is undefined). We will write this in 
infix notation f lim x. We will assume that f = ~ initially, 
and is extended by operations of the form f(y) = x, where f(x), 

.•. f (y) are presently undefined (so that no cyclic mapping will 
ever occur). f can be interpreted as the father mapping in 
a fof'est of trees, starting with a collection of single-nod·e 
trees, and joining trees .·together by making a root the father 
of another root. fm(x) is the root of the tree currently 

containing x. Then f can be stored in a special form which 
makes these operations ultra efficient: asymptotically, 
f lim x can be computed. in an almost constant number of 
cycles. 

1-tethod: 

Represent£ by an auxiliary triple of £unctions g, n, t 
such that g has sirnilar·properties to those of£, g00 (x) = g(x) 
for all x for which f

00
(x) has ~lready been computed, 

CD CO Q) 

n(x) = t of y such that g (y) = x, and£ (x) = t(g {x)) for 
all x. g_ is the father mapping in an auxiliary forest, 
n(x) is the number of des~endants of each root x (i.e. the 
cardinality of its tree). The forest of g is equa~, as a 
set of sets, to the forest off, but the roots in each forest 
need not be the same; t is a "real root" mapping, \-:hich maps 
each g-root to the corresponding f-root. These auxiliar:r 

functions are manipulated as follows: 



SETL-20·1-2 

(a) Initially, g := n9..; n:= { [x,l]: x e S); t := { [x,x]: x e s);. _ 

(b) Whenever f
00 

(>:) = f lirn x is neec.lecl, perform "path . ~ 

(c) 

(d) 

co!npression": 

s 1 := n9..; r := x; 

(while g(r) ;' -n) s 1 with r; r = g(r); ~nd; 
(Vz E s 1 ) g (z) := r; ~; $ path comp·ression 
return t(r); $ r is the g-root of x and t(r) is the £-root. 

gm(x) (which is needed in the next operation) is 
computed in exactly the same way, only :returning r 
instead ·of t_(r). 

lfuenever f (x) = y is performed, perform also "balancing": 
r 1 :=glim x; r 2 :=glim y; $ first find the g roots of x,y 
if n(r1 ) < n(r2) then.$ g-assignrnent is the same direction 

$ as the £-assignment.· 
g(r1 ) := r 2 ; ·n(r2) := n(r1 ) + n(r2); t(r2) := y; 

else $ a reversed g-assignment 
g(r2) :~ r 1 ; n(r1) := n(r1) + n(r2); t(r2) := y; 

end if; 

It•is well known that using such a represantation, a 
mixed sequence of n assignments and limit calculations will 
be performed in O(n a(n)) time, where a(n) is related to the 
i~verse of Ackermann's function, so that it is extremely 
slowly growing, and for all practical purposes is less than 3: 

This technique can be applied to several problems related 
to program optimization, producing highly efficient algorithms 
for these problems. Among these problems are: testing a 
flow graph for reducibility and finding intervals for this 
graph, and constructing the dominator tree of a flow graph. 
In this note we will sketch only the first application. 
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2. Turjnn's fast interval finding algorithm 

. . 

Let G be a flow gr·aph with a root. An interval I: in G 

with a h~aa xis a S?bset of the nodes of G containing x, 
with the following properties: 

(a) All edges in G which enter I from an putside node, 
must do so through x (i.e. if (y,zJ e G, y ¢ I and z EI, 

then z = x). 

(b) All nodes in I can be reached from x along a path 
wholly contained in I. 

(c) All cycles wholly contained in I must contain x • 

It follows that I can be topol~gically sorted in such a 
way tbat xis its first element, and all edges in G between 
nodes of I are either forward edges, or else back edges whose 

target is x. 

·ocfinition. Let I be an interval in G with a head x. Let us 
define a transformation of. G, called collapsing I to a 
single node, as £ollows: 
(a)· Delete all nodes in I-{x} from G. 

(b) Replace each edge (y,z) E G, where y EI, z ~ I, by 
the edge (x,z). If (x,x) E G, delete this edge. 

The resulting graph is called a derived graph of G. 

Definition. A flow-graph G is called reducible if G can be 
reduced to a single node, by repeated collapsing of intervals. 

Theorem 1 (Hecht-Ullman, "Flow-graph reducibility," SIAM J. 

Computing 1972): G is irreducible if it contains two nodes 
n1 ,n2 i root such that there exist paths Pz e path(root,n1 ) 
p 2 e path(root,n2), p3 E path(n1 ,n2), p4 e path(n2 ,~

1
) such 

that p1 does not contain n2 , p 2 does not contain n1 , and 
p3 u p 4 is disjoint from p1 U p2 (except for the end points 
n1 ,n2). Such a configuration is called a double-entry loop, 
and is illustrated below: ' 
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Our problem is, given a flow graph G, to test whether G is 
reducible, by finding intervals in G, and collapsing them. 

< 

in an efficient manner. If G is reducibli, then we can use the 
sequence of intervals processed by such an algorithm to solve 

various data flow problems for Gin a linear time (in the 
length of this sequence and the number of nodes in G). 

We begin by constructing a depth-first spanning tree 

(DFST) T of G, numbering its nodes in left-to~right, ancestors 
first order. Let 'nodeno' ~enote the node-nurr.bering map; and 
iet ~ndescs' be another map on T, mapping each node a to the 
number of descendants of x in T (excluding x). All the graph 
edges can be classified into four categories: tree-edges, 
forward edges (i.e. edges (x,y) where xis a T-ancestor of y), 
back edges (edges (>:.,y) where x is a T-descendant of y) and 
cross edges (all other edges). It is wall known that Tis a 
DFST of G iff all cross edges are right-to-left (i.e. all 
cross edges (x,y) s~tisfy nodeno(x) > nodeno(y)). 

Definition. For each node x # root, let 

reachunder (x) = { all nodes y from which x can be reached along a 
path not going through x, whose final edge 
is a :back edge}. 

Theorem 2. G is reducible iff root, reachunder(x), for 

all x ~ root. 

Proof: If root E reachunder(x), let p be a path from root to x as 

in the above definition, and let y be the first point on p such 

that the subpath of p from y to x contuins only descendc1nts of x. 
Then there exists a cloublo-entry loop in G, with x.,y as tha loop 
entries, as shown in the following figure. 
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Thus, by Theorem 1, G is irreducible. 

Conversely, if the graph is irreducible, let x and y be 

entries of a double-en tr~• ·loop, with nodeno (x) < nodeno (y) , 

such that nodeno(x), nodeno(y) are minimal. Then, by this 

minimality and the definition of a DFST, it can easily be 

shown that y . is a descendant of x and the path from y to x 
in th~ definition of a double-entry loop contains only 

descendants of y and therefore terminates with a back edge. 

Since y can be reached from the root via a path which bypasses 

x, root e reachunder(x). Q.E.D . 

Lemma 3. 

undar(x) 

subtree of 

through x. 

. 
If root f reachunder(x), then every node in reach-

is a descendant of x, reachunder(x) u {x}· is a 

T, and all paths into this subtree must go 

Proof: If ye reachunder(x) is not a descendant of x, we can 

go from the root down the tree toy, without going through x, 

and then from y to x via a path as in the definition of reach-­

under. Hence root e reachunder(x). 

If ye reachunder(x) and z is an ancestor of y and a 

descendant of x, ·then we can go from z toxin a similar 

way as above, obtaining z e reachundcr(x). Hence 

reachunder(x) u {x} is a subtree of T, rooted of x. If 

ye reachunder(x), · z ~ x and (z,y) E G, th~n a similar 

argu.-ncnt shows that z E reachunder (x) • Hence, only x can be 

a target of an edge from outside rcachunder (x) u { x} •. 
Q.E.D. 
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Corollary 4. Under the snme hypothesis; reac~tlnder(x) u {x} 
is a strongly connected set .. 

Proof: Any point i~_ this set can be reached from x via a 
path wholly contained in this. set (namely, the tree path 
from x), and can 
a path as in the 
reachunder(x)). 

reach x via a similar path (for all nodes on 
definition of reachunder(x) are also in 

Q.E .. D. 

Lell)nia 5. Let x be the highest numbered node in T (rightmost­
bottornrnost) which is the target of a back edge. Then, if 

root ~ reachunder (x) u { x}., then this set is the maximal 

strongly connected interval whose head is x .. 

Proof: Lemma 3 and Corollary 4 show that this set is st!t"ongly 

connected and satisfies (a) and (b) in the definition of an 
interval with head x. To establish (c), let p be a cycle 
wholly contained in reachunder(x). It is easy to see that p 
must contain a back edge, and the target of that back edge, . 
being a descendant of x, has a higher node number, which 
contradicts the choice of x. To show rna>:irnali ty, note first 

that any interval whose head is x must contain only descendants 
of x. Let y be such a descendant which belongs to some 
strongly connected interval with head x. Hence, there exists 
a path from y to· x going only through descendants of x; and so 
must termin~te with a back edge. Thus ye reachunder(x) 

so that reachµnder (x) U { x} is the maximal strongly connected 

interval with head x. Q.E.D. 

-For simplicity, assume with no loss of generality that 
root is not thci target of a back edge. 

Tarjan 's procedure can now be sketched, as follows: 

Given a flow graph G, 
(1) Compute a DFST T of G, the maps 'nodcno' and 'ndescs' 

and the set of all back edges in G 

( - i 

' ' \,.,\ 

Ci 

-........ 
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(2) Find x as in Lemma 5. If no such x exists, go to 
step (6). 

(3) Compute reachundcr(:x:). 
(4) If root E reachunder{x), then the graph is irreducible; 

halt. 
(5) Else, collapse reachunder (x) u { x} to· a single node to 

get a new derived graph G'. Repeat steps (1)-(5) with G'. 

(6) At this point, the graph is reducible. The final derived 
graph is acyclic, and can be topologically sorted in a 
right-to-left, ancestors first order (of the corresponding 
DFST). 

It js easily seen that this procedure is correct. To see 

that it can be implemented in a highly efficient manner, using 
a compressed, balanced tree representation, note the following 

observations: 

Lemma 6. An edge (x~y) e G is a back edge, or, equivalently, 

xis a descendant of y iff 

nodeno(y) ~ ~odano(x) ~ nodeno(y) + ndescs{y) 

Proof: Trivial. 

Next, l.et 'head' be a map on the nodes of G, that we 
calculate during execution of the above procedure,in the 

following way: Initially, head=~- After each iteration of 
our procedure, set head(y) = x for ally e reachunder(x), 
where xis the node chosen at step (2) of the current iteration. 
Since all such nodes y are than deleted from the graph, we 
will never define hcad(y) more than once. It also follows 
inductively that, at any moment, head has no ~yclic mapping, 

and that whenever we define head(y) = x, x and y arc ~imit 
value~ of the current heud map (i.e. hcad(x) = head{y) = r. 
before this definition). Al~o, xis an ancestor of yin the 
current DFST. 
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:Lemma 7. At any iteration of the above procedure, if G' 

denote the current derived graph of G, then 

G'= {(headco(x),y): (x,y)EG I head(y)=n and 

if hcad-1{ y} ;l ¢ then headco (>:) ;ly} 

Proof: By induction. It is certainly true if G' = G, since 

head=¢ at this point. Suppose that it is true·for some G', 

and let G" be the derived graph of G •, ·obtained by collapsing 

a new interval I' with head x •. Let head1 , head2 denote the 

values of 'head' for G', G" respectively. Then (u,v) e G" 

iff Ci) u ~ I' and (u,v) e G', or (ii) u = x', v, I' and 

- . -

3w e I' such that (w, v) e G' • Applying the induction hypothesis 

we get 

G" = { (u,v)EG' Ju$i!'I'} + { (x' ,v): (w,v}EG' jwEI' and v~I'} 

co I ~ = { (head
1

(t),v): (t,v)EG head1 (t)1I', head
1

(v)=O and 
. -1{ } co } ( if head1 v #~ then head1 (t);lv ; 

+ { (x',v}: (t,v)EGlw=head~(t)EI', vf.I', head1 (v)=O and 

• if headi1fv)#~ then headi(t);lv} 

- { (head;(t},v): (t,v)EG(head;(t};l x', head2 (v)=n and 
• -1{ } CD } if head2 v ;l¢ then ~ead 2 (t);lv 

+ {Chead;(t),v): (t,v}EG(head;(t}=x',.head2 (v)=S'2 and 

. if heaa21{v};l¢ then head;(t};lv} 

(This last, set-by-set equality, should be carefully verified· 

by the reader.) 

- { (head;(t),v): 

Lemma 8. Let G' be the derived graph of G at some iter~tion of 

the above procedure. Then a DFST T' for G' can be obtained by 

starting at T and ·applying to it repeatedly all the collapsing 

operations of the previous iterations (in ·which similar DFST' s 

were used). ·- _, 
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Proof: By induction. There is nothing to prove if G' = G. 

Suppose that the assertion is true for some G', with T' the 

DFST obtained for G' this way. Let G" be the next derived 

graph, and T" the gi~ph obtained from T' by the collapsing 

operation. Since a subtree o.f T' is collapsed, T" is also a 

tree. By the proof of Lemma 7, any cross.edge of G" was 

obtained from an edge of G' by moving its initial node up T', 

so that this latter edge must have been a cross edge in G', 

and by the induction hypothesis went from right-to-left in T'. 

Thus, the resulting edge in G" must also go from right to left 

in T", so that T" is a DFST for G". Q .E .D. 

CIO 

Remark. :rn this case, head (>:) = y al\:rays implies that y is a 

T-ancestor of x. 

Next, if we carefully examine ho·w T' or G' are used when 

processed by the procedure, we can show that neither of them 

has to be formed explicitly. 

Let G' be the derived graph during some iteration of the 

procedure. Define n(G') = minimal node number (in T) which 

is in the range of the current 'head' map. Obviously, the 

values of n(G') are nonincreasing during execution of the 

procedure. 

Lem.-na 9. (a) (x,y) E G' is a back edge iff nodeno(y) in T 

is < n (G ') and 3w I Cw, y) is a back edge in G and headeo (w) = .x. 

(b) n (G') is the nodeno (in T) of the head of the last 

interval collapsed to form G'. 

Proof: First observe that if (x,y) e G' is a back edge (in T') 

then, since T' was obtained by collapsing subtrees of T, y is 

also a T-ancestor of x. 

The proof is by simultaneous induction on (a) and (b). 

Doth are true if G' = G. Assume both to . be true for all 

derived graphs up to and including G', and let G" be the 

next derived graph. Let (x,y) E GM be a back edge. 
CIO 

By Lemma 7, 3(w,y) E G, x = head (w). Hence xis a T-ancestor 

• I 
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of w, and by the above observation, (w,y} is a back edge in G. 

if noden~(y} ~ n(G'), let G
0 

be a previous derived graph such 

that n(G0} ~ nodeno(y} < n(G0}. By the induction hypothesis, 
. co 

(x
1

,y) is a back edge in G0 , where x 1 = head (w}, at the 

iteration which proc~pses G0 , and it is easily seen that the 

highest numbered node in.T0 which is the target of a back edge, 

must bey (here the induction hypothesis on (b} has also been 

.used}, so that after that iteration, head-1{y} ~ ¢ and 

. ' ... 

co 
head (w} = y. Hence, by Lemma 7, (x,y) cannot ?e an edge in G". 

Conversely, if (w,y} is a back edge in G, then y is a T-ancestor 

of w, and after each collapsing, it still must be a T-ancestor 

of headm(w} (if not, some headco(w} will become a T-ancestor of y, 

so that we will have a lower numbered node than yin t~e range 

of 'head', contradicting the fact that nodeno(y) < n(G')). 

The condition on y implies that head(y) = n and head-l{y} = ~ 
so that, by Lemma 7, (x,y) e G" and is therefore a back edge. 

Now, concerning (b), let y be the highest numbered node 

in T' which is the target of some back edge. By the induction 

hypothesis, nodeno(y) (in T) < n_(G'). Thi~ y will be chosen 

at step (2) of the iteration which pr~cesses G', so that at 

CJ 

the end of this iteration Y. will be the only new element in 

range head, so that n(G") = nodeno(y), which proves (b) for G". 

Q.E.D. 

To conclude, there is no need to produce explicitly any 

derived graph or DFST. Instead, the mp 'head' should be 

maintained during the execution of the procedure, using a 

compressed, balance~ tree representation, and the procedure 

itself should be modified as follows: 

0 Perform step (1) only once, for the given graph G. 
0 At step (2), iterate from the last found such x in a decreasing 

node numbering order (Lemma 9(b)), and use Lemma 9(a) (and 

Lemma 6) to test for back edges. 

oAt step (3), one can use the graph 

{ (headco(x) ,y): (x,y)EGlhead(y)=O} insead of G' (cf.-Lemma 7). 

Indeed, this graph contains G', and all extra edges are of the , 
form (y,y). Since we want to construct a set of nodes, these 
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_,,,,.- extra edges will not produce addit). :ial no:les in rcachunder. 

-~ (Alternatively, one can use the more complex rcprc!::>entation 

( 

of G' in Lcm.~a 7.) In eith~r case, since these graphs have 

to be traversed only in a reverse order, this can easily be 

accomplished using G and 'head' alone. (However, the first graph 

can be traversed this way more efficiently tha~- the second.) 
0 Step (4) is unchanged. 

oStep (5) amounts IlGW to extending the .head.map for the nodes in 

reachunder(x) and branching back to step (2). 

Here is a SETL code for the modified procedure: 

proc intsof(graph,root); $ "Tarjan 1 s interval finder 

$ Step (1) 

nodes:= dom graph+ range graph;$ the nodes of the graph . --
inverse:= { [y,x]: ·cx,y] e graph};$ the inverse graph 

[fa,nodeno,ndescs,rleftno] := dfst(graph,root); 

$ depth-first spanning tree 

$ fa is. the father mapping of this tree 

$ rleftno is a node-n~-nbering map in a 

$ right-to-left tree walk order, needed in step (6) 

nodevect := { [n,x]: [x,n) E nodeno}; $ vector of nodes in order 

backedgesinv := { [y,x]Einverselnodeno(y)~nodeno(x)<nodeno(y)+ 

+ndescs(y)}; 

$ set of all inverse back edges 

targbackedges := ~ backedgesinv; $ target nodes of back edges 

head:= nt; initaux; $ initialize auxiliary tree maps 

intervals:= nult; $ tuple of all intervals 

intno := nl.; $ a map from interval heads to the index of 

$ their interval in intervals 

m := O; 
$ step (2) 

(Yn := #nodevect 

$ steps (3)-(5) 

m := m + l; 

$ number of intervals encountered 

... 2 Ix:= nodevect(n) in targbackedges) 

intervals with (x]; $xis the head of them-th interval 
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intno (x) := m; ... 

reach under : = { head !!!!!, y: yEbackedgesinv{ x)); 

$ all sources of back edges leading 
·$ to X 

(while 3 yEreachunder-{ x} I head (y) =fl) $ build all reachunder 

.. (' -

head(y) := x; balance(y,x); $ perform 'balancing•' . 

if root in newreachunder : = { head ~im z: zEinverse{ y}) th<:n 
return O; $ the graph ·is irreducible 

else reachunder := reachunder + newreachunder; 
end if; 

~ while; 
end Y; 
$ -step (6) 

$ The remaining nodes form the last interval in the sequence; . 
$ its head is root. Extend 'head' to these nodes. 
(Yy e nodes I head(y) = n) head(y) := root; end; 
intervals with nult; intno(root) = m+l; 

rleftvec := { [n,x): [x,n]Erleftnol; $ vector of nodes in right-to-(! 
. $ left tree walk order. J. 

(Vy:= rleftvec(n)) ~ntervals(intno(head(y))) with y; end Y; 
f 

return intervals; 

~ proc intsof; 

, 

(_ X J 

, I I 




