
SETL Newsletter Number 9 December 1, 1970
Malcolm Harrison

Implementation and Language Design

1. The "lona forms" of 0

A with X

A less X

can be made practically a.s efficient as the "short forms". This

can be done by implementing a set as an ordered tree structure,

and permitting a subtree to be ccimmon to many sets. }.joclificn.tion

of a set is then done by building a new poth from the root withoue,

changing the original. The resulting tree will have at least

j/:A - .logif:A nodes in common with the original, and at most log//\

different internal nodes, assuming balanced trees.

The time to determine if X is a member of A is proportional

to #-A, and the time tn :rebuild tl,e appropriate tree path is als,

proportional to ::/F.A. The distinction between the two "forms" :Ls

therefore of marginal value.

2. The important property of t:1e Rbove imple1,1entation is tr1:-it

tl1e operations do not change existing data-structures but ins e3ci

build new data-structures with p:=1 rts of old ones. This presents

a different appr'.Jacll to the mA.nipula.tion of complex data-structures,

and h~s the following properties:

:J,.) data-structures may overlap, so less memory is requLred.

b.) assignment can be done wi U1ou t copying.

c.) construction operators need not necessarily copy their

component sub-structures.

- c -

In general, a structure may be a substructure of more than one

other structure, so we have the following additional properties

d.) data-structures should not be modified unless their

usage as sub-structures is known.

e.) e;arbage collection must be used to determine reusable

memory.

3. In a tree representatLon of a set, each set-element relation

ship is represented by one node. If two sets are not permitted

to share ~emory, the best we can do for memory utilization is an

amount of memory which is proportional to the number of such set

element relationships. The more copying is done by the primitive

operations the worse this becomes.

If, on the other hand, we permit common subtrees, memory

requirements can be reduced considerably. The following strategies

can be used to make use oi' ti1lf: 110ssii)ili ty, in addi tLon to irnple

:nenting primitive oper 0 tions a::: s 1.1gc;ested n.bove:

ri.) when b,lilding ·1 new ncde, determine if it already exists

in memory, and if it cloes use the old one rather thc=m

create n n8w one.

b.) periodically reore;3,nize structures to use ,ninimum

rnemory - perhaps at go.rbage col1ect::_on time.

Note that a.) includes the strategy suggestecl in ;';cllw3rtz' ori-

3:inal description. I do not know of an optimum a] g,Jri thm fnr b.).

11. The above considerations also affect the langu3ge design. In

particular, tll.e user sl1oulc:l be discouraged from writing procedures

- 3 -

which modify data-structures. This can be done conveniently

by insisting that arguments are passed by value, not by reference.

From the linguistic point of view this implies that functions

should be used instead of subroutines. For example, we would

write x = f(x,y) instead oi' call f(x,y). Note th.-,t if a variable

is a data-type, as sugsested below, many of the operations imple

mented as subroutines and making essential use of call-by-reference

can be implemented by passing the variable as an argument, and

permitting the function to change the v:=ilue assigned to this

variable. Accordingly, the follm·r ing changes to the language

are suggested:

a.) subroutines be eliminated.

b.) function arguments be passed by value.

c.) the side effects of operations be restricted to assignins

nei:I values to varic1bles.

Copies and References

As pointed out by Pat Goldberg in Newsletter :fumber 2, ti19

ability to lrn.ndle datci structures with common sub-structures is

often useful, and can save both execution t i_me ancJ memory. The

advantages of t:1is facility would seem to be some1,t1at less in ri.

high-level lanc;w=i.ge such as SETL, and in some cases we might

expect an optimizin~ compiler to be able to make use of such

representations internally •without the proe;rammer's knowledge.

However, some algorithms are simpler if common sub-structures

are permitted. J~amples are algebraic manipulation, when it is

- lj -

convenient to do substitution for a variable by modifying a

single sub-structure which is referenced many times in the

structure; and in program interpretation, in which assignment is

conveniently done by a single modification of the structure.

The usunJ_ mechanism for providing this facility uses :1

reference dc1tn-type. A reference would be an atom so that when

a structure containing a reference is copied the structure it

ref e::~·e11c e s is not c •Jn i ed. Tuo adc1i t i.onc1l ooer1 ti '."l!1S ';,Y'f' norm2 J ly

IC e i.s an expression,

value 9. reference to tl1e VAlue of e. If r

,rnulc1 r12-vc 2.s its value the structure ref2rcncec1.

n AT~.<_ ':T.'111T
._J., • .J.......L ' ls' -' _l • e l'-

v'.l.rin. b le :;

This '.•1.!'iri.ble

with the vn.ri.<oblc usecl in the proc;r.'in1 witlt the sarne name, St)

the comm.ancJr.:

v1-riab.le whose name can be either co:r1pu tecl by trie "'.Ji'O;_!;rP1n, or

,.., C'.
L.<.., •

ref= ~(c~•, begin(v),

ref,_r.1rnumb = refvarnumb 1,

v = v2riqble ('*' cat dee refvarnumb),

$v = e, re::turn v

ref 0egin(v), v = gensym(),

The eauiv~lent in current 3~TL form is:

extern"l refvarnumb;

refvarnumb = refv~rnumb ·~ 1;

v '" variable (';;;K-1 c"l.t ,jec ref va~·numb:;

return v;

end r~f;

re turn v

