SETT, Newsletter Number 12 January 12, 1971
Jack Schwartey

~IIC, Récapitulation of the basic parts of the SETL language.

In the present section,'we recapitulate, in capsule
ﬁorml the principal basic features of the SETL language.
While this merely repeats iﬁformation given in considerably
more detail in the preceding section, it may be hoped that
such a p&ecié may serve as a useful brief reference for

. the reader.

Basic objects: Sefs and afomis; sets may have atoms or sets

“as members. Atoms may be
Integer., exémples: 0, 2, -3
Boolean strings. examples: “1b, 0oL, 770,.00b777
'~Charactefls£rings examples: ‘'aeion', 'spaces=

“Label. (of statement) examples: labal:, [label:]

Blank. “(created by function newat)
Note: Special undefined blank atcom is Q.

Subroutine. Function.

~

Basic operations for atoms: —_—

“Integers: arithmetic: +, -, %, /, // (remainder)

3 comparison: ' eq, ne, 2t, yt, ge, Le
.. other: T max, min, abs

Examples: 5//2 is 1; 3 max -1 is 3; abs'-2 is 2,

-~

—— — ————— ———

"Booleans: logical: - “and (or a), ox, exor, impliecs (or imp),

:not (or n)

logical constants ~ t (or true, or 1b);

£ (or falsc, or 0b).

/‘\‘

Character strings: conversion

Examples :

dec '12%' i

: dec, oct

s 12; oct '12' is 10,

Strings (character or boolean) :

+ (catenation}, * (repetiti

on), first, last, elt (extraction)

len (size), nul, nulc (empty strings).

Examples:

2 ¥ tab' is ‘abab', 2 fir

2 last

Val + 'bt is tabt;

2 % 10B is 1010B;

st ‘abc' is ‘'ab?,

‘abe' is 'be', 2 elt tabet! is 'bt,

len ‘abc' is 3, 1on nul 1is

General:’

Any two aLoms may be

“atom a Lests if a 1s an a

€ (mémbcr

. Basic operations for sets.

ship Lect), ng '(emb

0.

compalcd uqxng eq or ne;

tom.

-,

ty set); 3_(a?bitrary eiémeﬁt),

(numhcr of elements){ .ggy'gg Zeqﬁality feéts);

'ipcs (inclusion’test); with,

of element); lesf (ordered P

pdw(a)i (set of all subsets of

-npow (k ;a)

Examplév-

"3 {a,b}

(set of all subsets

ae {a b} is t, a

is elther a or b, i

) W1Lh a s {a,b}, {a,bT

H{a,br Tess ¢ is {a,p}, 1a,b

péw(%a,b}) is {ng, {a}, {b},

npo@(?,

less (addition and deletion
air deletion).
al; BN

of a having exactly k elements) .

enl is £, 3 nL is Q,

{a,b} is 2, # nf'is 0,

Tess a is (b},

} iggg:{é} is t.

{a,p}}.

{a,ﬁ,c}) is {{a,b}, {a,c},'{b,cJ}.

Aok
.

Ordered pairs: <a,b> first and second component extractors are

hd tf; n-tuples <a<b,c,...,d>> = <a,b,c¢,...,d>
Examples: hd<a,b> is a, tf<a,b> is b, | 4
hd<a ,b,c> is a, tfca,/b,c> is b,c .
.Noﬁe that <a,b> is identical with'{{a}}{a,b}}) so that
- for éxample "{a} e <a,b> is E'whiie a € <a,b> is generally f.

' See also: extraction operators, generalized extraction

operators, replacement operatoers, and multi-assignment

statements.

‘Set~definition: by enumeration {a,b,...,c}

.".
Sy -~

" Set former :
.ié(xi’”“’xn)'_Xi.€ §l’.X2f€ ey (X)) 000, %€ én(xl“";xn»l)l
N COtypans) } | . | |
: Tﬁé'&ang@ihegﬁﬁiétiénbﬂg Cid(yf haveé the altefnéte
numé&lcaﬁ 60hm. . i
| . min-(y) < x < max (y)
when a(y) is an interval of .integers,
Optiogal forms include {x¢ a [cCx)}, TN
equivalent to {x, x e a] CXx)}; and-

{e(x), x e a}, equivalent to {e(x), x e a |t} .

" Functional application: (of a set of ordered pairs; or a

programmed, value-returning function)
fla} isﬂ{t& p, pe £ | (hdp)eqal; ie.

is the set of all x such that <a,x> € f

|

f(a) is : if 4 £{a} eg 1 then 3 f£{a} elsc Q,
i.e., is .the unique element of f{a}, or is undefined.
flal is ' {t2 p, p e £.| (hd p) e a},ic, the inage of & under f,

-3

More generally,

f(a,b) is g(b) and f£{a,b} is g{b)}, where g is f{al;

fla,b) is {tL t& g, gef|(hdg)ea and ((hd tL g)eb)} .
Constructions like f{a,[b],c}, etc. are aiso_provided.

Compound operator:

[op: xes]e(x) is e(xl) gg_e(xz) op... Op e(xn),

.where s is{xl,...,xn}.

" This cépstruction is élSo provided in the. general form
IQE;.xlegl,xzeez(xl),...,xneen(xl,..:,%n“l)|C(xl..t§n)],
*‘'where the range restrictions may also have the alternate
numerical form.

Examples: - [mgﬁz'xé{l;3,2}](x+l) is 4,

T4 xe{1,3,2)) (A1) dis 9, .

_ o n
[+: 1<i<nla(i) is SETL form ofgg_ a,
S - - : : i-1
Quantified boolcan expressions:

3xea[C(X)' .. ¥xea|C(x) -
- ~general form is

< < ~ - ’ - ,

‘ Jxleal,xzeaz(xl), VA3ea3(xl,x2),... |C(xl,...xn),

wvhere the range restrictions may also have the alternate

numerical'form.

Search with assignment: | .
ﬂ[x]ealc(x) has same value asijxealc(x),

but sets % to first value found such that C(x) eq t.

If no sﬁch vélue, X becomes Q.
Any.number of variables attached to initial 3

quantifierg may be placed in square brackets.

- Alternate forms

minf-[x]§¥max, ‘max> [x]> min,” max> [x]> min, ctc.

of range restrictions may be used to control orxder of search.

. -

. . -,
Conditional expressions: .
if boolz then expn,, else if b0012 then'expnz.ﬂ. elSe-expnn.

Generalized extraction and réplacement operators; generalized

multiassignments:. . SR

The extraction operafor has the form
(1) L : <partl,...,partn$‘
where each.ga&i-has'bne of the forms

r

’

name, nane 7z expn, z expn, ¥, ¥ « expn, -, n-, or

exop or exop z expn, where exop is itself an extraction
o .

$
operator. , Name may be a simple name or may be an indexed

vt

nane of one of the forms

Mﬁe'{exp}, name (expl,expz), etc.

Each expn has an m-tuple of non-negative integers as a value.

Such an operator associates a sequence of integers, called a
strnuctural dddreess, with each name which occurs within it.

Example: in the operator

]
’ <<a z 3, b> z <1,2>, *>

et T

the.séquencevl,Z,B is associated with a;-1,2,2 with b; and

2 with #Lghﬁhaf terisk * may be used as a name at most

once in an extraction operator. The structural address

.

'nl,...,nk-associa%ed with a name-(or with the "special name" %)
by an ektraétﬁon'bpgrator (1) detérmines the cuantity that will

. . o 4 . E -
be assigned to the name when (1) is used either -in the form

<part],...}partn> expr (if # is used once as a name).
or in the form -

. L " -\

<partl,...,partn> =Ee)pr (if * is not uscd as a namc).

Examples: -

X .= ¥, e, i7<2,1>,w><a,<b,c,d>,e,f,g>

results in the assignmcnts : ' . -

PRI

X-a,i=b,w=<f,qg>;

x:<*l'-li§_<211>lwl"><al<b:crd>lelfrg>

results in the assignments x=a,v=b,w=f.

The freplacement operator has the form (l); where each

‘part has one of the forms

exp r expn, exp r, exp, -, n-,

Jdor is. itself a replacement overator. At least one occurrence
of r is required. Each expn has an m-tuple of non-negative
integers as a value. Such an operator associates a structural

address with each exp which occurs within it; the rules for

calculating this address arc the same as those apblying to
.éxtraction ‘operators. - When a replacement opérator is applied
to a structure built up in nested,f@shion out of n-tuples,.any

element of the structure addressed by a structural address

A is replaced by the exp to which A‘belongs.

Examples:
<X,y ¥ 3,~><a,b,<c,d>,e> has the value <x,b,y,ce>;
. <x,y r 3><a,b,<c,d>,e> has the value <x,b,y>;
<x,vy r<3,1>><a,b,<c,d>,e> has the value <x,b,<y,d>,e> .
- Statements: are punctuated with semicolons. : s

]
iyt

-

Assignment snd multiple assignment statcements:

f{expzaféxpn; is same as
f %{psfl(gg p)ne explu{<exp,x>,xeexpnl;
f(exp&fi expn; is same as f{exp}:{expn}{

fla,b)y = expn; f{a,b}= expn; etc. also are provided.
| e
N =

€
1 8

-<a,b>= expn; is same as a=hd expn; b=tl expn;
<a,b, V. ,c>= expn;<a,<b,c>,...d>= expn; etc. are also

provided.

3a i

<f(2),0ib)>=expn; is same as

- f(a) = hd expn; g{ﬁ}= tL expn;

~generalized forms

<f(a), g{b!c},...,h(d)>='expn}
<f(d),<g{b,c},h(@)>,....k(e)>= expn;
- , . \

etc. are also provided.-

Control statements:

~go to label;

4

if condl then block2 else if cond2 then blockz...else blockn;

if condL then blockl elsc. .. else‘if condn then blockp;

“ Tterati~n headers:

(while cond) block;
(while conad doing blocka) block;
(Vxleal'x2ca2(xl)"':ﬂXnFan(Xi"“’anlllc(xl"“’xn)) block;

-8 -

-

which control the iteration order.

'or: (Vxea) til done; . block doﬁe:... -

in this last, the range restrictions may have such alternate

nunmerical forms as

min< x <max, max> x> min, min< x< max, etc.,

~

Scopes:

- The scope of an iteration or of an efse or then block

may be indicated either with a semicolon, with parentheses,
or in ‘one of the following forms:

end ¥; end while; end else; end if; etc.}

or: end ¥x; end while x; -.end if x; etc.

“

kwhile cond) til done; block done:... etc.

Loop'controlz

-quit; guit ¥x; quit while; quit while x;

~

and

continue; continue ¥x; cohtinue while; continue while x;

r

/!

Subroutines and functions (are always recursive)

"To call subroutine:
sub(pafamz,...,parémn);.

subfal); is equivalent to (Vxea) sub(x);;

-9~ IR

-

generalized forms

éub(pa;aml,[paramé,param3]f...,paramk)

are also provided.

To define subroutines and functions:
subroutine:
define sub(a,b,c); text; end sub;
return; - used for subroutine return
function:
:definef fin(a,b,c); text; end fun;y
return val;'—ﬁsed for function return
infix-énd_prefix forms:
define a infsub'b; text; end infsub;
definef é'i2£££~b;.text; end i;fin;
defipe_g;efsub'a;'ﬁéxt; ena é£g£§33;

.definef prefun a; text; end prefun;

Name scopes:

Norxmally internal to main routine or subroutine, unless

. ~

declared external.

External declarations:

extetnal a,b,c,...; - refers to main routine
suba external a,b,c,...; - refers to subroutine suba
external- - (a,aa), (b,bb),...; - changes namnc

suba external (a,aa), (b,bb),...; - changes nane

=10

AN

Macro blocks:

To define a block:

block mac (a,b); text; end maé;
To use:
do mac (c,d);

t

Input~oﬁtput:

Unformatted character string:

er is end record character; input, output are standaxrd
i/0 media; record (n,s); - reads till er character, from
character n.

.

Standard format i/o:

‘read a;) reads a set from input, in standard format

print expn; prints a set on output, in standard format

-

The following algorithm produces an actioﬁ table for
a generai precedence parse. ihe input to the algorithm is
assumed to be a set of ordered k-tuples, Wheye a gramnatical
production A + BCD is represented as <A,B,C,Db>. The
prpcedure unohden converts a k-tuple to én ﬁnordered set,
and is used to form the éet of all characters of a grammar.
The map stants{x} gives all syntactic types which can be

the first term of a sequence into which x can he expanded;

ends {x} those which can be the last term of such a sequence.

. The table produced contains the following values:

e

t(i,3) =1 if 155, 2 if i+ 3§, 3 if i < 3;

it

0 if the relation between i and j is ambiguous;

il

4 if the sequence ij is ungrammatical.

S sl

T abianC

The following progrém generatéslall‘permutations of n
in lexical order. The next sequence after a given Sp is
. defined b§ the following rule: increase the last possible
"~ element by the sﬁéllesﬁ poséible amount. That is, we find .
the last element Sj which is not part(of aAmonotone decreasing
“tail, " interchaﬁgé it with the smallest Sy with k>j and sk>sj,

and then place all the elements s S into ascending

ITERERRY
" order. A signal is transmitted through "more" when the
process restarts. |
define f pe;m (n,more) ;
/*iniﬁialize if new*/
if_g'more*thén more=t;seqi{<j,jﬁ,iiﬁin}}retutp Sed; i |
AR sequeqce‘is moﬂotone-dépreaéing, there are no more
permuta£ions. otherwise find last point of increase */
if n (n>2[31>1[seq ()Lt seq(j+1)0 then nore=f;
AréturpQ;end if;
/*then find thé.Iast seq (k) which excecds scq(j{ and swap ¥/
find= nig[k]>jlseq(j)£3 seq (k) ; |
<seg(j),séq(k)>.: <se§(k),soq(j)> :
/*ﬁhen rearrange all £he_elements after scq(j+l) into
increasing-opder */ ..)
(3 <v1<§f(n»4-j+1) /2) kk=n-k+341 ;
<seq(k),seq(kk)$ = <seq(kk),seq(k)>;end Vk;

J i
return scq; end perm;

definef prectab(gram);
-characters = [u: xegram] unorder (x);

starts =°comglete {<ha x, 3§ 3£ x>, xegram} ;

‘ends = gpmplete'{<x,last x> , xegraml};
same = E&;(Vxeg&y[gram]) (while pair x)

<p,»>=x; <p,hd x> in same;;end Vx;

small ='{<hg_x,y> ,XEsame, yestarts{é& x}};

it

large = {<y,z>, xcsamé, yeends{hd x},
zestarts{tL xJul{tl x}};
tabl =‘§£; (¥xecharacters, yecharacters)
<c(l),c (2) ,c(3)> = <syesamelx}, yelargé{x},‘yésmall{x}>;
tabl (x,y) = if #'{liji3lc(j)}g3>l thenr 0 else
if 1<303]<3lc(5) then j else 4; end Vx;

return tabl;

definef unorder (tuple); t=tuple;set=nfl;

while pair t) <¥,t>t in set;;return set with t; “end unorder;

definef EQEE&EEE reln; precctab external characters;.rsgé;
(Vxechafactdré) set=reln{x}; todo:scf;

Awhile todo ne nf) y ££9ﬁ_todo;

todo = todo éﬁzercln{y}lg_zﬁsot}; sot=sot u relnlyl;

end while; r{xl}=set;end Vx; return r; end complcte;
1
i

definef lés? tuple; tztuple;(whilc EﬁiE 1) t:E£ t;;

return t; end last; end prvectab;

