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10. Various operations concerned with permutations. 

lOA. Cycle form of permutation (omitting unit cycles). 

set = [j, 1 ~ Vj < n}; eyes == nl; (while set ~ nl) beg from set;

cycl = nl; 

cycl(l) = beg; (while perm(beg)E set) beg= perm(beg); 

cycl(#cycl+l) = beg; 

set = set less beg; end while; if :JJ:.cycl gt 1 then cycl in eyes; 

end while; 

lOB. Same, including unit cycles.· Replace final if by: cycl in eyes; 

lOC. Standardized cycle form of a permutation. 

eyes = [ minfirst c, c G" eyes}; ( V c € eyes) place ( c) = 

f[d€cycs / d(l) gt c(l)J ;; 

cyco=£(place(c), c), cfcycs}; definef minfirst c; k=l; 

(2 ~ \/j ~#c) k = if c(j) lt c(k) then j else k;; 

return [(if j ge k then j+l-k. else n+l-k+j, c(j)), 1 ~ Vj ~:Jtc}; 

end minfirst; 

lOD. Integer sequence representing a permutation. Form cycle 

form eyes, including unit permutation, then standardized cycle 

form from this. Then order these in decreasing order of first 

elements. Parentheses can be dropped, and reconstructed by 

finding 

is = nl; (1 ~ Vn ~ JFcyco) cy = cyco(n); (1 ~ Vm~ ifcy) is (.j'is+l) = 

cy(m);; enJ V n; 

And the inverse of this: 

cyco = nl; eye = nl;least =.ls(l); (1 ~ Vn ~-:/Fis) if is(n)lt least then 

cyco(jcyco+l) = c;yc; eye == nl; mi!l 0-= is(n); c;/c(l) = is(n); 

else cyc{J:cyc+l) = is(n); end if; end Vn; 
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lOE. "In place" inversion of a permutation. Permutation gi~en 

by perm(n) 

todo = {n, 1 ~ 'vn ~ nn ; (while todo ~ nl) start from todo; 

now= start; next= perm(start); 

(while perm(now) £ todo) (next, now, perm(next)) 

<perm(next), next, now); todo = todo less now;; 

perm(start) = now; end while todo; 

lOF. Multiplication of permutations in cycle form. Second Knuth 

algorithm. This exploits the fact that (abcd ••• ef) restricted to 

the set of letters appearing is product 

(f~ ~) ( e ~f) ( d---;;> e) • • • ( a~b) (.,if~ a), and that 

(x~y) map= map means map{x) = map{y), with all other values 

unchanged. 

map = nl; fi/:cycs ~ ·vn ~ 1 j-:/fcycs(n) gt l)c = cycs(n); 

mapstar = if map(c(l))~.../1..then map(c(l)) else c(l); 

(1 ~ Vi </c) map(c(i)) = if map(c(i+l)) ne../l.then 

map(c(i+l)) else c(i+l);; 

map ( c (ltc)) = maps tar; end V n; 

lOG. Multiplication of permutations in cycle form. First Knuth 

algorithm. This keeps set which might be leftmost occurrence of 

some variable. 

cyco = nl; list = nl; tag = nl; (1 ::,\Jn ~-Jfcycs) 

(1 ~ \/m ~-dfcycs(n)) <list(:/list+l), tag(il=list+l)> = 

(eyes (m), f ); ; 

<11st(llist+l), tag(.flist+l)> = (cycs(l),_:~); end \(n; 
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(while 1 ~ 3 (.j] ~ #list / E_ tag(.j)) 

(start, current, tag(j)) =(list(j), list(j+l),t); 

eye= £<1,list(j)>}; do buildcyc(start, current, j); 

i_f(/cyc gt 1) then cyco(:/tcyco+l) = eye;; end while; 

block buildcyc(start, current, j); [newelt:]; 

(while j+l <] (k] < jlist / list(k) ~ current and tag(k) eo f) 

(j, current, tag(k)) = (k, list(k+l) ,!);; 

if current ne start then cyc~cyc+l) = current; j = l; go:to newelt; 

end if; end buildcyc; 

lOH. Inversion of a permutation, Boothroyd algorithm. This 

brief but surprising algorithm works as follows. Let c be a circular 

permutation, which we may think of as shifting elements arranged 

in a circle. Lets be the set of these elements. Initially, set 

f=c, and mark each element of s as a "head". Then, process the 

elements p of s, in any random order, as follows. Find the first 

element g=fk(p) which is marked as a head; remove the head mark 

of r=f(g); and redefine f(g) as f(r) and f(r) asp. To follow 

the action of this algorithm, divide the sets into a set of runs, 

each run consisting of a sequence q,g(p),g 1(a), ••• gk(a) beginning 

with an element marked as a head, and continuing up to but not 
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including the next element marked as a head. Then note inductively 

that 

i. The first element of a run is marked, all other elements 

are unmarked (by definition); 

ii. All elements of a run but its last have already been 

processed; 

iii. For all but the first element of a run, f(p) is the 

previous element; for the first element of a run, f(p) 

is the first element of the next succeeding run (or is 

p itself, if only one run remains.) 

All these remarks hold initially, with runs of unit length. 

Since by ii every unprocessed element is the tail q of a run, 

our algorithm always finds p; causes the head r of the next run to 

point to q, removes the mark on r, and causes p to point to the 

head of the next run but 1, thereby joining two runs and preserving 

the conditions i, ii, and iii. Since this process works for every 

cyclic permutation, it works for any union of cyclic permutations, 

i.e., any permutation. In SETL, we assume a sets and a mapping 

-r. Then 

heads = s; (VP~ s) q = p; (while n q€heads) q = f(q);; r = f(q); 

(f(r), f(q)) = (p, f(r))>; heads = heads less r; end \t'p; 

11. Algorithm for matching problem. Given a multivalued map f on a 
. - -

set s, one may ask if there exists f'or a 1-1 g such that g(x)E f[xf. The 

necessary and sufficient condition is that If f [t] ~jt for each 

subset t of s. To prove this sufficient, call t thin if 
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.fr [t] =:/ft = c(t); otherwise thick. If t 1 and t 2 are thin, 'then 

/r(t 1 I! t 2] = c(t 1) + c(t 2 ) -/(f[t 1] int f[t 2]) 

~ c(t 1) + c(t 2 ) - c(t 1 int t 2 ), 

so that (by addi ti vi ty of c) t 1 _int t 2 is thin also, an_d 

l{r[t 1] int f[t 2]) is c(t 1 int t 2 ). Hence there exists a minimal thin 

set t, and letting x €., t correspond to some chosen y 6 r{x J, we 

have condition satisfied for s less x, f[s] less y, since for t 1 

not thin there can be no touble, and for t 1 thin, y f f[t 1] implies 

x 6 t 1 • More generally, c can be any positive additive function, 

and we can require that a map g with all q(x) 's disjoint and 

f:g[xJ :; c ([x J) be found. Argument here reduces c ([xJ) by 1 

whenever y is chosen. Thus algorithmic procedure hinges on finding 

a minimal thin set. We take c(x) = (t:yGx]k(y) 

It is convenient to use the following function 

definef pwr(x,n); return{::/6pow(x)/#y~nJ, end pwr; 

which will probably be available as a primitive. 

gfin = match (s, f[s], f,k); definef match (s, im, f,k); 

t = minthin (s, im, f,k); x = :3 t; y =.) r[xJ int im); 

if k(x) gt 1 then k(x) = k(x)-1; g1 = match (t, f[t] less y int im,f,k) 

else g1 = match (t less.x, f[t] less y int im, f,k);; 

g2 = match ([z£s/ n zEtf, [z fim/ n z ff[t]}, f,k)_; 

return g1 :: g2 with < x, y ); ; end match; 

definef minthin (s, im, f, k); (1 ~ Vn .::#s,yf pwr(s,n)) 

kk =[t:z €Y]k(z); xx = {x € f [y] / x E im}; if kk gt /xx then 

print "necessary condit:Lnn violritcrJ"; exit;; 
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if kk ~ Jlxx, then return y;; end Vn~print "necessary condition 
violated"; exit; end minthin; · 

llA. A slightly more efficient minthin algorithm if k = 1. 

definer minthin(s, im, f); n = l; (while n le/ls) 

minim =/im+l; ( \,ly £ pwr(s,n)) xx = {x E. f[y) / x € imf; 

if Jxx lt n then print "necessary condition violated"; exit;; 

if jxx ~ n then return y;; 

if /ixx lt minim then minset = £ xx }; minim = jxx; 

else if /xx ~ minim then xx in minset; end if; end Vy; 

(Vxx t minset) fill ={x £ s / (\lz ~ r&J / n z E im _£E. Z€ xx)}; 

iff fill ~ minim then return fill;; end 1/xx; n = minim+l; end while; 

returns; end minthin; 

12. Cantor's Diagonalizer: Given s and multi-valued map f: s "-7" s, 

produces set which is not element 

cantset = [ x € s / ~ x E r[xff. 

13. Power set generator. On successive calls, get successive 

elements of pwr(set,n). When set= nl, process resets. 

define nexpow(set,subs,n); initially flag= O; if flag ea 1 -
then go to advance;; 

if n gt //set then subs = _/1_ ; 

s = set; 

return;; flag = l; ordset = nl· _, 

(whiles~ nl) elt from s; ordset(,fordset+l) = elt;; last =lfset; 

img = [(i,i>, 1-:: i ~ nJ; go to ret; 
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advance: if set= nl then go to drop;;if img(n) lt last then m=n; 

go to found;; if n > J [m] ~ 1 / img(m) lt (img(m+l)-l)then go to found; 

drop: flag = O; subs =../l. ; return; 

~ound: img(m) = img(m)+l; im = img(m); (m <Vk ~ n) im = im+l; 

img(k) = im;; 

ret: subs= [ordset(img(i)), 1 ~ i ~ n]; return; end nexpow; 

14. Maps generator. On successive calls, get successive maps of 

froms into into. 

define nexmap(map, froms, into); initially flag= O; if flag eq 1 

then go to advance;; 

if froms ~ nl then map= nl; flag= l; return;; flag= l; 

ordfrom = nl• ordto = nl• s = froms,· _, _, 
(whiles~ nl) elt from s; ordfrom(#ordfrom+l) = elt;; s = into; 

next = nl; elt from s; first = elt; (while s ~ nl) eltx fro!n s; 

next (elt) = eltx; elt = eltx; end while; last= elt; 

img = [(ordfrom(i), first), 1 ~ i ~#froms}; go to ret; 

advance: if set= nl then go to drop; 

(/frroms ;: \lj ~ 1) if img ( j) ne last then m = j; go to found;; 

drop: flag = O; map = .../L ; return; 

found: img(ordfrom(m)) = next(img(ordfrom(m))); 

(m <Vk ::/tfroms) img(ordfrom(k)) =- first;; 

ret: map= img; return; end nextmap; 


