
SETL Newsletter Number 14 January 19, 1971 
J. T. Schwartz 

Additional syntactic extensions (not recorded in revised 
version of SETL paper) 

1. Collecting existential auantifier. 

If an existentially auantified variable x in a nuantified 

boolean expression is included in curly brackets~ 1, then when 

the expression is evaluated the set of all values satisfying the 

condition will be assigned to x. Thus 

if J[x} €. e j C(x) then block; 

abbreviates 

if x ne nl then block; --
More generally, suppose these brackets are attached to one (and 

only one) existentially auantified variable x. in an initial 
.1 

seauence of such variables within a boolean expression B. Supoose 

that among the existentially auantified variables x which follo~ 

x.i' certain others, namely xk' xR, •. . , are prefixed with the 

otherwise optional auantifier sign]. Then the evaluation of 

B will assign to x the set of all n-tuples belonging to a senuence 

which gives the value t to the total expression B. Note then 

for example that if we evaluate 

3x 1 (e 1, [x2 }Ee 2 , x
3

€e
3

, ][x 4Jce 4 / c(xl'x 2 ,x 3 ,x 4), 

then not only is an assignment made to x 4, but x2 is ass"lgned 

as follows: 

tups ={(yl'y 2 ,Y3'Y4), Y1 Cel' ... ,Y4€e4 / C(yl'y 2 ,y3'y4)f; 

x2 = [((t~2)y, (t~4)y ), y € tups1 ~ 



- 2 -

2. Upgraded t/o operator. 

The proposed standard format read/print operators are too 

stiff. The following extensions are proposed. Please look over 

this point and let me have your opinion soon. 

a1 print and read lists: 

print is generalized to 

print expr 1, ..• , exprn; 

which is eauivalent to 

nrint expr 1; print expr 2 ; ... , print exprn; 

Similarly, read is generalized to 

It will also be useful to allow these i/o statements to 

reference other strings than the standard input/output strings, 

with the same rules regarding end record characters, blRnks, etc. 

applying to the general read as now applies to the special "reFtd 

from input" statement. A read operation ,,rill treat all strings 

as if they are terminated by infinitely many er characters. The 

proposed syntactic forms are 

name print expr 1 , ... , exprn; 

which concatenates what would otherwise be output to the character-

string second component of the value of name; the form of this value 

must be <pointer, characterstring>, in which pointer designates 

a character within characterstring. Similarly 

name read name 1 , ... , namek 



- 3 -

reads according to the proposed conventions from the character 

string portion of a similar ordered pair, starting at the character 

designated by pointer; and advances pointer appropriately. 

The form in which character strings will appear should be 

amended as follows: character strings will appear in their normal 

external form, except where they contain characters such as comma, 

or where without ouote marks they might be mistaken for constants 

of some other sort. In such cases, auote marks will be used~ 

within auote marks, the auote itself will be represented by a 

double quote. 


