
~ .

SETL Nevsletter Number 21
AN OU~l.1SIDE REVIEW

COfv1M1•:TJ'l'~; ON '1'111~ GI•~l'I, TlR/\F'1'

>.~'(-rt

April 15, 1971

The lone~ prcfe.ce is quit'".: compC!llh1c;, but its rn::mdate is not ful n J.lecl
··· by 7tbc lanc;uag,e described in the rest of the manuscript. As a contri

bution to the te,~hnical literature, I therefore recommend against pub
lication of the manuscript .. This is _not to say that SETL is devoid of
merit; on the contrary~ there are many good ideas in it. SETL has a
great power of expression, but it is still "just another programming
lan13:uage", wfth p~rhaps more rough edges -than some.

In the r;r,rnrnr:ni;_;; \>1h:i ch foll ow, I w:iJJ di.:::c1Jr;s U1(: ;,l•7J'L :J anc;uor'.c:, not U11

pro:;(: oJ' the manui:cript, ,;ince: it :ir; a wr:l:J-vrr-jttr:11 draf'I, Ui:it I r:zpr•ct
to r~o Uirour~h some rc-rlraf'tin[~ before any poss ibl,: pub] j cat:i.on.

;

Comparec1 .. ·to the .. _ goals ·set Torth in the preface, particularly

As a final benefit, we· expect the availability of the mathemat icizecl
'prQg:rar~ing_ :Lapguc!,ge ,w}:lt~h __ Y!:._:i_l_l J~e _qescril?ed in 1he present work to
broaden the frontier of contact between programming and mathematics.
It ·should at any rate -serve to emphasize to the-mathematician that
programr~ing need not be a mass of petty detail on] y, that in fact it
is concerned in a way only slie;htly unfamiliar with some of the issues
which he is accustomed to confront ... [page xi],

SF,'J'L has several ma;jor flaws which arc di scussccJ in detail in the para
r~r;1phr; to f'0 l.low:

1) It cannot be
2) There are no

everything
3) The identity

cases.

read by a mathematician.
set operations analogous to APL array operations-
must be done element-by-element.
elements of mathematics are not preserved in all

!t) Th'"; treatment of N-tuples is anomalous.
5) Thr:rr; is an ov~ rall lack of conceptual con,; i c.t,::ncy.

1) It cannot l>c read by mathcmr1tician::;.

a) Charactr..:r ::;ct. SE'rL appC!an; to have a stronc; FOPTRAN bi3s, with the:
US'.: of .::3., ne, and, etc. If this is to be a nrnthcmaticiar's 1angua1..1;c,
then.it should have mathematicaJ symbols anu use thcrn in t1,e expect eel
manner (e.g.=, f-, A, v, ::J).

b) Operator precedence. While it is a desirable goal to make expressions
as. rcarlable· a~; p6ss-ible, the devices adopted in SE'I'L to avoid parentheses
are no improvement. A mathematician will give up the precedence of mulU -
plication over addition only w:rtn gooa cause·,. whJch ··rs-riot-ro1'°th-c .. oriU1'\(o;·.---·

The dollar sign notation is at best confusine;: it is difficult to rcrnc:nb0r
whether $+ raises or lowers the pre ceder: ~c. I would pr,,fcr Polish.
not a ti on over the rJollar signs. The same "non ... intuitive devj cc" arguc
mcnt appJ ics to the notations 101/(75 and [[Jabel:]].

/"
I
I

l
I

I
I

SETL #21-p.2

() c) The multiple usage of a given symbol for different functions is
confusing. A flagrant example is:

< X - Y > = < A-B, C, D, E >

~X - Y > < A-B, C, D, E >

< X, Y > = < A- B, <D, E > >

all of which apparently mean X (- A-R
Y <- D, E

'J'hc fl(Jinl;r;tl brac.:kct:; /J,rr; u::;r,rJ to dr.!1101.(; tit(; di.1'1'(:r·,:111; COlll:Cjlt:: or·
H-tuplc, sjmultancous assignment, and :;elect:ion. '1'11<; rninu~; :.:it'.n::
are used. to ·c1.enote the different concepts of integer subtraction
and "zero" -- the place holder in selection.

2) As a set language, SErL has a strange lack of operations on sets.
All operations on a set must be done explicitly element-by-element.
In SETL, the union of two sets is not a primitive; instead the
matheinatician must construct an element-by-element definition of
union, then use that as a subroutine (what is a subroutine?). With
no .set union, set intersection, set difference, General simultaneous
operation on all the elements of a set, or c;eneral operation amon[r,
the elements of a set, SEI'L ale;orithms must include a "mass of petty
cl.eta,il" specifyine; explicit i tcrations. Arnone; other drawbacks, th is
f<;:i:rc<:!s the computer programmer's concept of strictly sequc:ntiaJ oper
ation onto a mathematical concept which is unrelated to time.

Compound operations are poorly conceived. Instead of explicitly
specifying iteration (and for integer subscripts, order of iteration)
over the elements of a set, it would be better for a compound operator
to be conceived as implicitly applyin8 to all the members of a set:

if S is the set [1,3,2} , then

With the concept of simultaneous operation on all the clements of' a
set, the second example becomes

* (S+ 1) •

3) The identity elements of mathematics.

To make algorithms work for degenerate cases, it is crucial to define
that operations on the null set produce the ident:itj for that opera.U on:

+ : nl ':is 0

-x- : nl is l

(old notation: [+ : X £ nl] x is o, not O)

This does not preclude defining operations on O to give O or an
error indication.

Is there an identity element I for "tuple building" such that
< X,I > = X and < I, X > = X ? If so, example 2a on par,e J03 cm1lcl.
avo:i d makinr, a special case of th~ first clcm~nt of th0 SC'quencf'. _A.s
the cxamp]e sto.nrl.s, tlJ\KRJ'UP(nl) returns O instcan of nl.

l
I
I
I
l

1
')

SETL #21-p.3

6

11) The treatment of N-tuplc::;

SJi,'rL o..ppcarc to be much more oriented. around N-tuples than sets,
yet the: w:..tuples described have serious drawbacks. The first
drawback is the extremely specialized role of' the first component
of an N-tuple. This first component is to be used as an associa
tive sc•arch key in function applications (denoted by SET(key),
SET[key}, or SET[key], depending upon considerations that are not
at all intuitive to a mathematician). The language therefore makes
it difficuit to perform an associative search using any other com
ponent of an ~I-tuple as a key. As an example, consider a process
th::i.t rr~prr~;-;r:nt~: UH) arc::; in a flow r~raph as a set of ordered pair::;:

A ::c f / f'r()rnrioflr~, i;OT1(1rlc >·) •
In ~;J,:TL, the notation
succ~s::;or::; of a nod~.
predecessors of a node.
of APL do not have this

A f nor le} can be: u.:;ccl to specify the set of
There is no equjvalent way to specify the

The subscripting and searching operations
asymmetry.

Another drawback of the N-tuple as a basic data structure is the
"mass. of petty detail" involved in using small integers as the names
of the various component 9 . For example, if one constructs a com
piler ::;ymbol table as a set of N-tuplcs, one for each id.cnUfier,
it j nvolvr:s a lot of detail to rerne:mLer that:

· < -Y. ~ 3 > SYMTJ\B('.XYZ')

r:jv•::;J (SilJ) th,: rlatatypc of' XYZ. It is m11cri clearer to have names
for th•: vario1.1.;; components of an H-tuplc and to refer to:

TYPE('XYZ') •

The entire concept of selection of N-tuple components is ruined by
its dependence on positjonal notation.

< ___ -)(-__ > N-tuple

m:1kc:-.; it rli f'ficul t to rJc::cirle that the ~;ccond cornpo11e:llt CJf' ::m N-tupJ r•

j ~J lo[;ical .1 y defunct and sho11-I <l hr; removed f'rcJJrJ i,hr) rln.t:1 ~:tructurc.
With po:;ition:11 notation, a r;ornponr•nt c:innot lie removed wiU1out cll:uw,
inr~ all rr~fcrcncc to aJl cornponcnU; phy~:ica:uv foJJowjn/~ it. A [;tnw
t1.1.rr: rlr:claration like that of PL/I (without the data type information)
has the strong advantage that clements can be frce.1y acldecl, deleted or
rearranged without re-writing any of the: sclcctior1 not.Rtions in a
progrrun.

5) Conceptual inconsistency

a) SEI'L has no index sets. In a set lanr,uage, a very natural way
of specifying the application of an operation over an .interval of
inter,ers is to have a notation for the set of integers from I to J
jncl1Jsjvc.

L I
l<I.H

+: [1, n] where the square br<1d:ets
denote an index set.

Part of the power of the if x £ S ... notatjon is that the operations
on the clements of the set may well proceed in par·allel. This power is
lost if 0;1e:rations over inter;er ranges are forced to be serial. If it
is in fact necessary to specify serial it.,·ration over a set of integers
in a specific order, then perhaps the recursion theory operatoi µ could
be used to specify seri 8.1 usage of integC'rs from smaJ -1 est to larr;er.t.

SETL #21-p.4

()

b) ~[x] notation.

c)

The" side-effect of assigning to . X is unnatural. It would be
be~ter to define the expression

3:xESlx >3
to have ·as its value the first such x encountered (or O if
there is no such x) instead of True or False. The notation
then.becomes·~ shorthand for

x.3 fzr.:-: I z > _:,}

:i :~.re,--:z: ·--ir:- any. clcrnent iif the ::;ct of all rnern1Jers of ~; which
a.re ~rea_ter than 3 . 'J'he above notation can be simplified
further -if t11e -concept of operations on all the elements of a
set is allowed:

·x l'S > j

where S > 3 specifies the set .of all elements o_f _S __ y,rh_j~Jl-_a_r.e
great.er than 3 . Searches ·over multiple sets like
3:XES, 3.yET, 3ZEU I e(:x,y,z) coulabave an N-tuple as their value.
In the present notation it is impossible to use the value found
by .an existence sc~rch, ~~[x) c S I ... , without assigning a
name to it (x) , and usinr~ this name in a separate express:i on.
There are other cases in SETL where the concept of assie;nment
is forced, instead of allowing the mathematician's natural

·cqncept of embedding any value-expression in a larger expression.
Some of these will be discussed below under Selection and
Replacement.

Subroutine definition and External statement.

In SE'L'L, it is possible to say:

y ~° COMIJJI,E I define~ subnarnc

Is it allowable to say:

y "' define sub ... end sub;

end subrw.rnc;'

i.e., to assign the name of a subroutine which is not compiled
later, but is defined at the same time as the assi8;nmeni..?

How is the ambiquity of parameterless functions resolved: jn
Y = functionname, where functionname returns an integer value,
does - y · -become a function atom or an integer atom? How is the
other result specified?

- -· ---

How can variable names other than para,ncters be- b()l1ncl -to a --- -------------
subroutine so that they are stacked upon recursion? This appears
to require some sort of declarat.1.on.

'l'hc EXTERNJ\L statement can be used to· refer to a variable in an
inactive subroutine:.

define subl;
define sub2(x);
define sub3(y);

end subl;

It

..• end sub2;
sub2 external x; ... end sub3;

·' ' '

·SETL #21-p. 5

What is the meaning of references to x in sub3 then sub2
is inactive? If the call chain has been:

subl ealls sub2(a), sub2 calls sub3, sub3 calls sub2(b),
sub2.calls sub3

·are references to X

sub3 references to a
in the first and second invocations of

and b resp~cti'[ely?

d) 'J'he pr?blem of address vs. value in lists.

The.insafter exami•le--on-page 101~-·has··tne problem that ·the J.ist
cannot have two items with identical values because the value
of an atom is used as its address. Is this a shortcoming of
all list· manipulation in SETL?

------- ----- -· -·- --·---
The example aiso has···the-baci property that it is legal to add a
duplicate item, A, to the list, but -af'ter that Next(A) is

.. ..;.-.. · ... ;...· .. _.. undefined and will cause an error return, making it difficult
. ·t~- -~c6es-s -eTther ·. A-. - If ·duplicates are to cause this problem,

it would--be.better for .. them to cause an error retu:r_:n upon
in~:ertion.

0 e) It is lec;al to say

D

A= 0 ; B ~ C

But it is not legal to say:

(A,B) = (0, C); (page 74)

yet for any other value of D '
(A,B) == (D,C); is equivalent to A= D; B C·

'

f) Selection and Replacement operators.

The whole section starting on pace 80 is difficult to read. It
appears.that too many different concepts were forced into the
same general notation, with a resultinc; unwieldiness. Selection
and replacement operators have the absurd property that positional
and subscript (structural address) notatjons may be intermixed.

(a, b) = (c,d) is straightforward (a= c; o, d)

(a~.2,b~l) = (c,d)

(a~2,b) = (c,d)

What is the meaning of

(a,a) = (b,c) ?

is a little confusing (a =0 d; b: c)

is absurd (a= d, b cc d)

The -l<· notation should not be restricted to onJ.y one a1)pearancc
·in an expression. For exampTe, to form a set of ordered pairs which
are the first and third components of a set of ~)-tuples 7 :it is
presently necessary to use the followj ng c~mtortions:

. 'filO cc l « X - -) z' (- -·X-) z)' z C 'l'III:.EE}

(also note the two unrelated meaninc;s of the symbol "(") .

5

. I

SE'rL # 21-p. 6

This could better be written as:

__ TWO_= L<*--¥.·)z, z E THREE}

Or better yet:

TWO == (*-*) THREE
:· ,._ - .

Are (---*) and _(-,-,~,*) equivalent? (page 25 and page 83)

--wny-is-the--replacement concept necessary at all?_ If assignment
could be easily imbedded in expressions ·(like in APL),
re:pl'ace'rfi6nt ·would appear· to be redundant. ~l'he is function
on _page 128 would not be needed.

In sumrnar-J ,then:, SETL is at worst just a collect{on of strange notations
an 1d devices--,-- and a-t.,..-.best it- is "just_anQther programming language". Compared
with the elegance and clean desi~n of APL, SETL fails to attract the
mat-hernat.icai ~ind. It does" not use the mathematician Is symbols, h1.s
notation, his precedences, or his identities. Its mass of petty detail is
nQ smaller than that of other languages. The algorithms presented are
little more than transliterations of-what would be written in ALGOL or APL.
Yet the idea of a set as a datatype (or data structure) and the partially
fulfilled idea of .specifyin[~ operations on all the elements of a set are
very powerful notions and are good cancli elates for incorporatj on in some
existing programming lanL,ua~es.

Example on page 148 re-written to include concepts of set operations,
cross product, etc •

1 DF.Fif!EF dorns(nodcs, cntry,cesor);

2 nntr cc entry X nodes-entry; todo - entry;

3

4
c·
.)

6

7

8

10

11

12

13
14

vTTULE todo f NULL BEGIN

node 3 todo; todo = todo-nciclc;

Ve o: cesor(nodc) BEGJN

new~ nntr{node} - c - nntr{c};

IF new f NULL THEN BEGIN

nntr = nntr \Jc X new;

todo = todo U c;

E"ND;

END;

END;
RETURN nodes X nodes - nntr - (entry,entry);

END doms;

6

;:JJ;, l. .I.J 1t .£. .J.. - l:-' • I

NOTES:

line 1: nodes is a set of nodes, entry is an atom, cesor is a set of
• ordered pairs, the first component is a node, the second component

• is a set of successor nodes.

line 2: nntr is. a set of 2-tuples. The first and second
·components are each single nodes. A given pair (A, B) signifies

----that it is not necessary to go through node B to reach node A •
In general, there will be many pairs in nntr with the same
first cornponcnt. Note that this_ structure is different from
paGe 148.

line 2:· X means cross product of the two sets. In this case, the first
set has only one element. The cross product of two sets is a
set of ordered pairs (2-tuples).

line lr: The minus sign denotes set difference.
with all elements in (A intersect B)

A-B means the set
removed.

A

line 6: This forms the set of newly-discovered nodes which are not
needed to reach c : those not needed to reach node; minus c
itself, minus any nodes previously discovered.

line 8: This line could just as well go before the IF.
involving the null set correctly cJve the null
then be properly used in the union.

Cross p:rodu('.-\..s

set, which can

line 13: A set of pairs is returned, each pair of the form
(node, back dominator) Again, this is a slightly different
structure from the one on page 148. The expression reads:
all pairs (node,node) minus the pairs (node, notneededtoreach)
leaving the pairs (node,neededtoreach), minus the special case
that the entry is defined not to back dominate itself.

7

SETL #21-p.8

Example on pac;c J-118 re-written for cornpactneos.

•l DEFINEF doms(nodes,entry,cesor);

2 nntr = entry X nodes-entry; todo = entry;

3 WHILE todo t NULL BEGIN

4 no~e todo; todo = todo-node; s = cesor(node);

5 new= -s X nntr{node} - (s,s) - nntr[s];

G nntr -- nntr U new;

7 todo todo U (*-) new;

8 END;

9 RETURN nodes X nodes - nntr - (entry,entry)

10 END doms;

is the set of succecsor nodes for the present pair of jnterest.

line 5: In this example, new is a set of pairs. Each pair (A,B) specifies
that B is a newly-discovered node that is not needed to reach A
The expression reads: for each successor of node, nntr[node}
are not needed to reach that successor (s X nntr{node}) , except
that the successor itself should not be included ((s,s)) , and
any previously-discovered unneeded nodes should also not be
included (nntr[s]) . The last term could just be nntr itself,
since only pairs with a successor as the first component are in
new to start with. Note that the notation (s,s) is as::;wnccl to
mean

{<r,r), res}

A better notation could be found.

line 7: On1y those successors that have newly-discovered notneededtoreach
nodes are added to todo .

lines 5, 6, and 7 perform in parallel (for all successors) the same
operations as lines 5 - 11 in the previous example.

8

