
SETL Newsletter Number 22 April 16, 1971
J. Schwa rt?

Some small and large language extensions for consideration.

This note will serve to record some extensions to SETL

that might be· useful. The first is merely an observation; the

second would fit quite easily into the present framework; the

others would reouire a more substantial change. Comments are

solicited.

1. Use of sauare brackets within expressions.
The notations f[a], f[a,b], f(a, [b]), etc. are provided,

where for example f[a,b] is by definition the set

and
{f(x,y), x[a, yf b}

f (a, [b]) is the set

[f(a,y), yEb].
The same notations can be used with infix operators, so that
for example

[a] + 1

for a set of integers is [x+l, x la],
while [a] + [b] is

[x+y, x € a, y E b J.
Note that these constructions can be compounded.

2. Calculations within expressions.

In-line subroutines, somewhat like the direct application
of PROC in BALM, might be useful, and could be provided in some
such form as the following.

Let block be a block of statements, containing certain stAtements
of the form

- 2 -

return expn;

Then

(1) calc block;

or,

calc block end;

or

calc block end calc;

could be allowed as an expression, Variables within such an

expression would have the name scopes determined by the surroun

ding context; the code in block would be executed uu to the first

statement of the form

(2) return expn;

encountered. The value of (1) would then be the value of the

expn in (2); or, if the end of block were reached before any

statement (2) were encountered, the value of (1) would be _./)_ .

Thus, for example, to use the sum of x, f(x), f(f(x)), etc.,

within an expression, this sequence being extended to the first

zero value encountered, we could write

a= calc s=O; y=x; (while y ne O doing y=f(y) ;) s=s+y;;

return s;; +

3. Name-atoms and a type of pointer construction
suggested by ALGOL 68.

Suppose that

a. Names are permitted as an atom type;

b. Two special blank atoms elementof and setof

introduced (for a purpose to be explained shortly) ;

are

c. The definition of the basic SF:TL operati.ons are

modified as follows.
cl. The value of the application operation

- 3 -

whose f is a set name, is the n+2 tuple

(3) <elementof, a 1, ••• , an/i),
where f is the name atom corresponding to f. (Like the BALM

'=f I•)

c2. Similarly, the value of the application operation

(4) r{a.1 , .•. , anJ'
where f is a set name, is the n+2 tuple

(setof, a 1, ..• , an' f).
c3. i-[hen a.n n+2 tuple of this form is used as th~ operand

of any built-in SETL operatj_on (excepting, however, left-hand

operands of er:iuality (i.e., '='), which we now regard as an

operation), it is 'evaluated', i.e., either

f (a 1, ... , an i

(or

f[a 1, ... , an})
taken in the existing SETL sense, and this value used in place

of (3) (or (4)).

c4. The same rule applies to the ~ight-hand operand of

an equa.li ty sign. But when (3)is the left-hand operand of an

equality sign, we evaluate

(elementof, a 1, ... ,

performing the assignment

/v

a , f > = expn n

f (a , ... , a ; = expn,
1 n

in its present sense. Similarly, when

(setof, a.1, .•. , an, r) = expn
is evaluated we perform

rfa 1, ... , an}= expn;
in its present sense.

- 4 -

These conventions allow such 'pointer-tuples' to be passed

to subroutines and to be calculated by expressions and function~;

giving powerful new possibilities (though complicating optimiza

tion). Thus, for example, we may write

if x>O then f(x) else g(x,y) = expn;
as in ALGOL 68. The subroutine in, defined as always by

define a in b; b = b with a; return b; end in;

can then be invoked in the form

a in f (x) _;
Moreover, if we define a function

definef thing; external y; return if x>O then f(x)

else g(x,y); end thing;

then we can write

thing= expn
with the expected result.

