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Some small and large language extensions for consideration. 

This note will serve to record some extensions to SETL 

that might be· useful. The first is merely an observation; the 

second would fit quite easily into the present framework; the 

others would reouire a more substantial change. Comments are 

solicited. 

1. Use of sauare brackets within expressions. 
The notations f[a], f[a,b], f(a, [b]), etc. are provided, 

where for example f[a,b] is by definition the set 

and 
{f(x,y), x[a, yf b} 

f (a, [b]) is the set 

[f(a,y), yEb]. 
The same notations can be used with infix operators, so that 
for example 

[a] + 1 

for a set of integers is [x+l, x la], 
while [a] + [b] is 

[x+y, x € a, y E b J. 
Note that these constructions can be compounded. 

2. Calculations within expressions. 

In-line subroutines, somewhat like the direct application 
of PROC in BALM, might be useful, and could be provided in some 
such form as the following. 

Let block be a block of statements, containing certain stAtements 
of the form 
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return expn; 

Then 

(1) calc block; 

or, 

calc block end; 

or 

calc block end calc; 

could be allowed as an expression, Variables within such an 

expression would have the name scopes determined by the surroun

ding context; the code in block would be executed uu to the first 

statement of the form 

(2) return expn; 

encountered. The value of (1) would then be the value of the 

expn in (2); or, if the end of block were reached before any 

statement (2) were encountered, the value of (1) would be _./)_ . 

Thus, for example, to use the sum of x, f(x), f(f(x)), etc., 

within an expression, this sequence being extended to the first 

zero value encountered, we could write 

a= calc s=O; y=x; (while y ne O doing y=f(y) ;) s=s+y;; 

return s;; + 

3. Name-atoms and a type of pointer construction 
suggested by ALGOL 68. 

Suppose that 

a. Names are permitted as an atom type; 

b. Two special blank atoms elementof and setof 

introduced (for a purpose to be explained shortly) ; 

are 

c. The definition of the basic SF:TL operati.ons are 

modified as follows. 
cl. The value of the application operation 
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whose f is a set name, is the n+2 tuple 

(3) <elementof, a 1, ••• , an/i), 
where f is the name atom corresponding to f. (Like the BALM 

'=f I•) 

c2. Similarly, the value of the application operation 

(4) r{a.1 , .•. , anJ' 
where f is a set name, is the n+2 tuple 

(setof, a 1, ..• , an' f). 
c3. i-[hen a.n n+2 tuple of this form is used as th~ operand 

of any built-in SETL operatj_on (excepting, however, left-hand 

operands of er:iuality (i.e., '='), which we now regard as an 

operation), it is 'evaluated', i.e., either 

f ( a 1, ... , an i 

(or 

f[a 1, ... , an} ) 
taken in the existing SETL sense, and this value used in place 

of (3) (or (4)). 

c4. The same rule applies to the ~ight-hand operand of 

an equa.li ty sign. But when (3 )is the left-hand operand of an 

equality sign, we evaluate 

( elementof, a 1, ... , 

performing the assignment 

/v 

a , f > = expn n 

f ( a , ... , a ; = expn, 
1 n 

in its present sense. Similarly, when 

( setof, a.1, .•. , an, r) = expn 
is evaluated we perform 

rfa 1, ... , an}= expn; 
in its present sense. 
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These conventions allow such 'pointer-tuples' to be passed 

to subroutines and to be calculated by expressions and function~; 

giving powerful new possibilities (though complicating optimiza

tion). Thus, for example, we may write 

if x>O then f(x) else g(x,y) = expn; 
as in ALGOL 68. The subroutine in, defined as always by 

define a in b; b = b with a; return b; end in; 

can then be invoked in the form 

a in f (x) _; 
Moreover, if we define a function 

definef thing; external y; return if x>O then f(x) 

else g(x,y); end thing; 

then we can write 

thing= expn 
with the expected result. 


