(7 7 sETL Newsletter #24 - ST april 20, 1971

Descrlptlon of a Req ter Allocation Algorithm K. Kennedy

Thls w1]1 descrlbe an algorlthm due to Horow1tz,

o Karp, Miller, and Wlnograd [l] for allocatlng index regis sters
7—__¢ﬂme-4£or stralght ‘line .code. -.Slnce we are only interested in the
1ndlccs referenced at each step, we use the term grogram
N _—“——**“—"to mean- a sequcnce ofrlndlces, one for -each step. At any s
: step the index referenced may ‘be modified. Such a modlfylng
_;m;;”wireference is 1ndlcated by an_asterisk following the index,

co . In SETL we will represent the program as a _sequence

‘of ordered pallS . --the first element of the ordcred pair at - ---
_step i w1ll be Lhe 1ndex referenced the second element
Twill be a flag whlch v111 be true if the 1ndex is. modlfned

. at that step and falqe otherwise. The following exanplc

e et e d__._._..___._ . P S S . e s

shows a ploglam and 1ts correspondlnc SETL sequence.

: n. 12- fprogram - .SETL seguence B
¢ | x <l,<x) o0
XZ <2,<x2,f>>

) x¥ <3;<x3,t>> i N

- x§ <4,<x2,t7>
‘. . X5 <5 <x3,f>>
Xy <6 <xl,f >
Axé <7,§h2,f>>

" Now ' ‘suppose we have a machlne w1th,N 1ndex registers,

A reg:stcr allocation regs for the program is a sequence

of rcg1 stexr conflouretfonc, one for each step. A register

conflguratlon for step i is a set of N ordered pairs
~which reple ent the contents of the rejlqtcrq ‘at that step.
" Each orcerca palr is of the form <index, flag> vhere flag
is t if the index is modified (i.e. it must be stored if it
kd is_to be replaced fn registero) If the allocation .is to
| - be a lgggl.one, the Jndex called for at step i (for all i)'

-,

(/ - . must be in registers at thuc step. In other words

-

—

SETL Newsletter $24 4/20/71 ~—2-

(1< VJ. < #progfam\ program (i) e regs{i} ;. -

A55001ated with each allocation is a cost which

is determlned by the following formula: suppose we can

tdeflne a function ‘cost(configl,config2) which'represents

the cost of going from one configuration to'another -

Then the cost’ a58001ated with an allocatlon regs 1s-

#proiram

: total cost = cost(regs{l—l},regs{l})

1 | —.,2
Note that regs is a set of ordered trlples <step,1ndex flag>

so the configuration at step i (regs{l}) is a set of oidered

pairs <index,flag>, The cost functlon may be defined as follows

1) “the cost of replacing a modified index in a

-.“configuration is 2 (1 store, 1 load).

.2y "the-COst of replacing an unmodified index in a

_ configuration is 1 (1 load) .

' 3) the cost of replacing a modified index with the

same index unmodified is 1 (1 store).
4) . the cost of replacing an unhddified index with a

- modified version of the same 1ndex is 0.

4

-Us1ng these rules we may deflne the function cost

in SETL as follows:

definef cost(conl,con2); c=0; A
(Vx € hd[conl]) if n x € hd[con2] ‘ A

then ¢ = ¢ + if conl(x) then 2 else 1; '_~
else ¢ = ¢ + if conl(x) and n con2(x) then 1 else 0;
rend if; end‘dx, return c; end cost; ——
- -A pos51b1e reglster allocatlon algorlthm is to- ~

.generdte all pos51ble legal conflguratwons at each step

and then pick the allocation (one conflguratlon from each

step) with minimal cost. 'Since there are a finite number

of such allocation , the algorithm will terminate,

/ SETL NewsletLer 124 4/20/71 -3-
/(;: - However, this lS a. bit Loo comblnauorlal to be practlca-J .
. so Horowitz et al. show how the number of allocations to be :

/,~;~_m;,_con51dered may be significantly reduced.. e i e
e The basic idea of the Horowitz algorlthm is to ' '
- cstart WLth the initial configuration and generate for step 1

" a restricted class of configurations reachable from the
';iﬁiﬁiélﬁéohfighféﬁidn by minimal change branches! ~'Once one™

~

f has the configurations associated with step i one can
generéte all configurations for step i+l which can be reached
' from these configurations by minimal change branches.
’Thié‘ﬁfééésé”ééﬁJCOHtiﬁﬁé'ﬁntil'wé'iéébh the last step.
-"If_We associate with each configuration at step i a weight
”(defihed as the minimal cost of reaching this configuration
. at this step) and a function parent(con) which maps a

conflguratlon at step i onto a conflguratlon at step i- l S. t

0 ’ . welght(con) = welght(parent(con)) + cost(parent(con) con) '

“-we can flnd the best allocation by flndlng the Conflguratlon_
~ associated with the last step which has minimal weight,
'u:and then following the chain of pointers back to the start.
In other vords, if conmin is the minimal configuration .

at the last step then

“regS{#prograh} = conmin
_ fegs{#program - 1} = parent(conmin)
- f_'. : . ' etc, |

in'fact our data structures will be slightly moxc
complex, 'Asséciated with each step we will have a set of
nbdes (which_afe atoms) . These nodes are mapped onto corres-
ponding cdhf{Qﬁrationq by the function config. The function
parent w1ll map the node onto the node from vhlch it can be

reached by a minimal change branch s.t.

Y

welght(node) = welght(parent(node))kcorL(conflg(pdrent(nod)),
/ s , R _ v » conf1a(nodo)1

&

SETL Newslettcr #24 4/20/71 -4~

;'welght

involved in the algorithm,
to node n' (step. 1) is a mlnlmal change branch if one of

‘f"‘the following conditions holds:

1

)

is the function whlch deflnes the weight of a node
These three functions are the main data strucLures
Thc branch from node n(steplul) ST

S

_the configuration for n is identical to the

configuration for n' '
the index'ealled for at step i ‘is not in the

’cohfiguration for n and config(n') differs from

config(n) in exactly one element -- the _1;.";.
index referenced at step i replaces some 1ndex

in config(n).

- the index called. for by step i is modlfled at that

step and appears unmodified in conflg(n). Then

.1.config(n') differs fromiconfig(n) only in that

an unmodified -ocqurrence of that index appecars

PR E

in_config(n) where a modified occurrence appears in n',

The overall allocation procese looks like this in SETL:

~

- define allocate (program,regs,ic) ; nodes = {ic}

weight(ic) = 0; parent = nl; weight = nl

. newer

—

= nl; newnodes = nodes;

(1 f_ Vstep < fprogram) cleanse newnodes;

(V n e newnodes) generate n; end ¥n

/*genefate will put the nodes for step in the set newer*/

newnodes = newer; newer = nl; end V step;

fiﬁdalloc,newnedes; end allocate;

The routine generate generates nodes for step n

NI NN . : .
from nodes for step -1, As we shall see, it gencrates

a restricted class of those nodes which can be

n by minimal change branches, The improvements will be

described later. The routine findalloc picks the best

allocation by finding the minimal weight node associated

reached from

-SETL Newsletter #24 4/20/11 -5-

W1th the last step and worklng back v1a parent
N In SETL this goes as follows- '

.define flnaalloc newnodes, allocate external

regs,.welght parent, conflg, program;
mlnnode tl[mlnhd ne newnodes]<welght(n) n>

#program,r(whlle k ge 1 doing k=k-1; minnode= parent(mlnnode))

’
Lo -

regs{k} conflg(mlnnode); end while;

qu Ilndalloc,

-The functlon minhd is deflncd

et e et e e ma et e o i e in e o gl i e = o P ¢ At ¢ o e =

— . -
. S e e e e

deilnef xmlnhd Vi Tl -
Ve return if hd y lt hd x then y else X;

T end mlnnd

The'functlon maxhd to be used later is defined similarly. - -
The routlne clcanse is a routine which ellmlnates

generated nodec according to the rule:

nET If n and n' are two nodes assoc1ated ‘with step 1
‘ such that welght(n) + COSt(CODLlG(n) ,config(n'))

ﬁ_welght(n) we may eliminate n',
This xule may be coded in SETL as follows:

deEihé cleanse nodeset; allocate. external weight; cost,
parent, config; o
(\/x e ‘nodeset) if (Jy e (nodeset less x) |
¢eils welght(y) + cost(conf:g(y) ;config (x)) le welght(x))
then . paront(x) = Q welght(k) ; config(x) = ;
nodeset =’ nodeset EEEE.X' ena“lf,eﬂKIVx; end cleanse;

~~The subroutine generate will require a certain amount

of discussion, Suppose n is a node associated with step i-1.

The: vxmplest possible routine would generate all nodes for step i

whi¢h could be reached from n by a minimal change branch.
Thus, if x (or x*) is referenced at step i then

. ‘-L.:(V Toeee -

\,\

SETL Newsletter $24 4/20/71 -6~ N R o

1. . If x is in config(n) a single node n® is
: generated sﬁch that config(n‘) is identical
to config(n] except that the flag for x
.. might be true ln n' but false 1n n
2, If x is not in conflg(n) then N new nodes

(nl,.,.,nN) are generated where n. is formed o

. - from n by replacing the i-th component of
config(n) by x. ot

‘This is not quite good enough, however, because we would

*¥’“like to reduce the number of nodes generated by case 2,
. We will do this by using lookahead. ' |

Flrst we must define two lookahead functlons

P h next (i,x) w1ll return the number of steps to

.~ the next use (modlfylng or non—modlfylng) of X.
In SETL: - ' o _ . .

definef next(i x); allocate external program; ' o
return'lf(l <3[k] < #program I hd program (k) eq x) '
i _ then k-i else %program%l-l,

end next

'2.4 o next(i,x) will return the number of steps to the

next modifying use of x after step i.
In SETL: o ' o .
definef nexts(i,x); allocate external program;

return if(i <3[k) < fprogram | program(k) eq<x,t>)

then k—i; else #program+l—i; end nexts;

U51ng these two functions we nay limit the number
‘of nodes that we must generate at each step. Suppose,
once again, that otep i of our program calls for x»and
that node n (as séc1ated W1Lh step i- l) doeg not have x or x*
in its configuration, The follov1ng ohcetvatlonq are due
~ to Horowitz et al,

/ :
. 3
/ ’ .
' SETL Newsletter §24 4/20/71 -7- T,
1, - If thefe are severai unmodi fied variables in
© w2 — —-..... ..config{n} we need never generate more than one node

in which x replaces an unmodified variable, The
unmodified variable to be reblaced can always be
chosen to be the variable vy e hd[config(n)]-s.t.
L) next (i,y) is a maximum., There may be more than one
. unmodified variable, "say y and z, s. t |
_next(i,y) = next(i,z) = fprogram + 1 ; _
in this case we can still arbltrarlly plck the one

_ to be replaced (elther y or z will doy.
2, ;l‘, ‘Suppose M = next(i,y) where y is the unmodified .
7 ivariable. which is used farthest away “(picked .above)

_We need never generate a node in which x rep]acec

a modlfled variable z if next(i,z) < M,

(AcLually this is an 1mpro¢ement over the condition

A nexts(i,z) < M stated by Hoiowitg et al.)
3. ~ Suppose K = next(i,z) where 2z is the modifieé,

' variable in config(n) which is first used farthest away.
We need not generate a node in which x replaces w
if w is modified and nexts(i,w) < K. If

" K = program + 1 then we need only generate a

-single node in which x replaces z.

- The algorithm given below works with the cohstants

" M and K by finding two ordered pairs:
maxy = <M,y> ; maxs = <K,z>

It will then generate a node in which x replaces y; if
= #prqgraﬁ ‘;t\will generate a node in which x replaces z;
if #program+l >K > M it will generate nodes in which
x replaces any modified var:able w in conflg(n) such. that
“nexts(i,w) > K. ,
In SETL the algorithm is a long one and goes as follows:

_

- current step */

.

- of nodes and operate very fast. Actual tests have

 SETL Newsletter §#24 4/20/71 -8-

‘define generate n-f/*n is a node generated at the last :

step from wh;ch nodes are to be generated for the

AR

allocate external newnodes, newer, program, step, parent,

welghL, config; con = config(n];

' /* see if program(step) is in registers */

- if JIx) e con | hd x eq hd program(step) then do genode(x)
- if tl x then config(nl) = config(nl) less prog(step) with x;

,end‘if;

weight (nl)=weight(n); .return; end if =3;

147 block genode(x); nl=newat; nl in newer; parent(nl)=n

cdnfig(nl).= onfig(n) less x with program(step);

end genode;

/* else Jook for unmodified and modified 1ndlces whose

next uses are farthest .avay */

H

maxu

It

maxs = [maxhd: x € con | tl x]<next(step,hd x) ,x>

‘[maxhd: x € con | n tl x]<next(step,hd x) x>

/* generate node replacing most distant unimodified index */

if maxu ne © then do genode (tl maxu) ;

weight(nl) = weight(n)+1; if maxs eq then return,,

if hd maxu ge hd maxs then return;;
else VA deflne maxu if uvndefined */
.maxu = <0,n%>; end if maxu;

/* now generate nodes replacing modified indices */

'if'hd maxs eq (fiprogramtl) then do’genode (tl maxs); return;;

/’else‘/ (Vx e con l tl x and next(step,hd X) gt hd
~and nexts(step,hd x) ge hd maxs]

do genode(x), wemcht(nl)*melght(n)PZ end Vx
end generate

~

- e

maxu .

This allocation scheme should generate a minimal nuuber

the algorithm is very practical and useful,

shown that

