
SETL Newsletter Number 26
The currently specified form of SETL
from a more fundamental point of view

May 3, 1971
J. Schwartz

In a set of general reflections concerning the programming
process on which I am currently working, observations are made
which allow one to react to various currently specified SETL
features on a somewhat less ad hoe basis than has until now been
available. This note will begin to elaborate these reactions.
The basic issue is as follows: a programming language must
enable one to choose each element eventually to form part of a
total program in a situation as little complicated by detailed
compatability restrictions as possible. That is, it should
help break the total programming problem to be solved into
manageable and maximally independent pieces. From this basic
principle various corollary principles may be derived, which are

listed below with their implications, pro and con, for SETL.

A. Principle of decision postponement (by homologousness).
·semantically analogous entity-classes which might be

substitutable for each other should be treated in a syntactically
identical way, so that the decision as to which type of entity
is actually to be used can be postponed.

Good in SETL: The use of sets, postponing or avoiding
detailed choice of data representations.

Bad in SETL: 1 - the distinction between subr-outine and
macro-block invocations (coming from the key word "do") which
forces the decision to use either a subroutine or a macro block
to be made prematurely.

2 - the distinction between various types of entities
having sequential nature and from which ."n-th" elements might be
chosen, or over which iterations might take place. Example: the
n-th element of a sequences of characters is s(n); the n-th
element of a character strings is n elt s. Similar discrepancies
between sequences and tuples (discrepancies less easily fixed)
have troubled many.

- 2 -

3 - the distinction between iteration over a set, and
various other related iterations, as for example, over a tuple

or over the elements of a tree or 11st.

The first is

(V x € s) block;

the second must be written as

(while s ~ _/1_ doing S=tl s;) X=hd s; block;

Iteration over a list with head x0 and chained by a mapping~

can be written

x=x0; (while x ~ JL doing x=.,f(x);) block;

Many related ills are traceable to the absence in SETL
of user-specifiable data types, to which operators having fixed
form, but meaning dependent on the type of data object, might
be applied. If such "typed data structures" were available

we might for example define an iterator (Vx € s) for each type
of data objects, by defining some manner of "sequencing" over
nominal "elements". This idea is compatible with many of the
basic SETL usages.

In addition: It is bad to complicate the initial elabor­
ation of a section of code with a decision concerning the manner
in which the code is to be employed.

Conclusion: The introductory boiler-plate attached to
macros and subroutines should sometimes follow rather than
preceed their bodies. For example:

begin; (while.,-e1(a) ~../1.) a=.i'(a);; _.f(a)=elt;
is block join(elt);

is sometimes preferable as a convention to

block join(el t); (while .,.f(a) ~ Jl.) am,,((a) ; ;
.,.e(a)=elt; end join;

- 3 -

Similarly, the.!,! operator should operate left-to-right rather

than right-to-left, e.g.

X = (a+b) is xl * d

is better than

X = (xl ~ (a+b)) ;¥-d

A systematic review of the conventions applying to present
data types, with a view to reducing the number of syntactic
forms employed and to rounding out the set of operations provided
would complement an exploration of the more fundamental and
interesting question of providing programmer-definable data types.

Good in SETL: the formal identity which obtains between

functional application of one set to another and calls to programmed
functions.

B. Principle of Grouping by Logical Relation.
Those items with whose details an item I is most closely

concerned should find places near I, without distracting inter­
mediate material entering as a nuisance.

Good in SETL: "doing" option of "while" statement; "quit";
"continue". It might also be worth expanding the "while" state­
ment to include an option

(while Cl when C2 doing block;)

equivalent to

(while Cl doing block;) if n C2 then continue;;

as well as a special case

(while Cl when C2)

Bad in SE'TL: The if-statement, which intermixes the
controlling conditions of a subcasing operation with the
transformations to be performed in the various subcases; especially

- 4 -

when nested. A possible form, which has the interesting property
of exploiting the two-dimensional nature of paper, is as follows.
(We introduce an 11iff 11 statement, and describe it in partly two­
dimensional terms.)

The iff-statement consists of a header and a trailer.
The statement header is introduced by the keyword iff, which is
followed by a sequence of iff-elements, each of which is either

i - a test designator, consisting of a name followed by the
sign"+";

ii - an action-transfer label, consisting of a name followed
by the sign",".
These elements occur in the sequence determined by the following
rules:

a - The first element following the keyword iff is a
test designator. To its lower left (and to the lower left of any
test designator) follows its positive-case descendant; to its
lower right (and to the lower right of any test designator) follows
its negative-case descendant. Those descendants can be either
test designators (which will have positive- and negative-case
descendants of their own) or can be action-transfer labels.
Such labels have no descendants.

b - The deepest-rightmost descendant in the collection
described by (a) (which descendant is necessarily an action­
transfer label) will be followed by a semicolon rather than a
comma; this semicolon terminates the header of the iff-statement,
and introduces its trailer.

Before going on to describe the (less unusual) structure
of a trailer, we give the following example of a header:

iff nodeterm +
arlexalts + islockey +

findalt, maynext, keypres + arealts +
aresecalts+maynext, findalt, maynext,

findalt, maynext;

- 5 -

This header describes the same collection of tests and transfers
as the following if-statement (we momentarily pretend that the
test-names refer simply to boolean variables).

if nodeterm then
if arlexalts then go to findalt; else go to maynext;;

else if islockey then
if keypres then

if aresecalts then go to findalt; else go to maynext;;
else go to maynext;;

else if arealts then go to findalt; else go to maynext;;

end if nodeterm;

Note that the contextual information necessary to read the
collection of tests appearing the above example (and also to
write this collection without errors) is much more readily
available (since available in a more local context) in the iff­
layout than in the conventional "nested-if" layout, even when

the latter makes careful use of indentation.
The "trailer" section of an iff-statement consists of

c - A collection of actions with tests, each introduced by
a label identical with one of the test labels occurring in the
header section. Several actions may precede one test. An action
is simply a SETL statement; a test is a SETL expression having a
Boolean value, and is introduced by an occurrence of the sign
"=" and terminated by a semicolon.

d - A collection of actions, each introduced by a label
identical with one of the action-transfer labels occurring in the

header. (An action-transfer label occurring in the header need
not label any such action. If it does not, it must occur elsewhere
in the same SETL subroutine, in which case the corresponding
header-entry is interpreted as a transfer to the label in question.)
A labelled action of this kind will be executed when a sequence

of executed tests brings control to the corresponding header
label. After the action is executed (and assuming it contains no
transfers) control will pass to the next statement following the

- b -

iff-statement.

e - An iff-statement is terminated either by

ei - A (repeated) semicolon;

or,

eii - "end iff;"

or

eiii - "end iff token;".

The following example, expanding on the example given above, shows
a complete iff-statement (adapted from the initial portion of
"postparse"), and the if-test in conventional form to which it

corresponds.

iff nodeterm +
arelexalts + islockey +

findalt, maynext, keypres +
aresecalts+maynext

findalt, maynext;

nodeterm:= nodtype(node) ~ _/L;

arelexalts:= (setalts is lexalts(synt))

arealts +

findalt, maynext,

ne _/L • - ,
is1ockey:= (key1oc .!!!_ desc{node,key1oc)) ~.../1_;

arealts:= (setalts is altset(synt,nodtype(node)))
keypres:= (keydesc is desc(node,keyloc)) ~../1..;

aresecal ts: key= if (x is nod type (keydesc)) ~ __/L then x
else hd tl keydesc; = (setalts is secaltset(synt, key)£!::.../L;

end iff;

Now the conventional form:

if nodtype(node) ~_/l_then
if (setalts is lexalts(synt)) then go to findalt;

else go to maynext;;

- 7 -

else if (keyloc 1s desc(node,keyloc)) ne .../1_ then - -
if (keydesc 1s desc(node,keyloc)) ~ _/'l_ then

key= if (x g nodtype(keydesc)) ~ _/l_ then x
else hd ~ keydesc;

if (setalts g secaltset(synt,key)) ~____/"")_then
go to findalt; else go to maynext;;

else go to maynext;;
else if setalts g altset(synt,nodetype(node)) ~/l._ then

go to findalt; else go to maynext;;

end if nodtype;

Useful additional options:

1 1 - A test-destgnator may optionally be replaced by what
it would label, enclosed however in parentheses. That is, it
may be replaced by a parenthesized sequence of SETL statements,

terminated by a Boolean-valued expression (introduced by"=").
ii' - An action label may optionally be replaced by what

it would label, enclosed however in parentheses. That is, by
a parenthesized sequence of SETL statements.

A serious problem exists in regard to data structure
layout. Layouts are now defined implicitly by the code which
addresses them, and pieces of this code can be scattered over
many routines. The difficulties which arise are of course alle­
viated by the simplicity which SETL structures have when compared
to structures in lower level languages. Nevertheless, in complex
situations, these structures can grow elaborate, and a mechanism
for centralizing the basic structural decision concerning them
is desirable. See also the paragraph imlnediately below.

c. Principle of Structural Isolation.
The inner details of a program section should be isolated

to a maximum degree from detailed conventions established in other

- 8 -

program sections; semantically unitary entities established

elsewhere which are to be invoked or accessed should be repre­
sented by unitary names and not by complex sequences applied
to externally defined conventions. The main problem of this
kind in SETL comes from the present limitations on the left­
hand side of expressions. Suppose, for example, that we wish
to make use of a data structure fin which an item of given
semantic meaning is stored in f(A) if a flag is set, but i~
f(B) otherwise. It is most natural to write

itm f=expn;

which since it is isolated from external details concerning

storage conventions is distinctly preferable to the more expres~
sive

if flag then f(A) else f(B) = expn;

but SETL presently forces us to write

if flag then f(A)=expn else f(B) = expn;

which is even more undesirably explicit.
An attempt at a systematic analysis of this point will

follow in a subsequent newsletter.

