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This paper will describe an overall common-subexpression 

elimination algorithm which includes both safety and profitability 

considerations. The approach we shall use will be a new one: 

we shall handle all code motion and hoisting by strategically 

inserting computations at entries to nodes and allowing the 

common-subexpression elimination routine to do the rest. 

The algorithm initially 'inserts' computations rather freely, 

aiming in this way to find useful cases where optimizations 

of the 'hoisting' type are possible. Uselessly inserted 

computations are understood to be removed subsequently by a 

'dead computation' analysis. 

As in all algorithms of this type there will be two passes: 

an information-gathering pass which works from inner intervals 

to outer intervals and an optimization pass which uses the 

information from the first pass to perform optimizing code 

transformations. 

First, we must describe the data structures associated with 

this algorithm. In keeping with SETL terminology, I shall 

describe these as sets. The reader should keep in mind that 

these sets can appropriately be implemented as bit vectors. 

First, we need some global sets. 

1. com£S is the set of all computations being considered. 

2. safop is the set of all computations which cannot cause 

an interrupt because of divide check, overflow, etc. 

Associated with each block entry we have the following sets. 

(Note that some of these sets will be available when the 

optimization algorithm we intend to describe begins to work; 

others will be calculated by the algorithm. Note also that our 

algorithm will associate similar sets not only with basic blocks 

but ultimately with intervals, 'second order' intervals whose 

elements are intervals, etc.) 
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1. insert(b) is the set of computations to be inserted 

at entry to b. 

2. avail(b) is the set of computations which will be 

'available' on entry to b, given the actual set of 

computations available on entry to the interval 

containing b. Note that we say that a computation 

is available at a given point in a program if, along 

every path leading to this poini, there will be found 

an instance of the computation not follwed by any 

reassignment of the value of one of its inputs. 

This implies that the computation is redundant, since 

its previously computed value is immediately available 

for reloading. 

3. defavail(b) is the set of computations which would be 

available on entry to b if no computations were available 

on entry to the interval containing b. 

4. posavail(b) is the set of computations which would be 

available on entry to b assuming that all computations 

were available on entry to the interval containing b. 

5. safe(b) is the set of computations which may be safely 

inserted at entry to b because they will not cause any 

interrupts which would not happen anyway. Thus a 

computation is in safe(b) if every path from the entry to 

b contains an instance of that computation before a kill 

or a program exit. 

6. upkill(b) is the set of all computations for which there 

is an upwards exposed kill (a redefinition of one of the 

inputs to the calculation before any instance of the 

calculation) in b. 
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Associated with blocks and their successors we have the 

following sets. 

1. movable(b,s) is the set of calculations which are upwards 

exposed on a path through b leading to sand which are 

movable to the entry to b. 

2. nokill(b,s) is the set of calculations which are available 

on exit to s if they are available on entry to b. 

3. expdown(b,s) is the set of calculations which are always 

available on exit to s from b. 

4. nocalc(b,s) is the set of computations for which there 

is a path through b to s which contains no instance of 

the computation. 

There are a number of important relations among these sets. 

We express these set-theoretic relationships using SETL 

'code-fragments' which will eventually form part of the complete 

algorithm to be presented below. 

First, some relations between the sets of computations 

'available' in one or another sense. 

1. defavail(b) = [int: p € predecessors(b)] 

(defavail(p) int nokill(p,b) ~ expdown(p,b)) 

2. posavail(b) = [int: p € predecessors(b)] 

(posavail(p) int nokill(p,b) ~ expdown(p,b)) 

These relations reflect the fact that a computation is 

available on entry to a block b if for all predecessors p of b 

it is either available on entry top and not killed from p to b 

or it is always available on exit from p to b. 

The set of computations actually available on entry to b 

has a simple expression in terms of these last two sets: 

3. avail(b) = posavail(b) int avail(interval) u defavail(b) 

The preceding formula is true because of the nature of the 

posavail and defavail sets. Recall that a computation is in 

posavail(b) if it is available on entry to the block whenever 

it is available on entry to the interval. A computation is 
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in defavail(b) if it is always available on entry to b 

no matter what was available on entry to the interval. 

Therefore, a computation is available on entry to b if it 

is a member of defavail(b) or if it is a member of posavail(b) 

and is available on entry to the interval. 

Next we give a formula determining the set of calculations, 

which may safely be placed at the entry to b: 

4. safe(b) = (comps diff upkill(b)) int 

[int: s € successors(b)] (comps diff nocalc(b,s) u safe(s)) 

This says that a computation is safe on entry to b if there is 

no upwards exposed kill in band for every successors of b 

there is either no path to s which does not contain an instance 

of the calculation or the computation is safe at s. 

Next we give a formula which defines the set of those 

calculations which, if they are available on entry to an interval, 

remain available on entry to a successor interval. 

5. nokill(interval,sint) = 
[int: b € predecessors(head(sint)) int interval] 

(posavail(b) int nokill(b,head(sint)) ~ expdown(b,head(sint))) 

This last says that the availability of a computation is not 

spoiled between entry to an interval and exit to a successor 

interval sint if for every block of the interval which has 

an exit to sint the availability of the computation is not 

spoiled between interval entry and block entry and is also 

not spoiled in passing through the block to the exit. 

Now we give a formula describing these computations which 

are always available on exit from an interval I to a specified 

successor, irrespective of whether they are available on entry 

to I. 

6. expdown(interval,sint) = 
[int: b € predecessors(head(sint)) int interval] 

(defavail(b) int nokill(b,head(sint)) ~ expdown(b,head(sint))) 

This says that a computation is always available on exit from 

interval ,to sint if for every predecessor b of head(sint) it is 

either always available on exit from b or it is always available 

on entry to band it is not killed in b. 
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Next we give a formula which characterizes those calculations 

which may be moved out of an interval. 

7. movable(interval,sint) = [u: b c interval] 

(posavail(b) diff defavail(b) int 

[u: s c successors(b) int intervallsint € path(s)]movable(b,s)) 

Here the auxiliary set path(s) is the set of all successor 

intervals to which there is a path from s. The formula says 

that a computation is movable from a point on a path in the 

interval which leads to the successor interval sint if it is 

movable out of some block b on that path and if the computation 

is available on entry to b if and only if it is available on 

entry to the interval. If this condition is satisfied we can 

insert the computation at the entry to the interval and then 

be sure that its value will always be available at the point 

in bat which it was formerly computed. 

Now we can give a formula which determines the set of 

computations to be inserted (on a ~trial' basis) at the entry 

to a block b. This formula will as a matter of fact only be 

used to insert code at the entry to intervals; thus the "b" of 

the formula represents an interval. 

8. insert(b) = comps diff avail(b) int 

([int: s c successors(b)] movable(b,s) int(safop ~ safe(b))) 

This formula expresses several conditions. First, we do not 

insert any computation which will be available on entry to b. 

Subject to that restraint, we insert all computations which are 

movable out of band which are safe, either because they cannot, 

by their nature, cause an error interrupt or because any interrupt 

theyrri.ght cause would take place anyway. 

Note that we move calculations out of b only if an instance 

of the calculation appears on a path leading to every successor 

of b. This restriction is derived from profitability considera

tions. Ideally, we would only move code out of strongly connected 

regions. Any computation which is in a strongly connect region 
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is on a path to a latching node which has a branch to the 

head node of the interval. Since there is a path from the head 

to every successor of the interval, any computation in a 

strongly connected region is on a path to every successor 

of the interval. Therefore, the restriction never prevents 

code from moving out of strongly connected regions. It does, 

however, severely restrict code motion out of other regions 

of the interval. 

The preceding relations concern the principal sets used 

in the algorithm given below. A few auxiliary sets are also 

used in this algorithm. The rules governing the calculation 

of these auxiliary sets are as follows: 

9. somepath(b) = [~: pb € predecessors(b)] 

(somepath(pb) int nocalc(pb,b)) 

10. upkill(interval) = upkill(interval) u 

(somepath(b) int upkill(b)) 

11. nocalc(interval,sint) = 

[u: pb € predecessors(head(sint)) int interval] 

(somepath(pb) int nocalc(pb,head(sint))) 

Here, the auxiliary set somepath(b) can be defined as the 

set of all computations for which there is a calculation-free 

path (a path crossing no instance of the computation) from 

the interval entry to the entry to b. Formula 10 merely says 

that there is an upwards exposed kill of a computation in the 

interval if there is a calculation-free path for that 

computation to a block in which there is an upwards exposed kill. 

Formula 11 is analogous to formula 9 and says that there is a 

calculation-free path for a computation through the interval 

to a successor interval sint if one of th_e predecessors of 

head(sint) in the interval has a calculation-free path to its 

entry and a calculation free path through to head(sint). 
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The relations which have just been described individually 

are basic to the overall algorithm which is given below. This 

algorithm is, as we have already said, structured into two passes. 

The first pass has two subpasses for each interval. The 

forward subpass proceeds through the nodes of an interval in 

interval order and computes posavail and defavail for each 

block using formulas 1 and 2. This subpass also computes 

upkill and nocalc for the interval. The backward subpass goes 

through the nodes of the interval in reverse interval order 

updating posavail for each block and finding computations 

which are movable out of the interval (using formula 7). 

These two passes are contained in the routine process which 

has as its only explicit formal parameter an interval. This 

will be passed as a SETL sequence (the nodes of the interval 

in interval order with interval(l) representing the head). 

Here then is the SETL algorithm. 

define process(interval); external successors, 

predecessors, movable, nocalc, nokill, expdown, 

upkill, defavail, posavail, comps; somepath = nl 

head= interval(l); somepath(head) = comps; 

upkill(interval) = nt; defavail(head) = nl, 

posavail(head) = comps; 

/* the forward pass to get defavail, posavail, 

upkill, and somepath */ 

(2 <Vi< #interval) b = interval(i); pred = predecessors(b); 

defavail(b) = [int: pb e pred] 

(defavail(pb) int nokill(pb,b) u expdown(pb,b)); 

posavail(b) = [int: pb € pred] 

(posavail(pb) int nokill(pb,b) u expdown(pb,b)); 

somepath(b) = [u: pb € pred] 

(somepath(pb)int nocalc(pb,b)); 

upkill(interval) = upkill(interval) u 

(somepath{b) int upkill(b)); end Vi; 
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/* some initialization for pass2 */ 

intnodes = tt[interval]; path= nt; latchpath = nt; 

sints = successors(interval); 

(Vy€ sints) movable(interval,y) = nt; end Vy; 

latch= [int: b c predecessors(head) int intnodes] 

posavail(b}; 

/* the backward pass to update posavail and calculate movable*/ 

(#interval> Vi> 1) b = interval(i); path(b) = nt; 

succint = successors(b) int(intnodes less head); 

latchpath(b) = (if head€ successors(b) then t else f) 

or [or: s c succint] latchpath(s); 

/* if latchpath(b) is true then bis in the strongly 

connected region and there is a path to every successor*/ 

(Vy c sints I y(l) £ successors(b) or latchpath(b)) 

yin path(b); end Vy; 

path(b) = path(b) ~ [u: s c succint] path(s); 

posavail(b) = posavail(b) int latch u defavail(b) 

diffset = posavail(b) diff defavail(b) 

(Vs c successors(b}) if (3 [y] c sints s eq y(l)) 

then movable(interval,y) = movable(interval,y) ~ 

(diffset int movable(b,s)); else ifs eq head 

then (Vy c sints)movable(interval,y) = movable(interval,y) 

~ (diffset int movable(b,s)); end Vy; 

else (Vy e path(s)) movable(interval,y) = movable(interval,y) 

~ (diffset int movable(b,s)); end Vy; 

end Vs; end Vi; 

/* final calculations to get desired sets*/ 

(Vy e sints) predint = predecessors(y(l)) int intnodes; 

expdown(interval,y) = [int: pb € predint] 

(defavail(pb) int nokill(pb,y(l)) ~ expdown(pb,y(l))); 

nokill(interval,y) = [int: pb c predint] 

(posavail(pb) int nokill(pb,y(l)) ~ expdown(pb,y(l))); 

nocalc(interval,y) = [~: pb € predint] 

(somepath(pb) int nocalc(pb,y(l)); end Vy; return; end process; 
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The driving routine for the inner-outer process begins 

with a sequence of intervals going from basic intervals to 

more complex so that intervals(#intervals) is the single 

interval which includes the entire control flow graph. 

define inout(intervals); 

(1 <Vi< #intervals) process(intervals(i)); end Vi; 

return; end inout; 

When this routine returns we have all the information we need 

for the outer-inner pass. This pass will treat the intervals 

in reverse order, doing insertions and deletions as needed. 

define outin(intervals); external exits, safe, 

upkill, nocalc, comps, avail; 

avail= n£; avail(intervals(#intervals))=n£; safe=n£ 

(Vb € exits) safe(b) = n£; 

safe(interval(#intervals)) = comps diff 

(upkill(interval(#intervals)) ~ [~: b € exits] 

nocalc(interval(#intervals,b))); 

( #intervals > i > 1) optcess ( intervals ( i)) ; end Vi; 

return; end outin; 

The routine "optcess" computes the insert and new avail sets 

for the interval and then computes safe and avail sets for each 

block of the interval. It does this in a backwards pass through 

the nodes of the interval. 
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define optcess(interval); external insert, avail, 

successors, predecessors, nocalc, upkill, 

comps, defavail, posavail, movable, safop; 

/* calculate insert and modified avail sets*/ 

insert(interval) = comps diff avail(interval) 

int([int: s € successors(interval)] 

movable(interval,s) int(safop ~ safe(interval))); 

newavail = avail(intervai) ~ insert(interval); 

/* find avail and safe vectors for each block*/ 

safe(interval(l)) = safe(interval); 

avail(interval(l)) = newavail; 

(#intervals> Vi> 2) b = interval(i); 

avail(b) = newavail int posavail(b) ~ defavail(b); 

safe(b) = (comps diff upkill(b)) int 

[int: s € successors(b)] (comps diff nocalc(b,s) 

u if (3[y] E successors(interval) Is eq y(l)) 

then safe (y) else safe ( s)) ; end Vi; 

return; end optcess; 

This routine will provide us with the insert and avail sets 

for every interval and will prepare us for the basic block 

optimization. 


