
SETL Newsletter Number 29 
Some issues connected with 
subroutine linkage. 

May 6, 1971 
J. Schwartz 

The 1address-entity 1 issues which I am trying to explore 
(in order to build up a scheme allowing generalized left-hand 
sides in assignments) touches on certain fundamental questions 

concerning subroutine linkage style which are not too well 
comprehended by the various phrases "call-by-name", "call-by­
reference", "call-by-value" currently in circulation. To bring 
these into sharper focus, I propose the following test, which 
distinguishes various of the things that can happen in a linkage. 
A SETL-like notation is used, but of course the issues are not 

peculiar to SE'TL. 

a=O;b(l)=l;b(2)=2;i=l;j=l; 
f=(proc(x);return x;end); ,4.. to use a BALM-like notation H 
c=O;d=O; /-,<_-now for a rather conglomerate subroutine call ;;K-/ 
sub(a,a,b(l),b,i,f(j),f,j,c+d,c,d); 
/* now the body of the subroutine just called ,t-/ 
define sub(al,a2,eltofb,bb,i,valf,ff,j,cplusd,c,d); 

external a,b,f; 
a=l; 
if al~ O then print "this a call-by-value linkage"; 
al=2; 
if a~ 1 then print "this is probably a call-by-value linkage 

with delayed argument return"; 

b(l)=O; 
if eltofb ~l then print "this is call-by-value for array elements 

irrespective of how non-array elements are 
handled 11

:; 

if bb(l) ~l then print "this is call-by-value for entire compound 
data structures, a form avoided in FORTRAN 
but perhaps intended in SETL"; 



- 2 -

i=2;b(l)=l; 

if eltofb ~ 2 then print "linkage has call-by-name character, 

at least for compound stored data items"; 

i=l;bb(i)=O; 
if eltofb ~ O then print "linkage has call-by-name or call-by­

reference character for compound stored 
data items"; 

eltofb=3;/4. this assignment may not be legal %/ 
if bb(l) ~ 3 then print "we have additional evidence of call-by-

name or call-by-reference linkage character"; 
/* now do similar tests for the programmed function ~/ 
f=(proc(x);return(-x);end); /.>Jt--again using a BALM-like notation ~/ 
if valf ~ 1 then print "this is call-by-value for function references, 

possible even if array elements are handled 
differently"; 

if ff(l) ~ 1 then print "this linkage uses an unusual call-by-value 
for function arguments, which is logically con­
sistent however with a strict.call-by-value 
for other types of variables"; 

if valf ~ (-1) then print "this is very likely a call-by-name 
linkage"; 

j=2; 

if valf ~(-2) then print "additional evidence indicates that this 
is a call-by-name linkage"; 

a2=2;al=3; 
return;/* note that test below is applied after return~ 
end sub; 
if a~ 2 then print "linkage is probably extreme call-by-value 

with return of argument postponed until moment 
of return"· , 

exit; /¼ end of first test sequence -j{:-/ 



- 3 -

The following slightly more esoteric cases are also of interest. 

a=O; 

definef f(x);x=l;return O;end f; 
if (a+f(a)) ~ 1 then print "this somewhat eccentric case might 

still be described as 'left-to-right' 
evaluation order"; 

b(l)=O;b(2)=0;a=O; 
definef g(a,j);a(j)=l;return O;end g; 
if (b(l)+g(b,1)) ~ 1 and a+f(a) ~ O then print 

"the generation of 'compiler temporaries' 

can lead to subtle differences between the 
treatment of 'simple' and 'indexed' references 
to compound data structures"; 

exit; I¾ end of second test sequence.,,._; 

Various slightly more far-fetched instances having to do 
with multiple levels of subroutine calls might also behave sur­
prisingly. Recursive use of subroutines and functions might also 
show surprising features. Note for example the following case. 

sub(l); 
define sub(x); 
if x ~ 1 then sub=subl;sub(O); 

else print "this message could appear with one style of 
compiling, though it seems untoward";return;end sub; 

define subl(x); print "this message indicates the expected style 
of subroutine-to-name correspondence";end subl; 

exit;/* end of third test sequence*/ 


