
SETL Newsletter Number 29 
Some issues connected with 
subroutine linkage. 

May 6, 1971 
J. Schwartz 

The 1address-entity 1 issues which I am trying to explore 
(in order to build up a scheme allowing generalized left-hand 
sides in assignments) touches on certain fundamental questions 

concerning subroutine linkage style which are not too well 
comprehended by the various phrases "call-by-name", "call-by
reference", "call-by-value" currently in circulation. To bring 
these into sharper focus, I propose the following test, which 
distinguishes various of the things that can happen in a linkage. 
A SETL-like notation is used, but of course the issues are not 

peculiar to SE'TL. 

a=O;b(l)=l;b(2)=2;i=l;j=l; 
f=(proc(x);return x;end); ,4.. to use a BALM-like notation H 
c=O;d=O; /-,<_-now for a rather conglomerate subroutine call ;;K-/ 
sub(a,a,b(l),b,i,f(j),f,j,c+d,c,d); 
/* now the body of the subroutine just called ,t-/ 
define sub(al,a2,eltofb,bb,i,valf,ff,j,cplusd,c,d); 

external a,b,f; 
a=l; 
if al~ O then print "this a call-by-value linkage"; 
al=2; 
if a~ 1 then print "this is probably a call-by-value linkage 

with delayed argument return"; 

b(l)=O; 
if eltofb ~l then print "this is call-by-value for array elements 

irrespective of how non-array elements are 
handled 11

:; 

if bb(l) ~l then print "this is call-by-value for entire compound 
data structures, a form avoided in FORTRAN 
but perhaps intended in SETL"; 



- 2 -

i=2;b(l)=l; 

if eltofb ~ 2 then print "linkage has call-by-name character, 

at least for compound stored data items"; 

i=l;bb(i)=O; 
if eltofb ~ O then print "linkage has call-by-name or call-by

reference character for compound stored 
data items"; 

eltofb=3;/4. this assignment may not be legal %/ 
if bb(l) ~ 3 then print "we have additional evidence of call-by-

name or call-by-reference linkage character"; 
/* now do similar tests for the programmed function ~/ 
f=(proc(x);return(-x);end); /.>Jt--again using a BALM-like notation ~/ 
if valf ~ 1 then print "this is call-by-value for function references, 

possible even if array elements are handled 
differently"; 

if ff(l) ~ 1 then print "this linkage uses an unusual call-by-value 
for function arguments, which is logically con
sistent however with a strict.call-by-value 
for other types of variables"; 

if valf ~ (-1) then print "this is very likely a call-by-name 
linkage"; 

j=2; 

if valf ~(-2) then print "additional evidence indicates that this 
is a call-by-name linkage"; 

a2=2;al=3; 
return;/* note that test below is applied after return~ 
end sub; 
if a~ 2 then print "linkage is probably extreme call-by-value 

with return of argument postponed until moment 
of return"· , 

exit; /¼ end of first test sequence -j{:-/ 



- 3 -

The following slightly more esoteric cases are also of interest. 

a=O; 

definef f(x);x=l;return O;end f; 
if (a+f(a)) ~ 1 then print "this somewhat eccentric case might 

still be described as 'left-to-right' 
evaluation order"; 

b(l)=O;b(2)=0;a=O; 
definef g(a,j);a(j)=l;return O;end g; 
if (b(l)+g(b,1)) ~ 1 and a+f(a) ~ O then print 

"the generation of 'compiler temporaries' 

can lead to subtle differences between the 
treatment of 'simple' and 'indexed' references 
to compound data structures"; 

exit; I¾ end of second test sequence.,,._; 

Various slightly more far-fetched instances having to do 
with multiple levels of subroutine calls might also behave sur
prisingly. Recursive use of subroutines and functions might also 
show surprising features. Note for example the following case. 

sub(l); 
define sub(x); 
if x ~ 1 then sub=subl;sub(O); 

else print "this message could appear with one style of 
compiling, though it seems untoward";return;end sub; 

define subl(x); print "this message indicates the expected style 
of subroutine-to-name correspondence";end subl; 

exit;/* end of third test sequence*/ 


