
SETL Newsletter Number 30
Sinister calls

May 7, 1971
J. T. Schwartz

This note will suggest a method of allowing rather general

"left-hand-sides" in assignment statements. The forms allowed

will include quite general indexing operations, conditional

expressions, and calls to programmer defined functions.

Example: using the scheme to be suggested, it will be possible
first to program a function called last, which when called in

the normal way returns the last element of an n-tuple; and then

to use this function to the left of an equal sign, writing

last tupl = x

to change the final (and only the final) component of tupl.

Then, for example, by executing

X = < <l, 2, 3 >, 4, 5 >;

last hd x = 10;

print x;

one will obtain

< <l, 2, 10>, 4, 5>,

etc.
The scheme to be proposed is generally applicable to

"procedural" programming languages. It is based upon certain

general algebraic observations concerning "retrieval and
assignment 11 pairs of functions, which will be presented below.
The scheme avoids the explicit transmission of pointers, and the

complications which such transmission may lead to. The mechanism

seems to me to constitute an appropriate systematic generalization

to the left-hand sides of assignments of the standard subroutine

function linkage concepts applying to the right-hand side of an

assignment; and to be as basic as (though not necessarily as
generally useful as) these latter concepts. For this reason,
I shall call the interprocedural linkages to be suggested

"sinister calls", and call the conventional call conventions to be
used on the right-hand side of an assignment "dexter calls".

- 2 -

To stress the general nature of the considerations involved,

I shall begin with a few very general remarks. SETL belongs to

the class of "procedural" languages, that is, to those languages

which in one or another manner represent the algebra of trans

formations on a universe of stored data objects. The semantic

operations most fundamental to such languages are:

i - access to a designated portion of a stored object.
ii - modification of a designated portion of a stored

ob~ect.
iii - combination of transformations by successive appli

cation.

iv - choice of transformation to be applied depending on

a predicate of particular stored data objects.

v - combination of two or more stored objects in some
"algebraic" fashion, useful generally or for some specifically

intended application area, the outcome of this combination

process being some "output" object.

vi - repetitive application of a transformati.on until a

certain condition is established.

With these primary operations various secondary operations
may be listed; of these possibilities we shall mention only

vii - application of a given transformation to all the

subobjects of a given object (iteration-over-parts).

All the considerations in the present note will center

around operations i and ii. We call these operations retrieval

and storage operations respectively.
What gives operations this character? First consider

retrieval; and let £E. stand for an operator. If this is to be
a retrieval operator, it must in the first place be free of "side

effects". That is, if £E_ a is called once, and then again, the

same value should be returned both times.

- 3 -

Next, there should exist a storage subroutine corresponding
to the retrieval operator. This would be some subroutine, call it

(1) opstore (a,x);

such that after executing (1) we can be sure that an immediately
following call to _£E. a will return the value x. Moreover, two

successive calls to (1) should have the same effect as a single

call; and, more precisely, whenever the value of _£E. a is already
x, opstore(a,x) should be an identity transformation. This
last requirement is rather sharp, and pins opstore (a,x) closely
to £E_ a; moreover, it implies that the properly "to be a retrieval
operator" is not possessed by all operators££_. We shall in what
follows speak as if a retrieval operator .£E. determines its
storage operator uniquely.

Note the following simple retrieval and storage operations
in SETL: (some standing in the retrieval-storage relationship
only in most, but not in degenerate, cases)

1. retrieval: hd a
storage: a = if tl a eq _/l_ then x else <x, tl a>;

2. retrieval: tl a -
storas;e: a = if tl a eq _/_ then a else <hd a, x>;

7. retrieval: a(i) .,,,,.

storage: a = a lesf i with <i, X >; --
4. retrieval: afi}

storage: a = a lesf i u f<i,y>,yE xJ;

and among various other more complex examples which might be cited

5. retrieval: (for a sequence~)
[<k-n+l, a(k)>, m~k$llill}

(which might be written a[m:mm]

- 4 -

storage:

a = {pairs E, a I n (hd pair) ge m and (hd pair) le n)j

u [~k+n-1,x(k)>, l~k~fx]

(which, precisely because it is the storage operation associated
with the above retrieval operation, might be written as

a [m:mm] = x;)

A formal notion of independent storage operators helps us

pin down the intuitive idea that a storage operator should change
no more than is required by its relation to a particular retrieval

operator.
Let .2E. and~' be two retrieval operators; anticipating

the syntactic style to be developed we shall write calls on their

associated storage routines as

(2) .2.E. a = x; and (3) .2.E.' a= x;

respectively. We call .2.E. and .2E.' independent retrieval operators
if in the succession of calls

(4) y = £P. a; £F.' a= x; z = £p_ a;

the variables y and z necessarily receive the same value; provided
that the same is true when £F.' and £E_ exchange roles.

The following observation is now crucial; the composite
operator op op' is a retrieval operator; its storage routine is - -
defined by the code sequence

i. t =~a; /J where 't' is a 'compiler temporary' ;i./

11. .2E. t = x;

iii • .2.E.' a= t;

the effect of this may appropriately be represented by writing

- '.) -

(5) £E_ £E.' a = t;

Proof: (which please ponder)

If the retrieval(~ £E.' a) already gives x, then after

(1) the retrieval (£E. t) gives x also. Hence the operation (ii)

may be omitted. But therefore the retrieval (£E.' a) gives the

value t; and hence (iii) may be omitted. Therefore the whole
sequence (i,ii,iii) amounts merely to a store into a compiler
generated temporary; and is therefore equivalent to a no-operation.
Q. E. D.

The construction (i,ii,iii) may evidently be iterated, with

the following result. Let .2E,, .2.E.', ••• , £E.(n) be a sequence of

retrieval operators. Then their product~' .2E.', ••• , £E_(n) is

also a retrieval operator, and the assignment operation:

a = X

expands naturally as

(7) t(n) = £E.(n) a;

t(n-1) = .2E.(n-l)t(n);

...
t' = £E,.'t";

.2.E. t' = x· ,
.2E_rt" = t r • ,

. . .
op(n)a = t (n) ;

Note that if x = ~ ••• ~(n) a, then the middle and all
following lines in (7) are equivalent to no-ops. We shall speak
of the code sequence (7) implied by the statement (6) as unraveling
(6).

(7).
It is worth notin~ one additional feature of the expansion

I\ (n) Suppose that £E_ is a retrieval operator independent of

l
I

- b -

A A(n-1)
op, and that op, ••• , op is any sequence of retrieval

operators. Then the products

(8)
A .I\
op op'

are also independent. Indeed, in this case, the only assignment
to a in (7) that is, the last line in (7), has no effect on the
value of t;(n)a, and thus none on the value of

I\
op

More generally, if oi>(j) is independent of 2.E.(j), then

I\
op ••• ~ (j -1) cG (j) op (.j + 1) •••

~ • • • ~ (j -1) op (j)

op (n) and

op (n)

are independent. This conclusion may be proved by "algebraic"

reasoning from the previous special case, and may also be demon

strated directly.
Our conclusions up to this point may be summarized in

the following
Statement A: The set of retrieval operators associated with

the set of stored objects of a procedural programming language

forms a semigroup, associated with the language in a natural way.

The basic retrievals in SETL are the operations

The operators presently written as <~zt n> and<* z n~ which
retrieve either the n-th component of an n-tuple or the hd of

this component ought also to be mentioneo. (A storage and a

retrieval sequence corresponding to this operator are given

explicitly below.) In this note we shall use the variant
notation tupl[n] for~~ n> tupl, and tupl[-n] for~ zt n> tupl.
Note then that since the product ot' retrieval operators is a

retrieval operator, it is reasonable to allow notations obtained

- 7 -

from the preceding notations by "compounding", as for example in

f(a,b)[c,d}[n] (x) [-n];

Such forms may also be allowed freely on the left-hand side of

an assignment, and will have a significance deducible from the

discussion above.
Note that there exist the following algebraic relations

between these retrieval operators:

f[a,b}[c,d}~fta,b,c,d};
f[a,b}(c)= f(a,b,c);

f [-n] [-m] ·= f [-n-m+l] ;

f[-n] [m] ~ f[-n-m+l].

It is reasonable to allow

to represent the composite operator

f [m] [m
2

] , ••• , [m] •
1 n

We may also consider retrieval operators ~(p 1 , ..• , pn)
depending on several parameters, and the storage subroutines
opstore(p 1 , ... , pn,a,x) associated with them. It might be
better to write the retrieval as op(p 1, ... , pn,a); showing
the "retrieval target" a along with all the other parameters.

Then we require that if the function op(p 1, ... , pn,a) has the
value x, then the subroutine opstore(p 1, ... , pn,a,x) acts as
an identity operator. In this case, a call to opstore may be
written in the form

(9) op (p , .•• , p n, a) = x ;
1

though other syntactic forms (both for the left- and the right

hand sides) may be preferred in particular cases.

- 8 -

A SETL example of a usage like (9) is implicit in the

fifth retrieval-storage pair discussed above. Another case

of interest has to do with the components of n-tuples. Here we
can define associated storage and retrieval operators:

retrieval: definef comp(m,tupl); return if m !:S 1 then hd tupl
else if~ pair tupl then tupl else comp(m-1,tupl); end comp;

storage: define compstore(m,tupl,x); if m ~ 1 then hd tupl=x

else if n pair tupl then tupl=x else compstore(m-1,tupl,x);
end compstore;

The linkage conventions which are to be discussed below
will make the explicit appearance of the second of the above
routines unnecessary, deducing its features automatically from

the corresponding featun:s of the function comp.
As with simple retrieval operators, so in the case of

retrieval operators with parameters the composition of two
retrieval operators is a retrieval operator. The natural inter
pretation of

(10) op(p,op'(q,a)) = x

is

(11) 1~ t= op ' (q, a) ;
ii~ op(p,t)=x;

iii~ op 1 (q, a) =t;
cf. (i,ii,iii) and (7) • Note in particular that if

(12) x = op(p,op'(q,a)),

then after (11.i~ is executed op(p,t) has the value x and op'(q,a)
has the value t; hence (11.i1) and (11.iii~ may be omitted. This
is to say that the whole sequence (11) reduces to a no-operation.

- 'j -

Note also that the unraveling (11) of (10) treats all the

arguments of £E_ and~• on an equal footing, making it unnecessary

to distinguish between a single "principal argument" and a remaining

set of "parameters". The following observation emphasizes this

point: the routine

(13) definef select(f,g,j); return if j gt O then f(j) else
g(-j); end select;

is a retrieval function. The associated storage function may be

written simply as

(14) define selectstore(f,g,j,x); if j ~ 0 then f(j)=x else

g{-j) = x; end selectstore;

Having noticed this fact, we may for example assign meaning

in a standard way to the statement

(15) select(f,select(g,h,i),j) = x.

Note that the value of

select(f,select(g,h,i),j)

may be expressed as follows:

if j gt O then f(j) else if i gt O then g(i)(-j)
else h(-i)(-j).

The reader may verify that if (15) is unraveled in accor
dance with the convention that has been suggested it leads to
a sequence of operations equivalent to the statement

if j gt O then f(j)=x; else if i gt O then g(i)(-j)=x; else

h(-i) (-j) = x;; ~

10

Statements of the form (15) may in certain cases be

ambiguous; a fuller discussion of this problem, together with

a suggested method of removing the ambiguity, will be found below.
A number of other useful generalizations can be made.

Suppose that EE_ is a retrieval operator, that fg is a one-to-one

mapping, and that~ is a one-to-one mapping inverse to _f£. Then

~ £E_ is a retrieval operator also; the storage operation that

corresponds to it is simply

(16) ~a= £f x;

The use of 'recodings' in this way may also be related to

our general sinister expansion procedures. Suppose that fg

and gf are related in the manner just described. Then x = fg a

may be regarded as a retrieval whose corresponding storage

operator is a= gf x; . The formal connection between these

two operators required by the general definition of the retrieval

storage relationship is certainly satisfied. Thus we may

write a= gf x as

fg a= x;

This special 'storage operation' differs from others in that it

changes a completely, not merely partially. That is, in any

code sequence

a= expn;

fg a= x;

the first line is superfluous, since a is dead on entry to the

second line. Suppose that we are working with a compiler that

can detect this fact. Then, in our normal expansion

t = op a;

fg t = x· ,

op a = t· ,

of

fg op a = x;

the first line will be eliminated, leaving precisely (16). Thus

'recoding' operators may be treated, in an entirely satisfactory

fashion, as retrieval operators of a special kind.

11

At the level of hardware, the fact that storage and retrieval

may involve extensive recoding; the increasingly complex trans

formations, reshufflings, etc., that affect "machine level"

storage operations do not affect the programmer's fixed picture

of the basic logic of these operations. It can be highly

advantageous, at the programming-language level also, to have

a similar facility. We may also take the hint from the hardware

analogy that when we say that

(17) op a= x

is equivalent to a no-operation after

(18)

has been performed, we may in fact be ignoring very extensive

"behind the scenes" operations (like the "paging" operations

which hardware may perform). A "no-operation" in the sense

intended is merely an operation irrelevant to all those aspects

of an algorithm with which one must be concerned.

12

It may also be remarked that the 'unraveling' process

discussed above may be carried over to more general nests of

sinister calls. Consider, for example, the storage function

~eleQt described by (13} and (14} above. It is heuristically

clear that one ought to be able to assign a reasonable meaning to

(19} select(select(f,g,i), select(ff,gg,i), j) = x; .

If the sinister call appearing on the left were instead dexter,

it would retrieve

if j gt O then if i gt O then f(i) else g(-i)

else if i ~ 0 then ff(i) else gg(i)

making it plain what storage operation (19) ought to represent.

The appropriate way to unravel (19) is as follows:

(20) i. t = select(f,g,i)

ii. tt = select (ff, gg, ii) ;

iii. select(t,tt,j) = x· ,

iv. select(f,g,i) = t· ,

v. select (ff, gg, i) = tt;

Note then that the sequence (20) is appropriately related to the

dexter call

(21) x = select(select(f,g,i), select(ff,gg,i) ,j);

Indeed, if (21) is executed immediately before (20), then after

(20.i} and (20.ii) have been executed, we have

(22) select(t,tt,j) = x

so that (20.iii) is equivalent to a no-op, and may be removed.

But then (20.iv} is a no-op, since preceded by (20.i); and

(20.v) a no-op, since preceded by (20.ii). The storage-retrieval

relationship between (20) and (21) is therefore plain.

The formal argument just given plainly applies to arbitrary

combinations of retrieval functions by nesting; this remark leads

to the following substantial generalization of the fundamental

statement A made above.

13

Statement B: The family of multi-parameter retrieval operators

associated with the set of stored objects of a procedural

programming language is closed under theL'operation of substitution.

Note also that all of the above applies to 'parameterless'

retrieval functions; functions of this kind might for example

be associated with retrievals from (and stores into) certain

behind-the-scenes system attributes. Consider for example the

storage-retrieval pair defined as follows:

definef place; return if a gt O then b else c; end place;

define storeplace(x); if a gt O then b = x; else c=x;

end storeplace;

The appropriate unraveling of

(2 3)

is then

(2 4)

op place= x;

t = place;

~E._ t = X;

place = t;

very much in the manner of the prototype sequence (U i-ii-iii).

Yet another property of our procedure for unraveling a nested

sinister call is worth noting. If we consider the sinister call

(2 5) select(f,g,select(ff,gg,i)) = x;

and note from the definition (13) of leleQt that this function

does not modify its third argument, it is apparent that the most

appropriate expansion of (25) is

(2 6) t = select(ff ,gg,i);

select(f,g,t) = x;

That is, one would want to regard the inner call to ~eleQt

as being implicitly dexter.

I

Our normal sinister call expansion, applied mechanically,

would instead give

(27) i. t = select(ff,gg,i)

ii. select(f ,g,t) = x;

iii. select(ff,gg,i) = t;

14

But (26) and (27) are equivalent! Indeed, since (27.ii) does not

change t, it follows that (27.i) and (27.iii) remain mutually

inverse retrieval and storage calls, so that (27.iii} is a

no-operation. Aside therefore from implications concerning

efficiency, the standard sinister expansion (27) is perfectly

acceptable. Note also that an optimizer capable of detecting

the fact that ~elect does not vary its left-hand side could

automatically exploit this fact to suppress (27.iii) as redundant.

The procedure for expanding sinister calls suggested by (6)-(7)

and (19)-(20} is thus general and unambiguous.

In some cases, the storage operation corresponding

retrieval may be deduced from the form of the latter.

to a

In other

cases, this may be entirely impossible, since a storage operation

may set in motion some special train of actions (such as a call

to a behind-the-scenes 'allocate' function) impossible to

anticipate merely from the form of the associated retrieval

operation. In either case, however, it is apt to be convenient

to keep the storage and the retrieval code together, as a good

deal of this code, if not all of it, is likely to be common

to both situations. The following syntactic proposal is intended

to conform to these principles.

1. Explicit store and load blocks. A function which performs

a retrieval operation may contain ~tonage bloc~~ and load bloc~~

The form of a load block is

(2 8) (load) block;

the load block may also be terminated in any of the styles

(29) (load) block end;

(load) block end load;

15

The form of a store block is

(30) (store name) block;

which may also be

(31) (store name) block end;

(store name) block end name;

Here name. is any legitimate SETL name. Code not belonging either

to a store or a load block is called normal code.

Whenever a function is called, a 1-bit flag signifying whether

the call is a dexter or a sinister call will be transmitted.

Normal code will be executed in any case. S~o~e bfoQQ~ will be

bypa~~e.d if the call is dexter; load bfoQk~ bypassed if the

call is sinister.

2. Return statements within load blocs, store blocks and

normal code. The form of a return statement within a load block

will be that normal for return statements within a function.

The form of a return statement within a store block will simply

be of the form appropriate for a subroutine return. Within the

store block (30), name. will designate the quantity to be stored,

which is available as an implicit argument of the call, trans

mitted when a sinister call to a function is initiated, but

appearing by syntactic convention in the store block header

rather than among the arguments listed in the function header.

Note also that the sequence

return a;

in a load block has as its most obvious correspondent in a store

block the sequence

a= name; return;

Return statements in normal code will have the form appropriate

for function returns, but will be expanded in a somewhat unconven

tional fashion. Each statement

(32) return expn;

occurring in a normal code section will be syntactically analyzed,

and expanded into two blocks of code, the first being a load block;

16

the second being a store block.

to (32) has simply the form

'Jhe load block corresponding

(33) (load) return expn;;

The store block corresponding to (32) involves a more elaborate

transformation of (32). W~ explain this in 'top down' fashion.

a. The store block corresponding to (32) has the form

(34) (store name) block; return;;

whose bfoQk is a code sequence determined by the syntactic form

of expn, in a manner to be explained. We call bfoQk the

QOhhe~ponding QOde of expn.

b. If expn has the conditional form

(35) if cond
1

then expn 1 else if cond 2 then expn 2 ... else expnk

Then the corresponding code of (35) is

(36) if cond 1 then act 1 else if cond 2 then act 2 ... else actk,

where act. is the corresponding code of act ..
J J

c. If expn is a call on a programmer-defined prefix function,

and thus has the form

(3 7)

then the code corresponding to (37) is that obtained by expanding

the sinister call

(38) f(expn 1 , ... ,expnk) = name;

here name is the variable name appearing in the header of the

store block in which 07) is imbedded. We suppose however that

in this expansion every superfluous sinister call

(3 9) expn . = t . ;
J J

corresponding to an argument off which is not modified by f

is suppressed; cf. the preceding discussion centering upon

formulae {25)-(27).

d. The preceding remark (c) may evidently be carried over

to programmer-defined functions defined in infix or prefix

form, and to programmer-defined functions of zero arguments

17

as well. We extend it also to all those basic SETL operations

which are retrieval-operators. These are

hd a, t~ a, a[n] with integer n, a(x), a{x}, etc.

e. If the principal operator in an expression is a basic

SETL operation which is not a retrieval, the expression is

disqualified. This remark applies to such operations as

{a,b}, a+b, etc.

The code corresponding to a disqualified expression is

error;

where the function invoked is a system error routine.

To give a composite example, we note that the store block

corresponding to the return statement

return if a gt 0 then progf(a) [progf(b)] else O;

is

(store name) if a~ then t=progf(a); tt=progf(b)

t[tt]=name; progf(a)=t; else error;;

It is also worth noting the operation

(4 0) y = <a,b>

is a two-parameter retrieval. The associated storage sequence is

(41) a= hd x;

b t.Q. x;

Indeed, if (40) has just been performed, (41) amounts to a

no-operation; while if (41) has just been performed, x being

any expression, the operation (40) will have y = x as its effect.

Thus (41) is the natural way to interpret the assignment statement

(4 2) <a,b> = x; .

18

That is, the SETL multiple assignment statement fits naturally

into the scheme described here. The meaning assigned to complex

nested assignments like

(43) <<a,b>,c> = x;

may now be derived by our general expansion rules.

These observations make it entirely plain that we may freely

allow 'multiple' sinister calls, corresponding to the SETL

multiple assignment form

<a,b> = x;.

For example,

<select(f,g,i), select(ff,gg,i) > = x;

expands very simply as

select(f,g,i) = hd x; select(ff,gg,i) = tl x; .

Having now described in sufficient detail the syntactic and

semantic mechanisms involved in sinister calls, it is

appropriate to give various examples of their use. We begin

with examples not involving the explicit use of store or load

blocks. Our first example is really intended for sinister use

only. Called as

(44} newtop stack= x

it places x on a stack. If used in a dexter call, it returns

the value D. The definition is simply

19

definefnewtop stack; return stack(#stack+l); end newtop;

The following slightly more elaborate example gives a routine

which will place a specified value in the first integer for which

a sequence seq, defined on a sparse subset of the integers, is

undefined.

definef slot seq; return if 1 ::_ 3 [n] .s_ #seq I seq (n) eq n then

seq(n) else seq(#seq+l); end slot;

Note then that if the values of seq are

1,2,3,n,n,4, .•.

then execution of

slot seq = 10

gives seq the values

1,2,3,10,n 1 4, ...

Suppose that we take a binary tree to be represented by a triple

<node,t,r>, where t is the left descendant function in the tree

and r is the right descendant function in the tree. The following

function will permit a new element x to be hung at the lower

leftmost element below node; to do this, we have only to write

leftchild tree= x;

The required definition is simply as follows:

definef leftchild tree; <node,t,r> = tree;

(while t(node) ne D) node= l(node);

return tree[2] (node); /* square-bracketed integers used for tuple

components*/ end leftchild;

The following function, which allows the last component of an

n-tuple to be set to a value x by executing

last tupl = x;

shows that recursive sequences of sinister calls can be useful.

definef last tupl; return if tupl eq nor atom tupl then

tupl else last ti tupl; end last;

20

Next we consider a routine which accomplishes associative

or hashe~ addressing, storing attributes of character strings.

The individual attributes are numbered.

definer m attr name; /*fetches-stores attribute

of a given name*//* as in hashed symbol table*/

/* hash converts a string to a hashed integer, which serves

as an index to the table 'firsloc', which contains (either O or)

an index to the table 'stack', which has entries

<chainpointer (or 0), firstchar,

numofchars, attribute entry>

here 'firstchar' serves to locate the first character of the token,

packed into a packed character array 'string'; 'numofchars' is

again the token length, 'attribute entry' contains the various

attributes of the name*/

start= hash name; if (loc is firsloc(start)) ne 0

then oldloc = loc; go to lookfor;

/*else*/ lookup(start) = loc is (#stack+l);

newentry: nl =~string+ l; n2 = len name; string=string+name;

newtop stack= <0,nl,n2,initial>;

/* where initial returns the initial setting of an attribute

entry, corresponding to the 'all attributes undefined'

condition*/

ret: return matt (stack(loc)[-4]);

/* note here that we are using a[-j] in place of the former

notation<* zt 4>a */

lookfor: (while loc ne O doing oldloc=loc; loc=hd stack(loc);)

if n2 first ((len string-nl) last string)

/*bah*/ eq token

then go to ret; end if; end while;

hd (stack(oldloc)) =#stack+ l; go to newentry;

end attr;

One may now write

m attr name= val;

with the expected results.

The details of the retrieval function j att k control

the detailed manner in which particular attributes will be

stored. This point will be discussed more expansively below.

Here we may simply remark that if the attribute entry is

simply a k-tuple of attribute values, we may simply write

'
definef j att k; return k[j]; end~;

definer initial; return <O, ... ,O>; end initial;

Now we give some examples involving the explicit use of

store and load blocks. The first is a modified newtop
function, intended for use with tuples. When called in the

fashion (44), it adds x as the first component of a tuple.

The necessary definition is simply

21

define£ newtop tupl; (load) return n;; (store x) tupl=<x,tupl>;

return;; end newtop;

The reader will find it interesting to write a function newfa~t
which when called in the form

newlast tupl = x;

adds x as the (next-to) last component of a null-terminated tuple.

The following more complex example will show the manner in

which multiple sinister calls may be used. We consider a

hypothetical (systems-) programming situation in which names

will be encountered, and in which each name may have one of a

substantial number of attributes. Certain attributes of a

name may be undefined, however. We suppose those attributes

of a name which are defined to be character strings, and shall

describe a treatment of this situation in which these character

strings are maintained locally as long as the total number of

characters which they involve does not exceed a certain limit

When this total becomes excessive, however, the character

strings are assigned an integer identifier with a fixed number

of bits, and moved to a packed storage array. However, if the

total space needed to store these integers itself becomes

excessive, only some of them are maintained locally, while the

others are moved to an overflow area in the packed storage

array, where they are referenced by a pointer stored locally.

The last few sentences clearly describe a fairly elaborate

storage mechanism. It is therefore worth emphasing that this

whole mechanism can be hidden from a programmer using it, who

can merely write

j attr name= x;

to assign the j-th attribute of name, and use the expression

j attr name

to fetch the value of this attribute.

The behind-the-scenes code thus invoked is as follows.

The ~r routine is precisely the hash table routine shown

above. The inner retrieval routine att is different, however.

22

We shall suppose that a maximum of nats distinct attributes

are to be accommodated, and that the 'attribute entry' appearing

in the routine attr is a logical quadruple, consisting of the

following items:

a. lstring, containing either locally stored character

strings, or integers (represented by character strings) refer

encing character strings in a packed array (perhaps indirectly);

b. lflagL signalling which of these two possibilities

actually holds;

c. deflag, a group of flags, nats in number, indicating

which of the total set of possible attributes are actually defined.

The j-th of these flags is represented as

j deflag: entry

d. ~nyints, a flag which is set if so many integers have

been stored that the use of an integer overflow area has become

necessary.

23

Various significant conventions concerning the use of cer-

ta.inother pointers will emerge as we work our way into the

code below. In all of this it is worth noting that the

techniques adopted are, generally speaking, those appropriate

to a situation in which, even though a fairly large number

of attributes can be defined for any item, most items will

in fact have only a few attributes actually defined.

definef j att entry, jkeep=j;

/* first examine for various degenerate cases*/

(store newstring) if newstring ~ nulc then

if n j deflag entry then return;;

else/* if nonnull newstring */new= if(j deflag entry eq f)

then t else!;/* post new entry if appropriate*/

end if newstring; end store;

(load) if~ (j deflag entry) then return nu1c;; new=!; end load;

/* now count the number of preceding entries that are defined,

in order to get the appropriate 'internal address' of the

information sought*/

ndefs = [+ : 1 ::_ j j < J I j j de flag entry] 1 + 1;

/* and look up the information in a 'submemory' of appropriate

type, depending on the flag settings*/

return if ~flag entry then ndefs locstring lstring entry

else ndefs intof lstring entry;

end att;

/* next we give the routines which define the various types

of 'submemory' used in the above*/

/* first an auxiliary routine for retrieving the j-th word in a

blank-delimited string memory*/

definef j word string;/* locate start of j-th word*/

be= l; (1 ~ Vk < j) (while string(bc) ne ' ') bc=bc+l;; bc=bc+l;

end ~k; ec=bc; (while string(ec) ne ' ') ec=ec+l;; ec=ec-1;

(load) return string(bc,ec);

(store newstring) lencng = len newstring - (ec-bc+l}

if newstring ~ nulc then

string=string(l: (bc-1)) + newstring +

string(ec+l: len string -(0 ~,lencng))+(O max -lencng)*'

else/* null word case*/ string= string(l (bc-1))

I • ,

+ string(ec+2, len string) + (lencng+l)*' '; end if newstring;

end store;

end word;

/* now the string store-load fu~ction, with the appropriate

overflow actions, and the special actions to be used when

a new entry must be made*/

definef j locstring string; att external lflag, deflag, entry,

nats, new, jkeep;

/* retrieval is simple*/

(load) return j word string;

/* storage is more complex, as it involves insertion and

possible restructuring of the data form of an entry*/

(store newstring) if n new go to notnew;;

/* insertion case. first count all characters present*/

nc = [+: 1 < Vjj < nats I jj deflag entry and jj ~ jkeep]

(~(jj word string)+l) ;;

/* make insertion if new element+ blank will fit*/

jkeep deflag entry= t;

if (nc+l+len newstring) tt maxchars /* 'maxchars' is the

maximum number of characters that can be accommodated locally*/

then j word string= newstring + ' '+ j word string; return;;

/* else must convert to packed integer format; it is convenient

to think of this as a matter of putting all the items with which

we are concerned into a 'memory' organized according to the

intof principle*/

do transfer; return;

24

block transfer; lflag entry= f; /* indicating transition

to new format*/ newst = initialint /* starting an 'empty

25

memory' or 'workspace' for building up the required code format*/

jj=l; (while jj word string~ nulc doing jj=jj+l;)

jj intof newst = jj word string;; string= newst;

j intof string= newstring; end transfer;

[notnew:] /* not a new entry*/ if len newstring tt len(j word

string) then j word string= newstring;

if newstring ~ nulc then jkeep deflag entry =f;; return;;

/* else will expand.count the characters already present*/ else

nc = [+: 1 < Vjj ~ nats jj deflag entry] (len(jj ~~ string)+l);

/* if the revised string will fit, merely make insertion*/

if(nc+len newstring -len(j word string)) tt maxchars then

j word string= newstring; return;;

/* otherwise convert*/ do transfer; return; end if len;

end locstring;

/* now we give the routine which fetches and retrieves attributes

represented indirectly using integer addresses (coded as

character strings) which reference the packed character

array called 'string' in the basic hashing routine 'attr' */

/* 'str' is our coded string of addresses*/

definef j intof str; att external new,deflag, entry, jkeep;

attr external string;

(load) <start,num> = j slot str;

return edited string(start, start+num-1) end load;

definef edited token; nc=l; (while token(nc) ne ' ') nc=nc+l;

(if nc eq len token the quit;; return token(l: nc-1); end edited;

/* the corresponding store procedure will have to check to see

whether the attribute being stored will fit in the place avail

able for it. if not, a new place at the end of 'string'

will be taken*/

(store newstring) /* is this a new attribute*/

if~ new then go to notnew;; /*else*/ jkeep deflag entry=!;

[newlike:] j slot str = <len string+l, len newstring>;

string= string+ newstring; return;

[notnew:] if newstring eq nulc then j slot str=<O,O>;

jkeep deflag entry= f; return;;

/* else check to see if 'newstring' will fit*/

<start,nc> = j slot str;

if nc ge (i is len newstring) then string(start: start+nc-1)

= newstring + (nc-i)*' '; return;;

/* else too big to fit. put at end of packed string*/

go to newlike; end store newstring; end intof;

/* next follows the 'slot' function which handles the coded

addresses used above*/

define£ j slot str; /* once more,'str' is our coded string

of addresses, while 'string' is the packed character array

introduced in 'attr' */

/* this is our approach: each 'slot' will be of fixed

length. it will be in the condition <O,O> if unused. when a

new element is to be stored, an entry will be pushed into an

unused location if possible, otherwise an overilow area will be

created. if an overflow area itself overflows, then a new

overflow area twice the size of the old will be created, and

the old entries placed at its bottom. note also that if the

manyints flag is set, the first slot in str contains a pointer

to the overflow area;

but the access function 'field' hides the effects

of this*/

att external manyints, entry, new;

if new then go to newslot;; /* else not new. scan to

appropriate location*/

loc = l; (while (loc field str) eq <O,O>) loc = loc+l;;

26

(1 ~ Vjj < j) loc=loc+l; (while(loc field str) eq <O,O>) loc=loc+l;;

end Vjj; return loc field str;

[newslot:] /* here we determine whether the address desired

is in the available range*/

totslots = if manyint entry then locslots + numslots str-1

2lse locslots;

/* 'numslots' fetches the number of 'overflow slots' that

have already been created*/

if j ~t totslots then go to expand;;

[putin:] if j gt 1 then go to jbig;;

/* else find first blank, and move everything up to it*/

loc=l; (while (loc field str) ne <O,O>) loc=loc+l;;

moveup(l,loc); return 1 field str;

[expand:] if manyint entry go to ismany;;

/* here an overflow area is being created for the first time*/

<start,nc> = <len string +l, len str>;

sizhead = len str - sizslot;

/* 'sizslot' gives the number of characters in a single 'slot*/

newst = str (sizhead +l, len str) + sizhead ' ';

string= string+ newst; str = sizslot ' '+ str(l,sizhead)

1 field str = <start,nc>;

manyint entry= t;

/* thereby switching to new mode of reference*/ go to putin;

[ismany:] /* here we must perform expansion when an

overflow area already exists*/

<start,nc> = <len string+l, 2*numslots str>;

/* temporarily drop flag to alter reference mode*/

manyints etnry = !; <oldstart,oldnc> = 1 ~d str;

1 field str = <start,nc>; manyints entry=·£;

string= string+string(oldstart, oldstart+oldnc-1)+ oldnc*'

go to putin;

I • ,

27

fjbig:] /* scan to (j-l}st characte~, keeping account of

last blank;

loc=l; lastbl = ~; (while(loc field str) ~ <O,O>) lastbl=loc;

loc=loc+l;; (1 < Vjj < j-11 loc=loc+l;

(while(loc field str) eq <O,O>) lastbl=loc;loc= loc+l;;

end Vjj; /* if next character is blank, make insertion there*/

if(loc+l) field str eq <O,O> then return (loc+l) field str;;

/* otherwise pack down to last blank, if any*/

if lastbl ne ~ then movedown(lastbl,loc);

return loc field str;;

/* if no preceding blank, find next blank and move up*/

loc2 = loc; (while(loc2 field str) ne <O,O>) loc2=loc2+1;;

move up (loc, loc2) ; return loc field str;

end slot;

/* now miscellaneous auxiliary routines*/

define movup(jlow,jhi) ; slot external str;

(jhi > Vn > jlow} (n+l) field str = n field str;;

return; end moveup;

define movedown(jlow,jhi); slot external str;

(jlow < \ln ~ jhi) (n-1) field str = n field str;; return;

end movedown;

define numslots str; /*fetches-stores number of slots from

first slot */

att external manyints, entry;

/* temporarily drop flag to alter reference mode*/

manyints entry= f; < ,lopart> = 1 field str;

manyints entry= t; return lopart/sizslot; end numslots;

28

/* next the basic slot-field storage-retrieval function*/

definef j field str; att external manyints, entry;

attr external string; slot external sizslot;

if n manyints entry then return convert str((j-l)*sizslot+l,

j * sizslot) ; ;

/* else might be local reference, shifted*/

if(j+l) ~~((~~ str) / sizslot) then

return convert str (j * sizslot + 1, (j+l) * sizslot);;

/* else is remote reference*/

jover = j + 1 - ((len str) / sizslot) ;

<start,-> = convert str (l ,sizslot) ;

29

return convert string((jover-l)*sizslot+l+start,jover*sizslot+start);

end field;

define£ convert cslot; /* the conversion used just above,

showing the manner in which a 1-1 conversion is represented

as a store-load pair*/

/* for simplicity, we suppose an octal representation,

through of course a denser representation is possible*/

(load) /* converts from octal characters to binary pair*/

slot external sizslot;

return <oct cslot(l,hpend), oct cslot(hpend,sizslot)>;

/* here 'hpend' is the number of characters in the 'high portion'

of a slot*/ end load;

(store octpair) /* performs the reverse conversion*/

cslot = (hpend poet hd octpair) + (sizslot-hpend}poct tl octapir)

return; end sto~e;

/* the routine poet does octal conversion with padding

to a specified length*/

end convert;

def inef j poc!_ n; return (j-len oct n) 'O' + oct n; end poet;

/* now the function which initializes a string of specified

length to the initial 'all zeros' condition expected by

the routine locstring */

definef initialint; slot external sizslot, locslots;

return sizslot * locslots *'0'; end initialint;

Summary and anticipations:

Reviewing the above, we see that we may be reasonably

well-satisfied with the manner in which our sinister call

conventions have served to isolate from each other the decisions

concerning storage technique which had to be taken to build up

the rather complex storage mechanism described by the preceding

algorithm. The simplifications thus attained open the way

for the following observation, which may be a pointer to

30

certain still more significant improvements in the way in which

we are able to look at this very important memory management area.

In building up the memory management structure described by

the overall package of programs attr-att-locstring-intof-word

slot we are in effect connecting together a set of mechanisms,

each of which calls upon certain of the others for services,

and which all together define the more complex mechanism that

is the total memory management system. It should be possible,

by classifying the types of submechanisms that are used, and

by establishing standardized linkages between them, to build up

a 'memory management language' which enables memory management

techniques to be specified in a very compressed and convenient

manner. This is a point very much deserving of future study,

and one that is closely connected with some of the speculations

concerning data-description languages which are to be found in

newsletter 31.

To be somewhat more specific, we may note that the hashing

routine attr described above functions as an 'address-transformer'.

That is, it is addressed by two parameters 'm' and 'name', of

which the latter may be an arbitrarily long character string.

It then addresses the 'second level' mechanism 'att' with two

addresses 'm' and 'j', both integers. In order to perform

this service, 'attr' itself requires a number of supporting

storage functions:

i. a storage 'firsloc', in which a fixed number of integers

may be stored.

ii. a storage 'string', in which strings of arbitrary

length may be stored, and in which they may be addressed by

a pair of integers.

iii. a storage 'stack', in which triples consisting of an

address within 'att', an address within 'string' and

a self-reference address within 'stack' itself may be stored.

The second level routine 'att' itself then functions as an

address transformer, and, rather more specifically, as a type

of 'compressor'. Programmed somewhat more rationally than

we have done, it would be addressed by two integer parameters

m and k, and would then call upon the third level routine

'locstring', passing parameters j and k, j calculated from m

but generally varying in a smaller range. For this purpose,

'att' requires the supporting storage function 'deflag', which,

for each k, stores a vector of a number of bits equal to the

range of m, etc.

Sinister calls and programmer defined object types.

The sinister call mechanism seems to harmonize rather well

with the syntactic mechanisms presently contemplated for use

in connection with programmer-defined object types. A few

points of specific influence seem to occur, however; these will

be described in a subsequent newsletter, proposing syntactic

forms to be used in connection with object types.

31

