
SETL Newsletter #31

An additional preliminary remark

on the importance of "object types"

for SETL, with some reflections on the notion

of "data structure language".

May 10, 1971

J. Schwartz

Newsletter 26 notes that the general 'decision postponement'

principle makes it desirable to include various programmer

definable "object types" in SETL, and to allow the various basic

SETL operations to be interpreted in a manner depending on the

type of the object concerned. This point deserves to be under

scored, as important issues relating abstract to concrete

algorithms are involved.

If p110grammer definable object types are provided, then

fixed-size (or even variable-size) bit-strings, when designated

as having some particular object-type, can be taken as the argu

ments of particular SETL operations. Example: a bit string

2000 words in length and having some appropriate initial layout

might be designated as being of the type 'set-of-string-triples

with-hashed-access'. Then the operations

a with x, 3 a,

and perhaps

(\/ X € a) ,
etc., could be defined for objects of this type. A given SETL

algorithm might then run considerably more efficiently if certain

of its key objects were merely initialized to be of an appropriate

special type, rather than of the standard SETL default type 1 0 1
•

This could be a large step toward briding the gap between SETL

and languages of lower level.

1. Substantially increased efficiency might result from

appropriate supplements to, rather than changes in, the text

of a given SETL algorithm.

2. A 'supplemented algorithm' consisting of a basic SETL

algorithm plus the extra text defining the manner in which the

operations of that algorithm were to be realized brings one much
closer to the full specification of an algorithm in a lower level

SETL Newsletter #31 -2-

language than does a SETL algorithm unsupplemented. Thus

'object types' may provide an important intermediate step to

the 'two-stage' programming technique envisaged in connection

with SETL.

Note that 'error returns' having no significance at the basic

SETL level may be associated with specialized object-types which

in other respects are intended as replacements for more general

SETL objects. Thus it may be impossible to insert more than

1000 triples in a given 'set-like' object, it may be impossible

to insert any string triple containing more than 10 characters

in total, etc. Then error conditions might produce characteristic

'overflow' and 'illegal condition' messages, and terminate

execution.

To work out the program that the above remarks suggest

would be to build up an 'object-type library' consisting of

various useful object types, together with code defining the

manner in which the basic SETL operations are to be applied to

those object types. Some of the issues and problems which such

a plan might imply will be touched upon below. Before that,

however, some words concerning optimization, in the situation

that would result from the implementation of such a plan.

A crude implementation would involve a great many conditional

transfers during execution, corresponding to tests for the types

of the data objects involved in operations. An optimizer might

deduce the types from the code, thereby bypassing many of these

tests. Supplementary type-declarations, which could aid the

optimizer in its work, would be a reasonable feature. An

optimizer ought also look for combinations of operations which

can be performed with special efficiency; especially when such

combinations are of very frequent use. E.g. indexed stores

deserve better treatment than is implied by the sequence

f = f lesf x with <x,a>

for f(x) a, etc.

SETL Newsletter #31 -3-

Note also that if the scheme described is to allow gains in

efficiency over pure SETL, it is important to provide efficient

modes of access to portions of atoms of type bit-string and

character-string. The presently specified SETL operations are

deficient in this regard. A string-hashing function is desirable

also.

Plainly, the object types will have to allow numerical and

other type parameters, so that for example should be able

to call an object a "hash table of k-character words with 8-bit

hash entry to an array of 1 bytes" etc. Another example is

"bit-string represented set of objects indexed by tablet".

Note in this last case the importance of treating union, inter

section, and complement directly, and not merely as programmed

compound operations: a special case of the observation concerning

optimization made above.

Consider as a more specific example of what is envisaged the

possibility of declaring a set to be a 'sequence' seq of 'character

strings of length at most 10 characters, of total size at most

1000 items, with implicit first pair components'. This might

correspond to a SETL character string 10,000 characters long,

broken into 10-character fields. The allowable 'element' type

for this 'sequence' would then be a pair <n,string>, n being an

integer and string a character string no more than 10 characters

long. We suppose for the sake of simplicity that the sequence

can have no 'gaps'. ThEnimplicitly associated with the sequence

is an integer jtop. The various basic SETL operations now should

have the following interpretation:

A. set with <n,string>;

means

if n ~~ (jtop+l) or (len string) 9:!_ 10 ~ n gt 1000

then return error; else jtop = jtop+l;

seq[(l0*n-9): l0*n] =string+ (10 - len string) * '

return seq;

I • ,

SETL Newsletter #31 -4-

B. 3 seq

means

c.
return <jtop, seq[{l0*jtop-9): l0*jtop]>;

seq less <n,string>

means

if nit jtop then return error; else if n eq 0 then

then return error; else if n ~ jtop then jtop=jtop-1;

return seq; else return seq;

D.

means

seq{n) = x;

if n gt (jtop+l) or n tt 0 then callerror;

else if n eq{jtop+l)then seq = seq with <n,x>; return;

else seq[{l0*n-9): l0*n] = x+{l0-len x)* ' ' ;

return;

and so forth.

If it is safe to assume that none of the errors guarded

against can actually occur, or if built-in SETL features would

in any case give sufficient error indication, some of the error

tests might be omitted.

Note that important questions emerge here concerning the

situations in which 'independent copies' must be created;

questions with profound efficiency implications. A few words

will be said about these questions below.

The technique suggested above stands in an interesting

relationship to some of the 'memory management' ideas which are

under consideration for implementation in LITTLE. 'Low-level'

object types of the kind that we have been discussing will

normally be represented by bit-strings, either fixed or variable

in length, and if variable probably growing by addition at their

upper boundary. (Since this is the case efficiently implementable

in a lower level language.) Bit strings used in this way

may be called a~nay~. One might then imagine declarations

SETL Newsletter #31 -5-

(belonging, it is true, to an implementation level sufficiently

low as to be barely visible from SETL) which specify that certain

of these arrays are to be treated as me~ged, i.e., to be 'grown'

and 'shrunk', 'allocated', 'disallocated', 'paged', etc. all

within some common area of an underlying memory. various other

aspects of memory treatment might then be specified, as for

example stack-like treatment ('window' arrays), inverted stack

treatment, access pattern (including number of distinct addresses

within a bit-string likely to be current), etc. Standard memory

management algorithms might then be applied, allowing tolerably

good performance to be reached without a full resort to lower-level

programming practices. This approach would in particular provide

the following important simplification: one could use a large,

perhaps indefinitely large, number of independent arrays, grouping

items together in a single array only when some logical relationship

between the items required this to be done.

All these considerations serve to raise the question as to

whether an intermediate 'data structure language' can usefully be

defined. More or less equivalently: is there any semantically

useful notion of 'combination' of data structures, on which such

a language might be based? This question surely deserves investi

gation; plainly, such an investigation ought to include a

systematic survey of the concrete algorithmic designs appropriate

to various of the existing SETL algorithms, to see what phenomena

are typical. Similar questions are also implicit in some of the

discussions concerning ''data description languages" which form

part of the literature on data-base systems design.

The following remarks are intended as a preliminary survey of

this interesting data-structure language question.

a. If one set f is always accessed by indexing on another set

b (i.e., if f appears only in combinations f(x), where x ea)

then its elements need not be collectively recorded but may be

treated as 'attributes' of the elements of b. More generally, if

SETL Newsletter #31 -6-

a set is referenced only in certain restrictive patterns

it may be logically unnecessary to record the totality of its

elements in any explicit way; it may be sufficient to record

certain of its subsets as 'attributes' of other elements.

b. Once all the logical reductions suggested by a are

applied to a problem, there results a family of 'essential' sets,

which may be considerably smaller than the totality of all sets

mentioned in an algorithm. These sets have actually to be

represented in some appropriate fashion. They will normally

have some kind of 'regular' structure, i.e., consist of elements

either all of the same kind or at any rate of some very limited

number of kinds, each of these elements in turn having some

regular structure.

The general principle involved in point (a) above is worth some

comment. Since all stored items are in fact ultimately stored

within a word-organized addressable memory, each stored item has

in fact an address. (Either a word address or a bit-address.)

The address is known when the item is accessed; conversely,

the item is accessible when the address is known. This means

that with each stored item one somewhat special integer attribute

(memory location) may always be associated, this association

costing nothing. Any component of the elements of a set which

is used merely for addressing these elements can therefore be

suppressed in the stored representation of the set.

This suggests, as a possible intermediate logical construct

to be used in the development of a data-structure language, the

following concept, to which I give the name 'range'. A nange
consists of a collection of logically non-overlapping item~,
each having some unique numerical address. Each item has various

attnibute~; attributes can be either litenal~, neoenence~ (to some

other range), multiple (either multiple lite~al or multiple neoe~

ence), or 6lagged, in which case the attribute can be some

combination of the above types, a flag being maintained to show

its structure. The basic operatins affecting ranges and items are

SETL Newsletter #31 -7-

i. setting an attribute of an item (if non-multiple)

ii. adding an attribute-value to an attribute (if multiple)

ii: deleting an attribute-value from an attribute (if multiple)

iii. adding an item to a range

iv. deleting an item from a range.

Note that if operation iv. is provided for a given range, then

the existence of some standard garbage-collection scheme is

implied.

Part of the data-structure language envisaged would then be

a language 06 ~ange~, which allowed the specification of ranges,

of the item-types which a given range could contain, of the

attributes of these item types, the physical manner in which

these attributes were to be represented, with any special default

or common-case conventions, etc. The declaratory data-structure

language would then be expanded into standard code-sequences

implementing the various basic range-item-attribute relationships.

A second part of the total data structure language would

serve to specify the manner in which sets are to be represented

by the elements of ranges. The principal possibilites seem

to be as follows.

i. Chained (unilaterally or bilaterally) within a range,

or within several ranges.
I

i. Chained with marks; the items of a set are then all

those reachable along a given chain for which a given 'marking'

attribute (or combination of marking attributes} has a specified

value.

ii. Delimited within a range. The items of a set represented

in this way are then all those with addresses lying between two

fixed limits.

ii'. Delimited with marks within a range. The items of the

set are all those within a delimited section of a range for which

a given combination of marking attributes has a specified value.

These two sublanguages used together should suffice to describe

most of the principal concrete algorithmic techniques.

SETL Newsletter #31 -8-

For example, a bit-vector technique may be described as

the representation of sets by delimited items within a range,

these items being multiple fixed-length groups of bits.

To additional observations deserve to be made.

a. If one of the attributes of an item is an integer,

we may omit to store this attribute if it is merely used for

accessing the item or its value can be calculated from the

address of the item within its range. This device will normally

be available for ~tanda~d ~equenee~, i.e. sets of pairs whose

first element is an integer, and which always includes one and

only one pair for each integer n in a certain interval k1~ n < k 2 .

In certain special cases, as for example when the items of doubly

indexed arrays are stored within a range in a pattern calcu~able

from certain array-associated 'dimension' parameters, the preceding

remark can be generalized to allow the suppression of pairs or

triples of integer attributes, etc.

b. Compression will often be secured by representing certain

attributes of an item, especially literal attributes, not directly

but in an encoded form. The language of ranges should allow for

this important possibility. Many encoding techniques are instances

of the following general trick: the code for a literal element

is the index, in some range, of the (often unique) item having

the literal element as one of its attributes. (unique identifying

attribute). The use of this trick can of course go together with

techniques which expedite the process of finding the item (or

sometimes item) which corresponds to a given literal; techniques

such as hashing, ordered arrangement, binary or n-ary tree

storage etc.

Itenation Contnol. An important property of sets, as well

as other types of compound data structures, is that they may be

used as iteration controllers. This iteration-over-subparts

possibility ought to be provided for programmer-defined object

types, including those 'low-level' object types which might be

developed in connection with a range-related data-structure

language. A possible scheme for accomplishing this is as follows:

SETL Newsletter #31 -9-

Note first that it is most natural for an iteration controller

to return not actual subitems of a structure, but rather to

return objects which may conveniently be used as lubitem add~ellel.
For example, if s is a sequence, we prefer (V n E: s) as the

associated iteration form, where n is an integer which in the

course of the iteration will vary over all the integers

1 ::_ n ::_ #seq, rather than (\/ x e: s) , where x is s (n) , and also

rather than the simple set-theoretic CV pair E: s), where pair

is <n,s(n)>. Indeed, the hypothetical (Vx e s) iteration would

make essential aspects of the relationship between successive x's

irrecoverable; while (\J pair € s) tends toward the clumsy,

and might also be too close to the basic set theoretical iteration

available anyhow to be worth including as a separate feature.

Taking this point as understood, we may go on to require that

a function next be defined for each data item to be used as an

iteration controller. We require this function to have the

following properties:

i. When called with parameters next(s,n), s being a data

item of given type, it will return ~he address of) the initial

subpart e,f s.

ii. When called with the parameters next(s,x), x being

(the address of) a subpart of s, it will return the next subpart

in sequence, or, if no such subpart exists, it will return n.
Given such a function, we may regard the iteration

(Vn E: s) block;

as a shorthand for

n = n; (while (n is next(s,n)) ne n) block;

Thus iterations are defined for structured objects of a

given type by defining the manner in which the function next

applies to these objects.

Two examples:

1 ~ n ~ # s eq . In

by the text body

for ~equen~e~, addresses are integers satisfying

this case, the function next(s,n) is defined

SETL Newsletter #31 -10-

return ifs eq ni then n else if n eq n then 1 else

if nit #s then n+l else n;

For binanlf tnee~, an address is specified by a sequence of nodes

a 1 ,a 2 , ... ,ak, of which each is a descendant (left or right) of

the previous node. Assuming that 'top-left-right' describes the

desired order of iteration over nodes, we may take the following

text body to define next(tree,a) for iteration over binary

trees.

if a eq O then return top tree;

if (dis i(a(#a))) ne n then a(#a+l) = d; return a;;

dright: if (dis r(a(#a))) ne n then a(#a+l) = d; return

(while (n is #a) gt 1) if a(n) = t(a(n-1)) then a(n) =
go to dright; else a(n) = n;;

return n; /*as iteration over tree is finished

if this point is reached*/

a; ;

With the conventions suggested, the iterator (Ya€ tree)block;

produce a sequence of tree addresses ranging over all the nodes

of tnee,and appliesbloe~ to each of them in turn.

Note also that other useful SETL operations such as

{e(a), a € tree}

and

3 [aJ € tree I C(a)

can be defined in a standard way in terms of the basic iterator.

SETL Newsletter #31 -11 -

A further generalization, and one which b~ing-0 u-0 into QOntaQt

with the notion 06 an in6inite -0et, is possible. If a set is

neven u-0ed in an algonithm exQept a-0 an itenation Qontnollen
we need not keep all its members as a fixed totality; a function

which generates its elements, in some standard order, each

element appearing only once, is all we require. Suppose then

that we allow the iterator function next to apply to atom-0 06
type 6unQtion, using the very simple code

return f(a);

when

next(f,a)

is called in this way. Then any programmed function which never

generates two elements twice can be regarded as defining a kind

of set, irrespective of whether this set be finite or infinite.

If for example we then write

definef integers (n) ; return if n ::_S, n then O else n+l;

end integers;

the statement

(\/ n € integers) block:

will have its expected meaning. Similarly, a prime-number

generator could be used to give meaning to

('t/ p e: primes) block;

etc.

In the SETL notes, various combinatorial generator programs

are given. With a suitable generalization of the above technique

(to allow the transmission of additional parameters to generator

functions) one could employ such useful constructions as

where penm-0(n)

n integers.

(V perm € perms (n)) block;

generates the set of all permutations of the first

SETL Newsletter #31 -12-

Note that this possibility is connected with an optimization

also available for finite sets: the iteration

(V x € f { y}) block

should for efficiency be taken as

(\/ z e: f I hd z eq y) x = tt z; block;

to avoid the explicit generation of an unnecessary intermediate set.

If programmer-definable object types are provided, one will

want on occasion to regard an object of one type as being of

another type. For example, one may occasionally want to regard

a binary tree explicitly as a triple consisting of a set of

nodes and two descendant maps; conversely, having constructed

such a triple, one may want to regard it as a tree. For this

purp~s~, 'type conversion' operations which change the designated

type of an object but perform no other transformation on it

can be used.

The question of when independent copies of complex objects

need to be created can be a vexing one, both in SETL itself and

during the transformation of SETL programs to lower-level forms.

The SETL interpreter will use a combined reference~count and

dead-trace technique to avoid logically unnecessary recopyings

wherever unnecessary. An automatic optimizer may of course miss

important cases, and for this reason it may be appropriate to

provide more directly usable programmer aids for the

suppression of unnecessary copying whenever possible. For

example, a 'dead' declaration, or perhaps a generalized

'conditionally dead' statement might be desirable. Tools for

monitoring the activity of behind-the-scenes copying operations

would also be desirable. If SETL is linked to a 'range' language

in the manner envisaged above, it may be necessary to establish

conventions using which the SETL interpreter can occasionally

transmit 'copy structure' signals to the range language interpreter

routines.

