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Newsletter 26 notes that the general 'decision postponement' 

principle makes it desirable to include various programmer 

definable "object types" in SETL, and to allow the various basic 

SETL operations to be interpreted in a manner depending on the 

type of the object concerned. This point deserves to be under

scored, as important issues relating abstract to concrete 

algorithms are involved. 

If p110grammer definable object types are provided, then 

fixed-size (or even variable-size) bit-strings, when designated 

as having some particular object-type, can be taken as the argu

ments of particular SETL operations. Example: a bit string 

2000 words in length and having some appropriate initial layout 

might be designated as being of the type 'set-of-string-triples

with-hashed-access'. Then the operations 

a with x, 3 a, 

and perhaps 

(\/ X € a) , 
etc., could be defined for objects of this type. A given SETL 

algorithm might then run considerably more efficiently if certain 

of its key objects were merely initialized to be of an appropriate 

special type, rather than of the standard SETL default type 1 0 1
• 

This could be a large step toward briding the gap between SETL 

and languages of lower level. 

1. Substantially increased efficiency might result from 

appropriate supplements to, rather than changes in, the text 

of a given SETL algorithm. 

2. A 'supplemented algorithm' consisting of a basic SETL 

algorithm plus the extra text defining the manner in which the 

operations of that algorithm were to be realized brings one much 
closer to the full specification of an algorithm in a lower level 
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language than does a SETL algorithm unsupplemented. Thus 

'object types' may provide an important intermediate step to 

the 'two-stage' programming technique envisaged in connection 

with SETL. 

Note that 'error returns' having no significance at the basic 

SETL level may be associated with specialized object-types which 

in other respects are intended as replacements for more general 

SETL objects. Thus it may be impossible to insert more than 

1000 triples in a given 'set-like' object, it may be impossible 

to insert any string triple containing more than 10 characters 

in total, etc. Then error conditions might produce characteristic 

'overflow' and 'illegal condition' messages, and terminate 

execution. 

To work out the program that the above remarks suggest 

would be to build up an 'object-type library' consisting of 

various useful object types, together with code defining the 

manner in which the basic SETL operations are to be applied to 

those object types. Some of the issues and problems which such 

a plan might imply will be touched upon below. Before that, 

however, some words concerning optimization, in the situation 

that would result from the implementation of such a plan. 

A crude implementation would involve a great many conditional 

transfers during execution, corresponding to tests for the types 

of the data objects involved in operations. An optimizer might 

deduce the types from the code, thereby bypassing many of these 

tests. Supplementary type-declarations, which could aid the 

optimizer in its work, would be a reasonable feature. An 

optimizer ought also look for combinations of operations which 

can be performed with special efficiency; especially when such 

combinations are of very frequent use. E.g. indexed stores 

deserve better treatment than is implied by the sequence 

f = f lesf x with <x,a> 

for f(x) a, etc. 
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Note also that if the scheme described is to allow gains in 

efficiency over pure SETL, it is important to provide efficient 

modes of access to portions of atoms of type bit-string and 

character-string. The presently specified SETL operations are 

deficient in this regard. A string-hashing function is desirable 

also. 

Plainly, the object types will have to allow numerical and 

other type parameters, so that for example should be able 

to call an object a "hash table of k-character words with 8-bit 

hash entry to an array of 1 bytes" etc. Another example is 

"bit-string represented set of objects indexed by tablet". 

Note in this last case the importance of treating union, inter

section, and complement directly, and not merely as programmed 

compound operations: a special case of the observation concerning 

optimization made above. 

Consider as a more specific example of what is envisaged the 

possibility of declaring a set to be a 'sequence' seq of 'character 

strings of length at most 10 characters, of total size at most 

1000 items, with implicit first pair components'. This might 

correspond to a SETL character string 10,000 characters long, 

broken into 10-character fields. The allowable 'element' type 

for this 'sequence' would then be a pair <n,string>, n being an 

integer and string a character string no more than 10 characters 

long. We suppose for the sake of simplicity that the sequence 

can have no 'gaps'. ThEnimplicitly associated with the sequence 

is an integer jtop. The various basic SETL operations now should 

have the following interpretation: 

A. set with <n,string>; 

means 

if n ~~ (jtop+l) or (len string) 9:!_ 10 ~ n gt 1000 

then return error; else jtop = jtop+l; 

seq[(l0*n-9): l0*n] =string+ (10 - len string) * ' 

return seq; 

I • , 
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B. 3 seq 

means 

c. 
return <jtop, seq[{l0*jtop-9): l0*jtop]>; 

seq less <n,string> 

means 

if nit jtop then return error; else if n eq 0 then 

then return error; else if n ~ jtop then jtop=jtop-1; 

return seq; else return seq; 

D. 

means 

seq{n) = x; 

if n gt (jtop+l) or n tt 0 then callerror; 

else if n eq{jtop+l)then seq = seq with <n,x>; return; 

else seq[{l0*n-9): l0*n] = x+{l0-len x)* ' ' ; 

return; 

and so forth. 

If it is safe to assume that none of the errors guarded 

against can actually occur, or if built-in SETL features would 

in any case give sufficient error indication, some of the error 

tests might be omitted. 

Note that important questions emerge here concerning the 

situations in which 'independent copies' must be created; 

questions with profound efficiency implications. A few words 

will be said about these questions below. 

The technique suggested above stands in an interesting 

relationship to some of the 'memory management' ideas which are 

under consideration for implementation in LITTLE. 'Low-level' 

object types of the kind that we have been discussing will 

normally be represented by bit-strings, either fixed or variable 

in length, and if variable probably growing by addition at their 

upper boundary. (Since this is the case efficiently implementable 

in a lower level language.) Bit strings used in this way 

may be called a~nay~. One might then imagine declarations 
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(belonging, it is true, to an implementation level sufficiently 

low as to be barely visible from SETL) which specify that certain 

of these arrays are to be treated as me~ged, i.e., to be 'grown' 

and 'shrunk', 'allocated', 'disallocated', 'paged', etc. all 

within some common area of an underlying memory. various other 

aspects of memory treatment might then be specified, as for 

example stack-like treatment ('window' arrays), inverted stack 

treatment, access pattern (including number of distinct addresses 

within a bit-string likely to be current), etc. Standard memory 

management algorithms might then be applied, allowing tolerably 

good performance to be reached without a full resort to lower-level 

programming practices. This approach would in particular provide 

the following important simplification: one could use a large, 

perhaps indefinitely large, number of independent arrays, grouping 

items together in a single array only when some logical relationship 

between the items required this to be done. 

All these considerations serve to raise the question as to 

whether an intermediate 'data structure language' can usefully be 

defined. More or less equivalently: is there any semantically 

useful notion of 'combination' of data structures, on which such 

a language might be based? This question surely deserves investi

gation; plainly, such an investigation ought to include a 

systematic survey of the concrete algorithmic designs appropriate 

to various of the existing SETL algorithms, to see what phenomena 

are typical. Similar questions are also implicit in some of the 

discussions concerning ''data description languages" which form 

part of the literature on data-base systems design. 

The following remarks are intended as a preliminary survey of 

this interesting data-structure language question. 

a. If one set f is always accessed by indexing on another set 

b (i.e., if f appears only in combinations f(x), where x ea) 

then its elements need not be collectively recorded but may be 

treated as 'attributes' of the elements of b. More generally, if 
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a set is referenced only in certain restrictive patterns 

it may be logically unnecessary to record the totality of its 

elements in any explicit way; it may be sufficient to record 

certain of its subsets as 'attributes' of other elements. 

b. Once all the logical reductions suggested by a are 

applied to a problem, there results a family of 'essential' sets, 

which may be considerably smaller than the totality of all sets 

mentioned in an algorithm. These sets have actually to be 

represented in some appropriate fashion. They will normally 

have some kind of 'regular' structure, i.e., consist of elements 

either all of the same kind or at any rate of some very limited 

number of kinds, each of these elements in turn having some 

regular structure. 

The general principle involved in point (a) above is worth some 

comment. Since all stored items are in fact ultimately stored 

within a word-organized addressable memory, each stored item has 

in fact an address. (Either a word address or a bit-address.) 

The address is known when the item is accessed; conversely, 

the item is accessible when the address is known. This means 

that with each stored item one somewhat special integer attribute 

(memory location) may always be associated, this association 

costing nothing. Any component of the elements of a set which 

is used merely for addressing these elements can therefore be 

suppressed in the stored representation of the set. 

This suggests, as a possible intermediate logical construct 

to be used in the development of a data-structure language, the 

following concept, to which I give the name 'range'. A nange 
consists of a collection of logically non-overlapping item~, 
each having some unique numerical address. Each item has various 

attnibute~; attributes can be either litenal~, neoenence~ (to some 

other range), multiple (either multiple lite~al or multiple neoe~

ence), or 6lagged, in which case the attribute can be some 

combination of the above types, a flag being maintained to show 

its structure. The basic operatins affecting ranges and items are 
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i. setting an attribute of an item (if non-multiple) 

ii. adding an attribute-value to an attribute (if multiple) 

ii: deleting an attribute-value from an attribute (if multiple) 

iii. adding an item to a range 

iv. deleting an item from a range. 

Note that if operation iv. is provided for a given range, then 

the existence of some standard garbage-collection scheme is 

implied. 

Part of the data-structure language envisaged would then be 

a language 06 ~ange~, which allowed the specification of ranges, 

of the item-types which a given range could contain, of the 

attributes of these item types, the physical manner in which 

these attributes were to be represented, with any special default 

or common-case conventions, etc. The declaratory data-structure 

language would then be expanded into standard code-sequences 

implementing the various basic range-item-attribute relationships. 

A second part of the total data structure language would 

serve to specify the manner in which sets are to be represented 

by the elements of ranges. The principal possibilites seem 

to be as follows. 

i. Chained (unilaterally or bilaterally) within a range, 

or within several ranges. 
I 

i. Chained with marks; the items of a set are then all 

those reachable along a given chain for which a given 'marking' 

attribute (or combination of marking attributes} has a specified 

value. 

ii. Delimited within a range. The items of a set represented 

in this way are then all those with addresses lying between two 

fixed limits. 

ii'. Delimited with marks within a range. The items of the 

set are all those within a delimited section of a range for which 

a given combination of marking attributes has a specified value. 

These two sublanguages used together should suffice to describe 

most of the principal concrete algorithmic techniques. 
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For example, a bit-vector technique may be described as 

the representation of sets by delimited items within a range, 

these items being multiple fixed-length groups of bits. 

To additional observations deserve to be made. 

a. If one of the attributes of an item is an integer, 

we may omit to store this attribute if it is merely used for 

accessing the item or its value can be calculated from the 

address of the item within its range. This device will normally 

be available for ~tanda~d ~equenee~, i.e. sets of pairs whose 

first element is an integer, and which always includes one and 

only one pair for each integer n in a certain interval k1~ n < k 2 . 

In certain special cases, as for example when the items of doubly

indexed arrays are stored within a range in a pattern calcu~able 

from certain array-associated 'dimension' parameters, the preceding 

remark can be generalized to allow the suppression of pairs or 

triples of integer attributes, etc. 

b. Compression will often be secured by representing certain 

attributes of an item, especially literal attributes, not directly 

but in an encoded form. The language of ranges should allow for 

this important possibility. Many encoding techniques are instances 

of the following general trick: the code for a literal element 

is the index, in some range, of the (often unique) item having 

the literal element as one of its attributes. (unique identifying 

attribute). The use of this trick can of course go together with 

techniques which expedite the process of finding the item (or 

sometimes item) which corresponds to a given literal; techniques 

such as hashing, ordered arrangement, binary or n-ary tree

storage etc. 

Itenation Contnol. An important property of sets, as well 

as other types of compound data structures, is that they may be 

used as iteration controllers. This iteration-over-subparts 

possibility ought to be provided for programmer-defined object 

types, including those 'low-level' object types which might be 

developed in connection with a range-related data-structure 

language. A possible scheme for accomplishing this is as follows: 
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Note first that it is most natural for an iteration controller 

to return not actual subitems of a structure, but rather to 

return objects which may conveniently be used as lubitem add~ellel. 
For example, if s is a sequence, we prefer ( V n E: s) as the 

associated iteration form, where n is an integer which in the 

course of the iteration will vary over all the integers 

1 ::_ n ::_ #seq, rather than ( \/ x e: s) , where x is s (n) , and also 

rather than the simple set-theoretic CV pair E: s), where pair 

is <n,s(n)>. Indeed, the hypothetical (Vx e s) iteration would 

make essential aspects of the relationship between successive x's 

irrecoverable; while ( \J pair € s) tends toward the clumsy, 

and might also be too close to the basic set theoretical iteration 

available anyhow to be worth including as a separate feature. 

Taking this point as understood, we may go on to require that 

a function next be defined for each data item to be used as an 

iteration controller. We require this function to have the 

following properties: 

i. When called with parameters next(s,n), s being a data 

item of given type, it will return ~he address of) the initial 

subpart e,f s. 

ii. When called with the parameters next(s,x), x being 

(the address of) a subpart of s, it will return the next subpart 

in sequence, or, if no such subpart exists, it will return n. 
Given such a function, we may regard the iteration 

(Vn E: s) block; 

as a shorthand for 

n = n; (while (n is next(s,n)) ne n) block; 

Thus iterations are defined for structured objects of a 

given type by defining the manner in which the function next 

applies to these objects. 

Two examples: 

1 ~ n ~ # s eq . In 

by the text body 

for ~equen~e~, addresses are integers satisfying 

this case, the function next(s,n) is defined 
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return ifs eq ni then n else if n eq n then 1 else 

if nit #s then n+l else n; 

For binanlf tnee~, an address is specified by a sequence of nodes 

a 1 ,a 2 , ... ,ak, of which each is a descendant (left or right) of 

the previous node. Assuming that 'top-left-right' describes the 

desired order of iteration over nodes, we may take the following 

text body to define next(tree,a) for iteration over binary 

trees. 

if a eq O then return top tree; 

if (dis i(a(#a))) ne n then a(#a+l) = d; return a;; 

dright: if (dis r(a(#a))) ne n then a(#a+l) = d; return 

(while (n is #a) gt 1) if a(n) = t(a(n-1)) then a(n) = 
go to dright; else a(n) = n;; 

return n; /*as iteration over tree is finished 

if this point is reached*/ 

a; ; 

With the conventions suggested, the iterator (Ya€ tree)block; 

produce a sequence of tree addresses ranging over all the nodes 

of tnee,and appliesbloe~ to each of them in turn. 

Note also that other useful SETL operations such as 

{e(a), a € tree} 

and 

3 [aJ € tree I C(a) 

can be defined in a standard way in terms of the basic iterator. 
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A further generalization, and one which b~ing-0 u-0 into QOntaQt 

with the notion 06 an in6inite -0et, is possible. If a set is 

neven u-0ed in an algonithm exQept a-0 an itenation Qontnollen 
we need not keep all its members as a fixed totality; a function 

which generates its elements, in some standard order, each 

element appearing only once, is all we require. Suppose then 

that we allow the iterator function next to apply to atom-0 06 
type 6unQtion, using the very simple code 

return f(a); 

when 

next(f,a) 

is called in this way. Then any programmed function which never 

generates two elements twice can be regarded as defining a kind 

of set, irrespective of whether this set be finite or infinite. 

If for example we then write 

definef integers (n) ; return if n ::_S, n then O else n+l; 

end integers; 

the statement 

( \/ n € integers) block: 

will have its expected meaning. Similarly, a prime-number 

generator could be used to give meaning to 

( 't/ p e: primes) block; 

etc. 

In the SETL notes, various combinatorial generator programs 

are given. With a suitable generalization of the above technique 

(to allow the transmission of additional parameters to generator 

functions) one could employ such useful constructions as 

where penm-0(n) 

n integers. 

( V perm € perms (n)) block; 

generates the set of all permutations of the first 
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Note that this possibility is connected with an optimization 

also available for finite sets: the iteration 

( V x € f { y} ) block 

should for efficiency be taken as 

( \/ z e: f I hd z eq y) x = tt z; block; 

to avoid the explicit generation of an unnecessary intermediate set. 

If programmer-definable object types are provided, one will 

want on occasion to regard an object of one type as being of 

another type. For example, one may occasionally want to regard 

a binary tree explicitly as a triple consisting of a set of 

nodes and two descendant maps; conversely, having constructed 

such a triple, one may want to regard it as a tree. For this 

purp~s~, 'type conversion' operations which change the designated 

type of an object but perform no other transformation on it 

can be used. 

The question of when independent copies of complex objects 

need to be created can be a vexing one, both in SETL itself and 

during the transformation of SETL programs to lower-level forms. 

The SETL interpreter will use a combined reference~count and 

dead-trace technique to avoid logically unnecessary recopyings 

wherever unnecessary. An automatic optimizer may of course miss 

important cases, and for this reason it may be appropriate to 

provide more directly usable programmer aids for the 

suppression of unnecessary copying whenever possible. For 

example, a 'dead' declaration, or perhaps a generalized 

'conditionally dead' statement might be desirable. Tools for 

monitoring the activity of behind-the-scenes copying operations 

would also be desirable. If SETL is linked to a 'range' language 

in the manner envisaged above, it may be necessary to establish 

conventions using which the SETL interpreter can occasionally 

transmit 'copy structure' signals to the range language interpreter 

routines. 


