
Computer Science Department, Courant Institute 

SETL Newsletter #33 

What is Programming? 

May 15, 1971 

J. T. Schwartz 

I will elaborate a series of answers to this pregnant question. 

I. To start with, programming is the activity which builds 

the interface between man on the one hand, and computers on the 

other. Certain of its characteristics will then be determined 

by man, others by the computer. The goal of programming is the 

construction of advanced function. This requires the perfection 

of complex programs. Therefore 

II. Programming is the process of constructing complex objects. 

In a previous newsletter, certain basic laws affecting such pro-

cesses of construction were outlined. To repeat: compound objects 

are built by successive correct choices of a sequence of elements 

E1 , ... ,E . Each element E. must be chosen in a logical context 
n J 

summarizing all those aspects of other elements which are relevant 

to the choice of E .. We call the collection of all these influences 
J 

the local context of E., and call any reasonable numerical measure 
J 

of this collection the context complexity of E .. It may then be 
J 

observed that the chance of choosing E. correctly falls off very 
J 

rapidly as its context complexity increases, and effectively 

becomes zero at a not-very-large threshold T. This observation 

allows us to define the class of constructible objects: an object 

is constructible if it can be built by choosing elements success

ively, each in a context of complexity less than T. A function 

is programmable if it can be realized by a program which is 

constructible. 

To construct a large object successfully, one must therefore 

combine many subelements. The rules according to which elements 

may be combined are of course part of the logical context of 

every element. These rules must therefore be simple. But a 

simple set of rules allowing the indefinitely iterated combina

tion of simple elements into a large totality defines some sort 
,, '' 

of algebra. Therefore 



SETL Newsletter 33 -2-

III. Programming constructs compound objects from simpler 

elements by combining elements according to the rules of some 

~lgebr~. 

In order to program, therefore, one must be aware of some 

such algebra, which must be capable of generating objects 

representing useful processes. Before they can be used, such 

algebras must be found. We conclude therefore that in a 

deeper sense 

IV. Programming is the discovery of algebraic principles 

~wing the iterated combination of elements into compound 

objects representing useful processes. 

Next, observe that, although the maximum threshold T of 

tolerable complexity postulated above will vary from person to 

person,· for no one is it very large. In this regard a group 

of people is no better than a single person. Therefore, an 

object not constructible in the above sense can really never 

be constructed directly, either by individuals or by large teams. 

And it is very unlikely that such an objectwillbe formed 

spontaneously by the action of a random process, even if this 

process acts repeatedly over long periods of time. Objects 

irreducibly unconstructible must therefore remain nonexistent. 

The barrier to their existence should be as firm as those set 

for mathematics by theorems of the type of G~del. 

There is, however, a way in which we can hope to find a way 

around the obstacle revealed by these pessimistic reflections. 

To see this, observe that the maximum context complexity of the 

elements of a compound object is by no means independent of the 

representation of the object. What in one representation may 

appear as a densely interconnected mass will in another represen

tation appear as an object, perhaps still large, but consisting 

construcibly of items no group of which are impenetrably related. 

To discover this second representation of a programming problem 

is to break the problems bac~since this discovery allows one 

to build what formerly were obscurely integral objects using 



SETL Newsletter 33 -3-

systematic incremental techniques, that is, to proceed by the 

progressive accumulation of tables of information possessing 

no overwhelming degree of internal interconnectedness. 

In a still higher sense, therefore, 

V. Programming is the discovery of viewpoints or logical 

transformations which uncover hidden algebras in terms of which 

compound objects representing useful processes may be built. 

That is, programming is simplication, an~ like mathematics, 

is a hunt for lucky simplifications. 

It is worth emphasizing that to discover these simplifications 

is the essential goal of experimental, as distinct from applied, 

programming. If in a strictly research situation we build a 

highly compound object, we do so only in the hope that immersion in 

the realities of a particular construction process may put us 

in mind of principles allowing this process to be simplified. 

The transformation of a constructible compound object into 

that more highly interwoven form in which it directly represents 

some interesting function plainly amounts to a kind of 

compilation. (The practical possibility of carrying out such 

transformations is of course the contribution of the machine to 

the process of programming, which, in the preceding remarks, we have 

viewed almost exclusively from the human side of the man-machine 

interface.) We may therefore say that 

VI. Programming is the discovery of algebras allowing the 

construction of objects worth compiling, and is the programming 

of compilers for these objects. 

Elements which programmers are to combine need to be simple 

externally. But, as long as their internal complexity can be 

hidden, they need not be simple internally. Indeed, when objects 

having simple external description but themselves embodying 

powerful function can be allowed within an organized algebra, 

the programmer's reach is multiplied. Hence 



SETL Newsletter 33 -4-

VII. Programming is the discovery of highly functional --logical entity types possessing simple external descriptions 

and thus capable of being integrated into an algebra useful 

for the construction of still higher functions; and is the 

discovery of the 'internal' algebras which allow the construc

tion of entities of these types. 

The above remarks predicate an indirect method for creating 

functioning machine-level process representations. Our reflec

tions concerning context complexity suggest that in the construc

tion of highly compound objects such an indirect approach is 

inevitable. However, since this approach is, to begin with, 

fixed upon simplification and standardization as goals, in 

following it we run the risk of ignoring alternative construc

tions which might realize a given function in a particularly 

efficient way. Efficiency-oriented departures from a standardized 

approach are traditionally the perogative of skilled human 

programmers. The mind, ranging analytically, can incorporate 

very useful variations into a basic approach: as long, that is, 

as the additional complications which such departures cause do 

not carry one over the threshold T of allowable context complexity. 

The programming range which we contemplate will however involve 

transformations of form so repeated and elaborate as to exclude 

the possibility of external meddling with the compiled versions 

of objects. Given that we will have to allow efficiency-enhancing 

variations to enter into the compilation process, it follows 

that in the programming range we contemplate it will be found 

necessary to systematize thesevariations, and to build a program 

capable of weaving them into the compiled version of an initial 

text. Such a program must of course be abie to analyze programs 

in sophisticated global ways. The programmer may assist this opti

mizer by adding, to a text to be compiled, disjointed declarations 

which summarize and transmit significant conclusions concerning 

the text, but his role may not safely be allowed to exceed 

this limit. We may in this regard say that 



SETL Newsletter 33 -5-

VIII. Programming is optimization, i.e., is the programming of 

optimizers able to analyze and improve other programs, and is 

the discovery of principles which allow the simplification of such 

optimizers. 

The use of the indirect technique suggested above, involving 

the optimizing compilation of sequences of constructible objects, 

will eventually allow functions to be programmed which lie utterly 

beyond the sco~e of more primitive direct methods. Never-

theless, just as G~del's theorem assures us that certain rather 

simple questions lie quite out of the range which the method of 

mathematical proof can reach, so .we may also take it that certain 

functions which might be of great use are not programmable, in 

that no constructible object can represent them, even after 

compilation. It is therefore of interest to consider whether the 

construction of artificial intelligences is at all possible. 

Might it not be that, among all those objects constructible 

within the maximum complexity threshold T of the human mind, none 

exists which can represent all the capacities of the mind? 

In coming to grips with this question, one must first of all 

realize that it concerns innate and not learned capacities. That 

which is learned is drawn from an accumulation of separately en

countere3.facts, presented in no particular order or relationship. 

No inextricably interwoven object is immediately represented 

in the pile of fragments presented as input to the learning 

process. If facts within the mind are interwoven in uncompilably 

complex ways, they can be so only because the mind is innately 

capable of establishing exceedingly complex connections. If 

the ability to learn can be programmed, the teaching process will 

be trivial. That which we seek to duplicate is therefore as 

fully present in the neolithic savage as in the savant. 

But might not this innate facility, in spite of the somewhat 

restrictive definition which the above remarks give it, still be 

unprogrammable? It might. But I doubt that it is. Hard evidence 

in this area is still missing. To argue from what has not been 

done, or from the collapse of inflated initial projections, is 



SETL Newsletter 33 -6-

an absurdity, given that the computer is still less than 

twenty-five years old. It seems to me that the fragmentary 

evidence which does exist ought to incline one rather strongly 

against such arguments. Substantial progress toward the 

programming of mental function has been made in a few cases. 

For example, the parser-compiler type of program captures 

a striking part of the ability to learn languages. Note that, 

in accordance with the general principles stated above, it 

is the discovery of an underlying algebra, specifically the 

algebra of pattern combination in the manner embodied in BNF 

grammars, which enables us to construct such programs. 

One may conjecture that mental faculties which, like the 

ability to learn languages, are generalized and involve explicit 

learning will prove to be more readily constructible than faculties, 

such as visual pattern analysis, which are more rigidly fixed. 

Learning at the level of language learning is surely of late 

evolutionary arrival, and one may therefore surmise that this 

faculty has not had the time to grow as complex as have others. 

In view of the general pattern which evolution exhibits in 

regard to physical organs, we may take another hint from this 

observation. Speech and higher reasoning, rapidly evolved, may 

possibly employ specially adapted versions of faculties which 

antedate .. them. If this is true, then successful duplication of 

the mind's language-handling faculty may provide clues valuable 

for the analysis of still other mental functions. 

The optimistic remarks of the preceding paragraph, if they 

can be trusted, lead one to try putting the question of 

artificial intelligence quantitatively. The programmability of 

a complex function is, as we have seen above, defined by the 

battery of simplifying transformations which determine one's 

programming technique. How many as yet undiscovered simplification 

principles remain to be found before artificial intelligences 

will, in this sense, become programmable? If and when these 

principles become available, how large a body of compilable text 

will be required to define the intelligence? I emphasize again 



SETL Newsletter 33 -7-

that the text in question is that which organizes the intelligence's 

capacity to learn, not that possibly larger body of text which 

defines the total mass of facts available to it. That is, an 

intelligence is defined by those highly integral programs which 

determine the principles according to which it organizes more 

disjointed information tables subsequently fed to it. It would 

be rash to try to answer the questions just raised. Nevertheless, 

putting them serves, when one notes the extent to which a simple 

yet well organized programming system like LISP makes it possible 

to define quite striking language processing faculties by quite 

a small body of text, to buttress optimism. Putting these 

questions also serves to emphasize the central importance, for 

the eventual construction of artificial intelligences, of progress 

in programming technique. They also tell us what to look for: 

transformations which allow originally integral functions to be 

represented incrementally and in this sense to become learnable. 

Thus, for example, we may recognize that the organization of at 

least part of the language-analysis function around an explicit 

Backus algebra of syntactic patter~ is a very significant step, 

the sort of thing that we must energetically seek to extend. 

Other functions can be cited for which organizing 'algebras' 

are desirable and might be possible. An associational 'feature 

noticing' function of a generalized sort would be useful in a 

wide variety of situations, for example in optimization by the 

method of 'special cases', where such a mechanism might permit 

the easy addition of new optimizations. At a more technical 

level, a language of memory management, allowing certain central 

problems of concrete algorithmics to be treated systematically, 

could enhance our ability to produce efficient versions of concrete 

algorithms rapidly. 

In connection with this last remark we may raise yet another 

quantitative question concerning artificial intelligence. The 

capacity of an intelligence is measured both by the level of 

function which its responses embody and by the speed with which 



SETL Newsletter 33 -8-

these responses can be generated. Assuming that it becomes 

possible to construct an intelligence, how fast will this 

intelligence be able to think? This question touches upon 

all those questions of efficiency which the concentration 

on abstract programming issues characterizing our preceding 

remarks has caused us to neglect. Its answer will of course 

be determined both by the basic capacities of the hardware 

available at a future date, and by the extent to which optimiza

tion is able to overcome the natural tendency to inefficiency 

of a highly compiled programming style. Till now, almost all the 

most dramatic increases in program speed have come from basic 

hardware speed-ups. In a few cases, as with the development of 

the fast Fourier transform, fast sorts, hashing and list

organized search techniques, and in the imporvement of certain 

little-used combinatorial algorithms programming has made 

similar contributions to efficiency. The domination of efficiency 

by hardware should continue for at least a while longer, as clock

cycles diminish twoard 10 nanoseconds, and especially as improved 

manufacturing processes weaken the I/O barrier by making 

greatly expanded electronic memories available. In this regard 

programming may for a while have the largely subsidiary role of 

choosing algorithms that bypass potential combinatorial disasters. 

A more systematic, but perhaps less immediately significant 

contribution of programming to efficiency will probably come 

through the continued development of optimization methods, 

especially those which, like cross-subroutine optimizations, 

aim at preventing the efficiency losses which a naive and 

highly compiled programming technique would imply. 

Efficiency loss through the use of such techniques is in fact 

far from being a crucial problem. It has generally been true 

that, once able to organize a given programming area clearly, 

one has also been able to invent systematic optimizations which 

permit indirect programming techniques attain an efficiency 

comparing not badly with the results obtained by the use of 



SETL Newsletter 33 -9-

much more expensive and eventually quite impractical manual 

techniques. In regard to the programming of intelligences, 

it may also be remarked that, once we are able to create a 

faculty, we may expect to be able to improve its efficiency 

substantially by providing it not in the most general form 

possible but in a specialized, 'reflex-like' rather than fully 

'adaptable' form. 

As the simplifying techniques needed to organize complex 

functions are progressively revealed through the progress of 

programming, the significance for efficiency of those elementary 

subprocesses exercised most constantly by the compiled form of 

programs written using these techniques will become plain. 

By realizing such 'inner' subprocesses in hardware, one improves 

their efficiency through the elimination of unnecessary generality 

and by that use of large-scale parallelism which gives such 

great advantages to hardware realizations. An example of 

the type of situation we have in mind is currently seen in the 

tendency to simplify programming by speaking in terms of 

extremely large 'virtual' memories. Such an approach makes 

certain simple
1
memory mapping' operations of constant use, and 

has led to the construction of these functions in hardware. 

Similar future influences of programming concept on hardware 

design are to be expected. 

Artificial intelligences, if realized, will take programming 

as one of their first tasks, and it is interesting to try 

to guess the effect that this might have on programming. One 

of the great advantages of such intelligences will be their 

enormously large complexity tolerance, as compared to the 

capacity of the natural mind. In connection with the remarks 

made above we surmise that this will greatly extend the class 

of programmable functions,though in what way is not clear. 

Certainly, however, they should be capable of optimizing 

programs to a degree impossible to the natural mind, and in 

this way can contribute substantially to their own development 

in efficiency. 


