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Syntax revisions in preparation for implementation J. T. Schwartz 

This note will suggest a number of syntactic improvements 

to SETL, hopefully in accordance with the general principles 

stated in newsletter 26. Some of the suggestions will involve 

a different reaction to the general issue of 'object types' 

than is involved in the earlier SETL specifications. Cf. 

also newsletter #31. 

Comments on these suggestions are urgently solicited. 

I. Atoms of type subroutine, function, label, blank, and boolean 

No changes in the operations provided. Note however that 

the name-scoping rules for subroutines and functions may be 

revised in a later newsletter; especially in regard to the 

usage of the 'external' declaration. Some usages in dynamic 

compilation might also be changed. 

II. Character strings 

a. string+ string, integer* string remain as is. 

b. j elt string becomes string(j) 

c. len string becomes #string. 

d. string(i,j) is that portion of a string between the i-th 

and j-th positions, or n if i or j is out of range; 

this is a retrieval operator, and may be used on the left. 

e. dee, oct, nul, nqlc remain as is. 

f. string* integer becomes a hash of the string to give 

a bit-string of a length determined by the integer. 

g. hol string regards a character string as a bit string 

in some dense internal format; holl is the number of bits 

needed to represent one character. Thus the length of 

hol 'abc' is 3*holl. 

hol bitstring pads a bitstring with zeroes to the nearest 

even multiple of~, and then performs the reverse 

conversion. 



-2-

III. Bit strings 

Items II.a,b,c,d,f,g apply mutis mutandis. 

n bin integer converts a positive integer to a bit string 

n bits long, padding with leading zeroes. bin bitstring 

provides the reverse conversion.Boolean operations for bit-strings 

stay as is, but with different notations. or and not remain 

the same; and may optionally be written as*; the exclusive 

or operation is written as a//b; and the operation a and~ b 

written as a-b. The operation born a (implication) will 

be written a/b. We will write age b for bit-strings if a 

has a 1 wherever b has al; the operations ate b, etc. 

will be used similarly. 

IV. Ex£anded object-type function 

The tokens set, integer, boolean, bstring, cstrin2, label, 

blank, real, subroutine, function, pair represent particular 

integers mnemonically. They are used in connection with the 

function type to determine the type of an object. Thus the 

old usage 

if pair x then... is replaced by if type x eq pair then 

The particular object pair may also be designated as tupl. 

This prepars for the introduction of programmer-definable object types. 

v. Atoms of type 'real'. 

Real arithmetic will be provided, in a manner depending 

as usual on machine and implementation. The arithmetic operations 

+, -, * /, and ex2 are provided for real numbers. The 

operation real log real, where the first constant is the 

logarithmic base is also provided, as are cos(x), sin(x), 

x min y, x ~ax y, and abs y. 

Real constants are written in the form n.m, n and m being 

integers, both required. 
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itop x is the least integer exceeding x; 

ibot x is the greatest integer not exceeding y. 

itop n is the real number most closely approximating 

the integer n from above, given the limited precision 

of real numbers. 

bitr real converts a real number to a bit-string of 

appropriate length, this length being designated as bitrl. 

bitr bitstring converts a bit-string of appropriate length 

to a real number. 

VI. Integer exponentiation 

The exponential function m ~~ n is provided for integer 

m and positive integer n. 

VII. Tuples. 

The treatment of tuples will be changed in a number of 

substantial ways. Instead of being regarded as sets, tuples 

will be regarded as a distinct data type (though a conversion 

function allowing them to be regarded as sets when this is 

advantageous will be available). In particular, we distinguish 

between a tuple consisting of one single component c and its 

single component. We can create this tuple by using the operator 

just, as in 

x = just c; 

The reverse operation is given by the operator ) , as in 

C = 3 X • 

However <just a,b> will be the same as <a,b>, etc. 

Operations syntactically resembling those available for sequences 

(or character strings) will then be provided. Those will be 

as follows: 

a. 

b. 

tupl(n) replaces the present 

tupl(-n) replaces the present 

<* z n>tupl 

<*zt n>tupl . 
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Both of these are retrieval operators, and can be used on 

the left of an assignment statement to give a replacement effect. 

c. <a,b> can be written as just a + just b. (See below, 

for use of '+' as tuple concatenator). Thus, for example, a 

sequence may be converted to a tuple by writing 

tupl = [+: 1 < n < #seq] just seq(n); 

d. tupl (m, n) is [+: m < j ~ n] just tupl(j); 

This is a retrieval operator, and may be used on the left of 

an assignment statement. 

e. We write #tupl for the quantity defined by 

j = O; (while tupl(j+l) ne ~) j=j+l;; returnj; 

f. concatenation of tuples is written as tupl + tup, and 

defined by the sequence 

cat=tup; (#tupl ~ Vn ~ 1) cat= <tupl(n) ,cat>;; return cat; 

g. Tuples as iteration controllers. The iteration header 

(1 .:s._ Vn < #tupl) 

can be written as 

(Vn € tupl) . 

The set-former and quantifier notations that derive from this 

are allowed also. Thus, for example, a tuple can be converted 

to a sequence by writing 

seq = {<n,tupl(n)>, n £ tupl} . 

h. Membership in tuples. We write x ~ tupl for 

_3n € tupl I tupl(n) eq x. 

i. Range of mapping f[tupl] will be the tuple 

[+: n ~ tupl](just f(tupl(n)); 

j. Conversion of tuples to sets, and vice-versa 

This will be provided through the general 'regard as' 

mechanism, to be discussed in a subsequent newsletter on programmer

definable object types. 
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VIII. Revised conventions for is 

The internal assignment operator is will assign a value to 

its second rather than to its first argument. Thus we will 

write 

if a+b is c gt d then ... 

rather than 

if (c is (a+b)) gt d then ... 

The operator is will have low left precedence (equal to the 

precedence of '='} but high right precedence (equal to that of 

'('). Thus, for example, the code 

if a+b is c * d is e gt then ... 

is equivalent to 

c a+b; e=c*d; if e gt O then ... 

IX. Built-in union, intersection, and other set-theoretic operators 

The operators union, intersection, difference, and symmetric 

difference will be written as set+ set, set*set, set-set, 

set// set. Set inclusion will be written as set~ set; 

the operators ie, gt, £twill be used similarly. 

X. Random functions. 

If n is a positive integer, then random n will be an integer 

chosen at random from the range 1 < j ~ n. If x is a real 

number, then random x will be a real number chosen at random, 

and with a uniform distribution, from the interval [O,x] (if x is 

positive, otherwise [-x,O]). Ifs is a set, then random swill 

be an element of s chosen at random. Random elements may be 

chosen from tuples by writing tupl(random #tupl); and 

similar remarks apply to strings, etc. 
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XI. Nonmembership. The negative of the'€' relationship 

can be written as n€. 

XII. Compound operators for while-iterations. The compound 

operator form 

[op: ... ] expr 

is extended to apply to 'while' iterations. The syntactic 

conventions are as follows: 

[op: while C doing block] expr 

denotes the value which would result from the following 

iterative calculation: 

v = n; times= O; (while C doing block} 

if times eq O then times=l; v = if times eq O then 

expr else v op expr; if v eq n then quit; end while; 

The 'while-when' statement described below leads to a corres

ponding compound operator, of the form 

[op: while C when CC doing block] expn; 

XIII. While-when iterations. The statement form 

(while C when CC doing blockl) block2; 

is introduced. This is equivalent to 

(while C doing blockl) if n CC then continue; block2; 

The simpler form 

(while C when CC} block; 

is also allowed, being equivalent to 

(while C) if n CC then continue; block; . 

XIV. Then-if forms. 

The statement 

if condl then blockl else if cond2 then block2 ... 

may be written 

then blockl if condl else if cond2 then block2 ... ; 

or with a more elaborate transformation as 

then blockl if condl but block2 if cond2 ... ; 
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The simplest forms of this type of statement would be 

then blockl if condl; 

and 

then blockl if condl else block2; . 

XV. At-blocks. 

An at-block has the form 

(at label} block; 

and may also be terminated in any of the forms 

(at label) block end; 

(at label) block end at; 

(at label) block end at label; . 

Here, label must be a valid SETL name which occurs as the name 

of a label in the routine which contains the at-block. This 

label must be 'enabled' as the 'target' of an at-block by being 

enclosed in at least two sets of square brackets. If a given 

label is addressed by several at-statements, and thus is the 

target for placement of several blocks, these blocks may be 

inserted at the label by the SETL compiler in any order. 

XVI. 'Local' subroutines. 

If the declaration 

subname local; 

occurs within a subroutine or functions, where subname is some 

name known within Sas a subroutine or function name, then all 

the variable names used within Sare declared to have the 

significance which attaches to names identical in form occurring 

within subname. If this declaration occurs in the expanded form 

subname local name 1 ,name 2 , ... ,namek; 

then all names used within S other than name 1 , ... ,namek are 

identified with names occurring in subname in the sense stated 

above. The names name 1 , ... ,namek however are local to s. 
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However, the designational effects of any external declaration 

appearing in Swill override the effects of such a local 

declaration. 

If Sis directly imbedded within another subroutine, whose 

name is subname, then the declarations 

local; or local name 1 , ... ,namek; 

appearing in S has precisely the same force as 

subname local; and subname local name 1 , ... ,namek; 

respectively. 

XVII. 'Inverted' form for subroutines and functions. 

A subroutine or function may have a form like 

[; subroutine body; define subname(a,b, ••. ) ;] • 

This form is precisely equivalent to 

define subname(a,b, ... ); subroutine body; end subname; 

The same remark applies to functions, subroutines, and also functions 

written in infix or prefix form, etc. 

The slightly variant form 

[; subroutine body; define subname(a,b, ... } ;-] 

is equivalent to 

[; subroutine body; define subname(a,b, ... } ;] subname(a,b, ... ); 

i.e., to a subroutine definition followed immediately by an 

invocation of the subroutine with parameters identical to those 

which appear in its defining text. The same convention applies 

to functions, and may be used within expression~ thus making it 

possible to interpolate arbitrary code blocks into expressions. 

Suppose, for example, that in an expression we need to add the 

next-to-largest element of a sequence to some other quantity. 

This might be written 
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x = x + [; local mx; mx=[max: 1 ~. n ~ #seq]seq(n); 

return [max: 1 ~ n ~ #seq seq(n) ne mx] seq(n); 

define£ submax(seq) ;-] . 

The still more degenerate form 

[; function body;] 

is equivalent to 

[; function body; define£ £name] fname, 

where £name is some name generated by the SETL compiler. 

This 'unnamed function' form is intended for single use within 

expressions, and to make it possible to interpolate arbitrary 

code blocks into expressions. In this form, the declaration 

'local' will be understood if no explicit local or external 

definition appears. The preceding example can be written 

using this option as 

x = x+[; local mx; mx=[max: 1 ~ n ~ #seq]seq(n); 

return[max: 1 < n < #seq I seq(n) ~ mx]seq(n) ;] 

XVIII. Modified macro-conventions 

Macros will be provided in at least two forms. The simpler 

form of macro will be described immediately below. A more 

powerful but somewhat less easily used 'syntax macro' feature, 

adapted from the BALM 'means' mechanism, will be provided also, 

and will be described in a subsequent newsletter. This syntax 

macro feature may in turn be supplemented or replaced by a 

still more powerful language extendability feature, if improved 

insight into the design of such a feature is attained. 

Here we shall describe only the 'simple' macro feature, 

which resembles the present SETL use of 'do'-blocks, but 

with certain improvements. 



-10-

a. The keyword 'do' is abolished. macro-calls will be 

indicated merely by the occurrence within text of a macro name. 

b. A macro may be defined in the form 

block macname(arg 1 , •.• ,argn); body; end macname; 

specified in the SETL notes. It may also be defined in the 

inverted form 

[; body; block macname(a,b, ... ) ;] . 

The variant form 

[; body; block macname(a,b, •.. ) ;-] 

is equivalent to 

[; body; block macname(a,b, ... ) ;]macname(a,b, ... ) , . 

XIX. Sinister calls. The sinister call mechanism 

discussed in newsletter 30 is adopted, with the syntactic 

conventions explained there. This replaces the rather elaborate 

'extraction' and 'replacement' operator conventions described 

in section b, pages 80-91 of the SETL notes, which are dropped. 

The simpler assignment operator conventions described 

on pages 44-45 of the notes are retained, however. 

XX. Iff-statements. An 'iff' statement, generalizing that 

sketched in newsletter 26, section B,will be provided. Detailed 

syntactic and semantic conventions remain to be worked out, 

and will be described in a subsequent newsletter. 

XXI. Programmer-definable object types. These will be 

provided, syntactic and semantic conventions to be described 

in a subsequent newsletter. 
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XXII. Additional features contemplated for the 

first or for subsequent implementations. 

A number of plausible extensions might be considered 

for future implementations. 

A. Default parameters. (Probably not to be included in 

first implementation). General purpose systems routines often 

include a large number of parameters, many of which set rarely 

used option-flags or values. In this situation, it is 

valuable to allow calls to a subroutine or function to have 

fewer parameters than the number of parameters specified in 

the subroutine, and to take the missing parameters to be 

transmitted with the value n. The subroutine itself may then 

test for this parameter value and substitute a standard 

default value for it. 

B. Mechanism Linkages. (Modification of external 

subroutine linkages). A subroutine Sis linked to fixed 

external objects in two principal ways: 

i. The subroutineswhich S calls are named explicitly 

within the body of S; the number of parameters which each 

of these subroutines expects also is indicated explicitly. 

ii. A fixed distinction between internal and external 

objects is established within the subroutine; and explicit 

global names are given for the external objects. 

These fixed conventions make it quite clumsy to 

establish certain types of inter-program linkages. For example, 

it may be appropriate in certain situations to interpolate 

some type of intermediate 'transformation' between Sand a 

subroutine it calls, secucing in this way some special effect. 

Or one may wish to connect a particular program (e.g. an edit 

program) to one of several sources of input, and to one of 

several sinks for output or intermediate memory management 

routines. In the present version of SETL, this can only be 

done either by transmitting to a given Sas explicit functional 

parameters the identity of many of the subvoutines which Swill 

use,or by artifically exploiting the name-scoping rules, that is, 
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hiding a subroutine T within another subroutine which assumes 

its name and links in its place to something which calls T. 

This last procedure can be quite clumsy. A scheme that makes 

it possible to over-ride the normal subroutine-linkage 

mechanisms and to vary the pattern of inter-subroutine linkages 

flexibly could be useful. It can also be useful to centralize 

these global links in a single 'master switch' capab+e of 

supplying parameters and providing for special action inter

p6lations as necessary. Ideas of this kind have been 

suggested by R. Krutar, and deserve additional consideration 

They may help point to ways in which SETL can be extended 

in the direction of "languages of mechanism''. For a published 

discussion of some of these issues, cf. R. M. Balzer, 

"PORTS - A method for dynamic interprogram communication 

and job control," AFIPS Conf. Proc., v. 38, pp. 485-489, 

together with the references cited there. 

C. Debugging features. When designed, these might have 

an impact on the language. 

D. Extendability. This might also impact the language 

significantly. 


