
SETL Newsletter #34 May 16, 1971

Syntax revisions in preparation for implementation J. T. Schwartz

This note will suggest a number of syntactic improvements

to SETL, hopefully in accordance with the general principles

stated in newsletter 26. Some of the suggestions will involve

a different reaction to the general issue of 'object types'

than is involved in the earlier SETL specifications. Cf.

also newsletter #31.

Comments on these suggestions are urgently solicited.

I. Atoms of type subroutine, function, label, blank, and boolean

No changes in the operations provided. Note however that

the name-scoping rules for subroutines and functions may be

revised in a later newsletter; especially in regard to the

usage of the 'external' declaration. Some usages in dynamic

compilation might also be changed.

II. Character strings

a. string+ string, integer* string remain as is.

b. j elt string becomes string(j)

c. len string becomes #string.

d. string(i,j) is that portion of a string between the i-th

and j-th positions, or n if i or j is out of range;

this is a retrieval operator, and may be used on the left.

e. dee, oct, nul, nqlc remain as is.

f. string* integer becomes a hash of the string to give

a bit-string of a length determined by the integer.

g. hol string regards a character string as a bit string

in some dense internal format; holl is the number of bits

needed to represent one character. Thus the length of

hol 'abc' is 3*holl.

hol bitstring pads a bitstring with zeroes to the nearest

even multiple of~, and then performs the reverse

conversion.

-2-

III. Bit strings

Items II.a,b,c,d,f,g apply mutis mutandis.

n bin integer converts a positive integer to a bit string

n bits long, padding with leading zeroes. bin bitstring

provides the reverse conversion.Boolean operations for bit-strings

stay as is, but with different notations. or and not remain

the same; and may optionally be written as*; the exclusive

or operation is written as a//b; and the operation a and~ b

written as a-b. The operation born a (implication) will

be written a/b. We will write age b for bit-strings if a

has a 1 wherever b has al; the operations ate b, etc.

will be used similarly.

IV. Ex£anded object-type function

The tokens set, integer, boolean, bstring, cstrin2, label,

blank, real, subroutine, function, pair represent particular

integers mnemonically. They are used in connection with the

function type to determine the type of an object. Thus the

old usage

if pair x then... is replaced by if type x eq pair then

The particular object pair may also be designated as tupl.

This prepars for the introduction of programmer-definable object types.

v. Atoms of type 'real'.

Real arithmetic will be provided, in a manner depending

as usual on machine and implementation. The arithmetic operations

+, -, * /, and ex2 are provided for real numbers. The

operation real log real, where the first constant is the

logarithmic base is also provided, as are cos(x), sin(x),

x min y, x ~ax y, and abs y.

Real constants are written in the form n.m, n and m being

integers, both required.

-3-

itop x is the least integer exceeding x;

ibot x is the greatest integer not exceeding y.

itop n is the real number most closely approximating

the integer n from above, given the limited precision

of real numbers.

bitr real converts a real number to a bit-string of

appropriate length, this length being designated as bitrl.

bitr bitstring converts a bit-string of appropriate length

to a real number.

VI. Integer exponentiation

The exponential function m ~~ n is provided for integer

m and positive integer n.

VII. Tuples.

The treatment of tuples will be changed in a number of

substantial ways. Instead of being regarded as sets, tuples

will be regarded as a distinct data type (though a conversion

function allowing them to be regarded as sets when this is

advantageous will be available). In particular, we distinguish

between a tuple consisting of one single component c and its

single component. We can create this tuple by using the operator

just, as in

x = just c;

The reverse operation is given by the operator) , as in

C = 3 X •

However <just a,b> will be the same as <a,b>, etc.

Operations syntactically resembling those available for sequences

(or character strings) will then be provided. Those will be

as follows:

a.

b.

tupl(n) replaces the present

tupl(-n) replaces the present

<* z n>tupl

<*zt n>tupl .

-4-
Both of these are retrieval operators, and can be used on

the left of an assignment statement to give a replacement effect.

c. <a,b> can be written as just a + just b. (See below,

for use of '+' as tuple concatenator). Thus, for example, a

sequence may be converted to a tuple by writing

tupl = [+: 1 < n < #seq] just seq(n);

d. tupl (m, n) is [+: m < j ~ n] just tupl(j);

This is a retrieval operator, and may be used on the left of

an assignment statement.

e. We write #tupl for the quantity defined by

j = O; (while tupl(j+l) ne ~) j=j+l;; returnj;

f. concatenation of tuples is written as tupl + tup, and

defined by the sequence

cat=tup; (#tupl ~ Vn ~ 1) cat= <tupl(n) ,cat>;; return cat;

g. Tuples as iteration controllers. The iteration header

(1 .:s._ Vn < #tupl)

can be written as

(Vn € tupl) .

The set-former and quantifier notations that derive from this

are allowed also. Thus, for example, a tuple can be converted

to a sequence by writing

seq = {<n,tupl(n)>, n £ tupl} .

h. Membership in tuples. We write x ~ tupl for

_3n € tupl I tupl(n) eq x.

i. Range of mapping f[tupl] will be the tuple

[+: n ~ tupl](just f(tupl(n));

j. Conversion of tuples to sets, and vice-versa

This will be provided through the general 'regard as'

mechanism, to be discussed in a subsequent newsletter on programmer

definable object types.

-5-

VIII. Revised conventions for is

The internal assignment operator is will assign a value to

its second rather than to its first argument. Thus we will

write

if a+b is c gt d then ...

rather than

if (c is (a+b)) gt d then ...

The operator is will have low left precedence (equal to the

precedence of '='} but high right precedence (equal to that of

'('). Thus, for example, the code

if a+b is c * d is e gt then ...

is equivalent to

c a+b; e=c*d; if e gt O then ...

IX. Built-in union, intersection, and other set-theoretic operators

The operators union, intersection, difference, and symmetric

difference will be written as set+ set, set*set, set-set,

set// set. Set inclusion will be written as set~ set;

the operators ie, gt, £twill be used similarly.

X. Random functions.

If n is a positive integer, then random n will be an integer

chosen at random from the range 1 < j ~ n. If x is a real

number, then random x will be a real number chosen at random,

and with a uniform distribution, from the interval [O,x] (if x is

positive, otherwise [-x,O]). Ifs is a set, then random swill

be an element of s chosen at random. Random elements may be

chosen from tuples by writing tupl(random #tupl); and

similar remarks apply to strings, etc.

-6-

XI. Nonmembership. The negative of the'€' relationship

can be written as n€.

XII. Compound operators for while-iterations. The compound

operator form

[op: ...] expr

is extended to apply to 'while' iterations. The syntactic

conventions are as follows:

[op: while C doing block] expr

denotes the value which would result from the following

iterative calculation:

v = n; times= O; (while C doing block}

if times eq O then times=l; v = if times eq O then

expr else v op expr; if v eq n then quit; end while;

The 'while-when' statement described below leads to a corres

ponding compound operator, of the form

[op: while C when CC doing block] expn;

XIII. While-when iterations. The statement form

(while C when CC doing blockl) block2;

is introduced. This is equivalent to

(while C doing blockl) if n CC then continue; block2;

The simpler form

(while C when CC} block;

is also allowed, being equivalent to

(while C) if n CC then continue; block; .

XIV. Then-if forms.

The statement

if condl then blockl else if cond2 then block2 ...

may be written

then blockl if condl else if cond2 then block2 ... ;

or with a more elaborate transformation as

then blockl if condl but block2 if cond2 ... ;

-7-

The simplest forms of this type of statement would be

then blockl if condl;

and

then blockl if condl else block2; .

XV. At-blocks.

An at-block has the form

(at label} block;

and may also be terminated in any of the forms

(at label) block end;

(at label) block end at;

(at label) block end at label; .

Here, label must be a valid SETL name which occurs as the name

of a label in the routine which contains the at-block. This

label must be 'enabled' as the 'target' of an at-block by being

enclosed in at least two sets of square brackets. If a given

label is addressed by several at-statements, and thus is the

target for placement of several blocks, these blocks may be

inserted at the label by the SETL compiler in any order.

XVI. 'Local' subroutines.

If the declaration

subname local;

occurs within a subroutine or functions, where subname is some

name known within Sas a subroutine or function name, then all

the variable names used within Sare declared to have the

significance which attaches to names identical in form occurring

within subname. If this declaration occurs in the expanded form

subname local name 1 ,name 2 , ... ,namek;

then all names used within S other than name 1 , ... ,namek are

identified with names occurring in subname in the sense stated

above. The names name 1 , ... ,namek however are local to s.

-8-

However, the designational effects of any external declaration

appearing in Swill override the effects of such a local

declaration.

If Sis directly imbedded within another subroutine, whose

name is subname, then the declarations

local; or local name 1 , ... ,namek;

appearing in S has precisely the same force as

subname local; and subname local name 1 , ... ,namek;

respectively.

XVII. 'Inverted' form for subroutines and functions.

A subroutine or function may have a form like

[; subroutine body; define subname(a,b, ••.) ;] •

This form is precisely equivalent to

define subname(a,b, ...); subroutine body; end subname;

The same remark applies to functions, subroutines, and also functions

written in infix or prefix form, etc.

The slightly variant form

[; subroutine body; define subname(a,b, ... } ;-]

is equivalent to

[; subroutine body; define subname(a,b, ... } ;] subname(a,b, ...);

i.e., to a subroutine definition followed immediately by an

invocation of the subroutine with parameters identical to those

which appear in its defining text. The same convention applies

to functions, and may be used within expression~ thus making it

possible to interpolate arbitrary code blocks into expressions.

Suppose, for example, that in an expression we need to add the

next-to-largest element of a sequence to some other quantity.

This might be written

-9-

x = x + [; local mx; mx=[max: 1 ~. n ~ #seq]seq(n);

return [max: 1 ~ n ~ #seq seq(n) ne mx] seq(n);

define£ submax(seq) ;-] .

The still more degenerate form

[; function body;]

is equivalent to

[; function body; define£ £name] fname,

where £name is some name generated by the SETL compiler.

This 'unnamed function' form is intended for single use within

expressions, and to make it possible to interpolate arbitrary

code blocks into expressions. In this form, the declaration

'local' will be understood if no explicit local or external

definition appears. The preceding example can be written

using this option as

x = x+[; local mx; mx=[max: 1 ~ n ~ #seq]seq(n);

return[max: 1 < n < #seq I seq(n) ~ mx]seq(n) ;]

XVIII. Modified macro-conventions

Macros will be provided in at least two forms. The simpler

form of macro will be described immediately below. A more

powerful but somewhat less easily used 'syntax macro' feature,

adapted from the BALM 'means' mechanism, will be provided also,

and will be described in a subsequent newsletter. This syntax

macro feature may in turn be supplemented or replaced by a

still more powerful language extendability feature, if improved

insight into the design of such a feature is attained.

Here we shall describe only the 'simple' macro feature,

which resembles the present SETL use of 'do'-blocks, but

with certain improvements.

-10-

a. The keyword 'do' is abolished. macro-calls will be

indicated merely by the occurrence within text of a macro name.

b. A macro may be defined in the form

block macname(arg 1 , •.• ,argn); body; end macname;

specified in the SETL notes. It may also be defined in the

inverted form

[; body; block macname(a,b, ...) ;] .

The variant form

[; body; block macname(a,b, •..) ;-]

is equivalent to

[; body; block macname(a,b, ...) ;]macname(a,b, ...) , .

XIX. Sinister calls. The sinister call mechanism

discussed in newsletter 30 is adopted, with the syntactic

conventions explained there. This replaces the rather elaborate

'extraction' and 'replacement' operator conventions described

in section b, pages 80-91 of the SETL notes, which are dropped.

The simpler assignment operator conventions described

on pages 44-45 of the notes are retained, however.

XX. Iff-statements. An 'iff' statement, generalizing that

sketched in newsletter 26, section B,will be provided. Detailed

syntactic and semantic conventions remain to be worked out,

and will be described in a subsequent newsletter.

XXI. Programmer-definable object types. These will be

provided, syntactic and semantic conventions to be described

in a subsequent newsletter.

-11-

XXII. Additional features contemplated for the

first or for subsequent implementations.

A number of plausible extensions might be considered

for future implementations.

A. Default parameters. (Probably not to be included in

first implementation). General purpose systems routines often

include a large number of parameters, many of which set rarely

used option-flags or values. In this situation, it is

valuable to allow calls to a subroutine or function to have

fewer parameters than the number of parameters specified in

the subroutine, and to take the missing parameters to be

transmitted with the value n. The subroutine itself may then

test for this parameter value and substitute a standard

default value for it.

B. Mechanism Linkages. (Modification of external

subroutine linkages). A subroutine Sis linked to fixed

external objects in two principal ways:

i. The subroutineswhich S calls are named explicitly

within the body of S; the number of parameters which each

of these subroutines expects also is indicated explicitly.

ii. A fixed distinction between internal and external

objects is established within the subroutine; and explicit

global names are given for the external objects.

These fixed conventions make it quite clumsy to

establish certain types of inter-program linkages. For example,

it may be appropriate in certain situations to interpolate

some type of intermediate 'transformation' between Sand a

subroutine it calls, secucing in this way some special effect.

Or one may wish to connect a particular program (e.g. an edit

program) to one of several sources of input, and to one of

several sinks for output or intermediate memory management

routines. In the present version of SETL, this can only be

done either by transmitting to a given Sas explicit functional

parameters the identity of many of the subvoutines which Swill

use,or by artifically exploiting the name-scoping rules, that is,

-12-

hiding a subroutine T within another subroutine which assumes

its name and links in its place to something which calls T.

This last procedure can be quite clumsy. A scheme that makes

it possible to over-ride the normal subroutine-linkage

mechanisms and to vary the pattern of inter-subroutine linkages

flexibly could be useful. It can also be useful to centralize

these global links in a single 'master switch' capab+e of

supplying parameters and providing for special action inter

p6lations as necessary. Ideas of this kind have been

suggested by R. Krutar, and deserve additional consideration

They may help point to ways in which SETL can be extended

in the direction of "languages of mechanism''. For a published

discussion of some of these issues, cf. R. M. Balzer,

"PORTS - A method for dynamic interprogram communication

and job control," AFIPS Conf. Proc., v. 38, pp. 485-489,

together with the references cited there.

C. Debugging features. When designed, these might have

an impact on the language.

D. Extendability. This might also impact the language

significantly.

