
SET Newsletter #35 May 13, 1971

New form for !FF-statement Dave Shields

The iff-statement consists of a header and a trailer.

The header consists of the keyword iff, followed by a series

of iff-elements, each of which(in the simpliest form of

iff-statement) is either a test-node, consisting of a name

followed by a '?' sign, or an action-node, consisting of

a name followed by a ',' sign. To the lower-left of any

test-node follows its positive-case descendant, and to the

lower right follows its negative-case descendant. The

deepest-rightmost descendant in the header must be an

action-node consisting of a name followed by a '; ', the ';'

indicating the end of the statement header.

The trailer section of the statement defines the structure

of the nodes contained in the header. A definition for the node

~ begins with a statement having nam as its label, and

consists of either

a) all following statements in the trailer up to but not

including the next labeled statement, or

b) all statements up to but not including the statement

with label lab, in which case the definition must begin with-

name: til lab;

The iff statement is terminated by either a repeated semicolon,

or "end iff 11
, or "end iff token;".

Each node-definition defines the "value" of the node; the last

statement in the sequence of statements defining the node

statement may have either of the forms

= expn; or to name;

where expn is an arbitrary SETL expression and name is the

name of a node in the tree described in the header.

The final statement of a test-node must have the form "=expn".

If the value of expn is true, control will pass to the left

descendant of the test node; otherwise, control will pass

35-2

to the right-descendant. The final statement of an action-node may

be of the form "to name", where name is a node in the tree;

this node is the successor-node to which control will pass

after executing the node-definition. If a statement of this form

is omitted control will pass to the next statement following

the iff-statement.

If an action node in the tree is not defined in the trailer,

then the action implied is a branch to whatever statement, in the

subroutine containing the tree, which has as its label the

node name. For example, in

sl:

s2:

. . . . ,

.
• • • I

tree: iff test?

actl,sl;

test:= i eq j;

actl: •.• ; end if f; ..•

control will pass to statement sl if the value of test

is not true. The occurrence of a node name in the header

which is neither defined in the trailer nor corresponds

to a statement in the program is considered a syntactic error.

Subnodes. The trailer may contain definitions for nodes not

occurring in the header. Such definitions define sub-nodes,

which have a value of the form '=expn'. Any reference to a

subnode nam in the definition of another node of the tree is

treated as though nam were a variable whose value is the value

of the node nam. This allows the programmer to defer the

definition of parts of a node.

For example, consider the print routine for SETL, in which

we print an object by indenting a few spaces (except in the

case that this is first object output during this call),

inserting the number of the object, a period, and then the

printed form of the object. This subpart of the program

may be expressed as

35-3

printnextojb: iff firstobj?

printit, indentprin~;

f irstobj : = ncalls ~. 0;

indentprint indent(somespaces); to printit;

printit: addprintrep;

somespaces := levelofobject * spacesperobject;

levelofobject := level(object);

spacesperobject := 3; end iff;

Note that somespaces is a sub-node referred to by indentprint;

and that somespaces refers to the subnodes levelofobject and

spacesp~robject; thus the argument to indent, somespaces, has

as value "level(object)*3".

The names which label the nodes in the iff-statement are

assumed to be known only within the statement; that is, one

cannot enter the tree in a nonstandard way by executing goto node;

where node is a label in the trailer of an iff-statement.

We now describe

tions:

options allowing more flexible construe-

a) the nodes in an iff-statement header may be replaced by the

code defining their values, if the code is enclosed in

parentheses. For example, we may write

tree: iff (x gt 0) ?

(y = x+l; to on;) ,(y gt 0)?

on, (z=x+y;) ;

on: subr(x,y); end iff;

b) any action node may be preceded by an iteration-header.

By this we mean that the code in the node definition is

to be executed over the "iteration set" defined by the

iteration header. When the iteration set is exhausted,

the successor node is determined in the usual manner.

For example, we may write

iff (set ne nl)?

(V s € set(cls))doelem,printullcase;

doelem: ... 1

printnullcase: nerrs= nerrs+l; print(errmessage);

if nerrs 9".!_maxerrsthen exit;;

errmessage := 'error-since null set'; end iff;

35-4

c) We define a composite node to consist of a name followed

by the sign"+", and to have a single descendant node

(which may itself be composite) written immediately below it.

The definition of a composite node~ may not contain any

value-statement; i.e. no statement of either of the forms

"=expn;" or "to expn" is legal in its definition. For

example consider

iff tl?

actl+, t2?

act3, actl, act2;

actl: ... , tl:= ... ; t2:= ... ; act2: ... ; act3: ...

end iff;

If tl has value true, we do action actl, and then action act2;

if tl is not true we test t2 and then do either actl or act2.

d) Test nodes may have more than two descendants. Such nodes,

called multi-test nodes, have the form

multi? k

dl, d2 , ... , dk ;

Herek is an integer constant (k > 3) and the k nodes

dl, ••. ,dk are the descendants of the node multi.

Each descendant may in turn be a test or action node,

but no two descendants may have the same name. The node

multi must be defined in the trailer by an iff-statement

which has among its action nodes the set of descendants di.

We speak of this latter iff-statement as an imbedded

iff-statement; the trailer-elements for the imbedded iff

statement are mingled in any order with the trailer-elements

for the iff-statement in which it is imbedded.

For example, consider

35-5

start: iff multi? 3

easel, case2, case34?

case34 :=

multi : iff

easel:

case2:

model :=

mode2 :=

case3:

case4: • • • I

case3, case4;

not count3 it count4;

model?

easel, mode2?

case34, case2;

• • • I

• • • I

end iff multi;

When control reaches start, we first evaluate the multi-test.

If, for example, model is not true and mode2 is true;

then we exit from the iff-statement defining the multi-test

with case34 as the exit-node.

Returning the enclosing iff-statement, we see that case34

is in fact a test which must be evaluated to find which of

actions case3 or case4 is to be done, etc.

e) If the name nam occurs only once in the header or in any

imbedded iff-statement as a test- or multitest-node,

i.e. only one instance of nam is followed by the sign '?',

then nam may also be used as an action node. The implied

intention is to transfer the test named nam and then select

the descendant in the usual way. This gives a 'looping'

effect. For example, the SETL while statement

(while c doing bb)b; end while; next:

may be expressed as the iff-statement

35-6

iff nc?

nb+ quit

nbb+

nc;

nc := c· ,

nb := t£ nbb; b· ,

nbb b· , end iff;

Note here that the special node name quit may be used to

refer to the first statement after the iff-statement.

f) For clarity, an exit-node may be preceded by the word "to".

For example consider

sl:

s2: iff tl?

actl, to sl;

actl: sub(x,y); end iff;

s3:

In evaluating the iff-statement labeled ~, if tl has

value~, then we call sub(x,y) and leave the tree,

continuing at s3; if tl does not have value true, we

exit to statement sl in the program.

35-7

ifx-expression

The ifx-expression is defined to provide the same two

dimensional style for the conditional expression that the

iff-statement provides for the if-statement. The ifx-expression

has the same syntax as the iff-statement, except that an action

node may contain a value statement. Such a node may not contain

a successor statement, i.e. a statement of the form "to node;".

The value of the ifx-expression is the value obtained by

evaluating expn in the first action-node processed whose

definition ends with "=expn;". For example, consider

x = ifx (a gt amax)?

printerr + (=a)

(=amax) ;

printerr: print 'error a too large'; end ifx;;

Here we assign a to x unless a exceeds some value~,

in which event we print an error message and assign amax to x.

Note that the ifx-expression, like the standard conditional

expression, may occur on the left-hand side of an assignment

statement. Also, any subnode of an iff-statement may have

its value defined by an ifx-expression.

