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A path in the control flow graph of a program is said 

to be definition-clear (or def-clear) with respect to a variable 
A if there is no definition of A between the beginning and end 
of the path. Here, a definition of A is an operation which sets 

A to a new value. A variable A is said to be live at a point 

pin the control flow graph if there is a definition-clear path 

for A from p to a use of A. If there is no such path, A is 

said to be dead at p. 

To perform certain optimizations it is useful to know, 

for each point in the control flow graph, which variables are 
live and which variables are dead. The algorithm described in 

this newsletter will provide this information for each block in 

the program in the form of a set of variables, live(block), 

which are live on entry to that block. To compute this set we 

will need some auxilliary information about each block. In 

particular we will need two sets. 

1. For each block, we will need the set of all variables 

which are live on entry to that block by virtue of a definition

clear path from the block entry to a use within the block itself. 

We shall call this set inside(block). 

2. For each block, we will need the sets thru(block,sblock), 
one for each sblock€ S(block), which are the sets of variables for 
which there is a definition-clear path from the block entry through 

the block to sblock. (Recall that s(b) is the set of all basic 

blocks which are immediate successors of block band that s(b) 

is the set of all immediate predecessors of b.) 

There is an important relation among these three sets 
(live,thru,inside), which can be explained as follows: a variable 
will be live on entry to a block if it is live by virtue of a 

definition-clear path to a use within the block or if there is 

a definition-clear path through the block to a successor block 
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at which it is live on entry. This relation can be expressed by 

the following set relation: 

(1) live(block) = inside(block) U 
( U (thru(block,sb) n 
sb £ s (block) 

or as a SETL "code fragment": 

live(sb))) 

( l') live (block) = inside (block) u [_~: sb 6 s (block)] 
(thru(block,sb) int live(sb)); 

It is easy to see that, using this relation, we will be 

able to find out which variables are live on entry to a block 
if we know which variables are live on entry to its successors. 
This idea is the basis for our algorithm. 

The algorithm will proceed in two passes over the nodes 
of the control flow graph and all its derived graphs. 

1. The first pass will compute the thm and inside 

sets for intervals of the derived graphs. 
2. The second pass will compute the llY:.e. set, first for 

the single node of the last derived graph, then for each node in 
the underlying interval. It will continue in this manner until 
the~ sets have been computed for each node in the control 
flow graph. 

The "thru" and "inside" information for basic blocks can 
be derived by examining these blocks. The difficult part of 
the first pass is computing these sets for an interval, given 
the sets for each node in that interval. This can be done as 
follows. Suppose we have two auxilliary sets, path(block) and 
insidesofar. The set path(block) contains all variables for 
which there is a definition-clear path from the interval entry 
to the entry to block. The set insidesofar is an accumulator 

set. As we process the blocks of the interval in interval order, 



when we process the block b, we add to insidesofar all variables 

for which there is a def-clear path from interval entry to b 

and which are in the set inside(b). These are the variables which 

will be in the set inside(interval). 

(2) insidesofar = insidesofar u (path(b) n inside(b)) 
This equation is true for all blocks in the interval. There 

is a def-clear.path for a variable from interval entry to a 

block b if there is such a path from interval entry to some 

predecessor of band if there is a def-clear path through the 

predecessor to b. 

(3) path(b) = u (path(pb) n thru(pb,b)) 
pb£, p(b) 

This relation does not hold for the head of the interval. 

Since the head entry is identical to the interval entry, 

(4) path(head) = all variables 
Suppose J is an interval which is a successor of I and that jl 
is its head. The node jl must be a successor of at least one 
block in I. We can, therefore, compute thru(I,J) as follows: 

(5) thru(I,J) = U (path(b) () thru(b, j 1 )) 

bEp(j 1 ) /) I 

As previously indicated, 

(6) inside(I) = insidesofar 
where insidesofar is the version left after all nodes in the 
interval have been processed. 

The algorithm, then, passes through the nodes of the 
interval I in interval order, computing the sets, path and 

insidesofar. Because it uses interval order, the predecessors 
of a node are always processed before the node itself and the 
path sets required by equations (2) and (3) are available 
when needed. 
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Note that we need not worry about the contribution of 
loops within the interval, because a loop cannot contribute 
any new paths. This is because path(head) is already as large 

as it can be. 
The final step of the algorithm will be to compute the 

thru and inside sets tor the interval, using equations (5) 
and (6). We can now write a SETL algorithm, process(interval), 
which will perform the computations specified above. The 
argument, interval, will be a SETL sequence of nodes with 

interval(l) = head. 

define process(interval); external p, s, inside, thru, 
allvars; path= nl, insidesofar = nl; 
path(interval(l)) = allvars; 

/¥:- pass through the interval in interval order jf:/ 
(2 <\Ii <.:lfinterval)b=interval(i); 

path(b) = [~ : pbe·p(b)] (path(pb) int thru(pb, b)); 

insidesofar = insidesofar ~ (path(b) int inside(b)); 
end Vi;/ now calculate thru and inside sets I/ 
inside(interval) = insidesofar; 
(VYE s(interval)) preint = p(y(l)) int tl[interval]; 
thru(interval,y)=[u : bfpreint] (path(b) int thru(b,y(l))); 
end Vy; return; end process; 

Now the entire first pass may be described. The process, 
called passl, will be presented with a sequence of intervals 
starting with basic intervals, then intervals of the first 
derived graph and so on until the last interval, which is the 
fully reduced control flow graph. 

define passl (intervals) ; ( 1 <Vi <#intervals) 
process(intervals(i)); end Vi; return; end passl; 



This pass merely consists of calling process for each interval 
in all the derived graphs. At the end of pass 1, we will have 
computed the inside and thru sets for each interval in the 
sequence of derived graphs, including the interval which 
reduces the program to a single node. Since an exit block has 

no successors the live set for an exit block is equal to the 

inside set for that block. In particular, the single node 
representing the whole program is an exit block, so we now 
have the set of variables which are live on entry to the pro
gram -- this is just the inside set for the node. This set will 
be useful in two ways. First, it will tell us which variables 
are improperly initialized in the program and, second, it will 

be important in computing the live sets for nodes of the under

lying interval. The driving routine for the dead variable trace 
can now be specified. 

define livevars(intervals); external live, thru, 
inside, s, p; passl(intervals); 

11' set live set for the single node */ 
live(intervals( intervals))= inside(intervals( intervals)); 

pass2(intervals); return; end livevars; 

The driving routine calculates the live set for the program entry 
and calls pass2. Pass2 is a simple routine which calls the routine 
liveint for each interval in the list starting with the last and 
going forward. This order will insure that we always process 
outer intervals before we process inner intervals. 

define pass2(intervals); 
(#:"intervals >Yi> 1) liveint(intervals(i)); end V1; 
return; end pass2; 

The routine liveint merely calculates the live sets for every 
node in the interval, given the live sets for the entry to the 
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interval, and for the entries to all successors of the interval. 
It does this by passing through the interval in reverse interval 
order and calculating the live set for each node as it is 
encountered. The formula used is (1). In order to use this 
formula, we must have live sets for each successor of the node 
we are processing. But we do have these sets. Suppose that 
we are examining node bi and a particular successor sb. There 
are three possibilities. 

1. If sb is not in the interval, it must be the head 
of some successor interval y. Since we have computed the live 
sets for every successor interval and since the entry to an 
interval is identical to the entry to its head, we can use 
live(y) for live(sb). 

2. If sb is in the interval but is not the head, we have 
computed live(sb) because we are processing nodes in reverse 

interval order, which means that we must have already processed 
sb. 

3. If sb is the head of the interval, we can use 
live(interval) since the entry to the interval is identical to 
the entry to its head. Recall that we always have live(interval) 
before we process the nodes of that interval. 

Thus we have the required live sets and we can always apply 
formula (1). Notice how important the interval order is to this 
process. The routine liveint is coded in SETL as follows: 

define liveint(interval); externals, p, thru, inside, live; 
/~ pass through the interval in reverse order >;f;/ 

live(interval(l)) = live(interval); 
(-=If interval > \Ii > 2) b = interval(i); live{b) = inside(b); 

( V sb € s{b)) live{b) = live(b) ~ (thru{b, sb) int 
(if .3 [y) E s(interval) / sb ~ y(l) then live(y) 

else 11 ve ( sb) ) ; end \I sb; end V 1; 
return; end liveint; 
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This subroutine is called for each interval in all the derived 

graphs and the basic control flow graph. On completion of 

pass2, it will have computed a live set for each block in the 

control flow graph. The dead variable analysis algorithm will, 

therefore, pass twice through all the nodes of the control flow 
graph and its derived graphs - which is reasonable efficiency. 

We are now ready to incorporate nodesplitting into the 
dead variable analysis algorithm and to present the final form 

of that algorithm. The basis for the nodesplitting considerations 

discussed here is the treatment of this subject found in the 

SETL notes. In that treatment, if one of the derived graphs 

Gj cannot be reduced further, it is transformed into Gj in which 
several of the nodes of Gj are split into more than one copy. 

The nodes of the graph Gj are SETL pairs, where the first item 

of each pair is a node of the original graph Gj and the second 

item of each pair is either nl, in the case of an unsplit node, 

or another node of the graph Gj, in the case of a split node. 

The successor function for this transformed graph is described 

in [5]. What we need to know to modify the dead variable analysis 
algorithm is 

1. How to derive thru and inside sets for the nodes 

of Gj given these sets for the nodes of Gj (this information 
is needed in the first pass), and 

2. How to derive the live sets for the nodes of G . 
.J 

given these sets for the nodes of Gj (this information is needed 
in the second pass). 

To answer these questions we must look at the nature of 

nodes of Gj. Let band sb be a pair of nodes in Gj such that 
sb s(b). Now b represents a copy of hd b (the first element 

of the pair) and sb represents a copy of hd sb. If there is a 
definition-clear path to a use of a variable in hd b, there 
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must be a definition-clear path to a use in any copy of that 

node. Therefore, 

(1) inside(b) = inside(hd b); 

Similarly, if there is a definition-clear path for a variable 

through hd b to the exit to hd sb, then there must be such a 

path in any copy. 

(2) thru(b,sb) = thru(hd b, hd sb); 

These represent the transformations which must be made on the 
first pass. The second-pass transformation is slightly more 

complicated. If b 1, b2, ••• , bn are nodes in Gj which are 
all copies of hd b 1, then if a variable is live on entry to any 

of the nodes b 1, b2 , ••• , bn it must be live on entry to the 

node hd bl in Gj. Thus, 

We shall make this transformation in the routine liveint. When

ever we calculate live(b) we will execute the following SETL 

instruction. 

(4) if~ b eq pair then live(hd b) = live(b) ~ 

if live(hd b) ~ .fL then nl else live(hd b) 

The transformations (1) and (2) will be made in an initialization 

block at the beginning of the routine process. 

Is this all we need to do? The answer to this question 
is yes. Consider the routine process. In normal processing 
each interval processed will consist of a sequence of nodes 
from the previous derived graph. However, if some nodes of the 
previous graph were split, the interval will be a sequence of 
pairs. The sets thru and inside will not be defined for the 
pairs, but will be defined for the first elements of those 
pairs. These sets can therefore be defined for the pairs by 



transformations (1) and (2). If the interval processed by the 
routine liveint consists of pairs, the live sets are computed 
for each pair. But at the next level, live sets will be needed 
for the nodes represented by these pairs. These live sets are 
computed by transformation (3). 

Here then is the modified SETL algorithm. The reader will 
note that it is identical to the algorithm presented earlier 
except for the insertion of the transformations described above. 

define process(interval); external p, s, inside, thru, 
allvars; path= nl; insidesofar = nl; 
path(interval (1)) = allvars; 

/* test for split nodes ;f / 

if~ interval(l) !:_g_ pair then 
(1 <\;Ji <#interval) b = interval(i); inside(b) = inside(hd b); 

(Vsb £ s(b)) thru(b, sb) = thru(hd b, hd sb); end V sb; 

end \Ii; end if; insidesofar = inside(interval(l)); 
/'it pass through the interval in interval order j(/ 

(2 < Vi <#interval) b = interval(i); 

path(b) = [~: pb € p(b)] (path(pb) int thru(pb,b)); 
insidesofar = insidesofar ~ (path(b) int inside(b)); 
end Vi; 

/,J:: now calculate thru and inside for the interval J:-/ 
inside(interval) = insidesofar; 
(Vy E:. s(interval)) preint = p(y(l)) int tl[interval); 

thru(interval,y) = [~ : b£preint] (path(b)int thru(b,y(l))); 
end \/y; return; endprocess; 

define passl(intervals); (1 <Vi <fintervals) 
process(intervals(i)); end Vi; return; end passl; 

define livevars(intervals); external live, thru, 
inside, s, p; passl(intervals); 

/ji. set live set :for the single node -j;-/ 
live(intervals(,#'intervals)) = inside(intervals(;fintervals)); 
pass2(1ntervals); return; end livevars; 
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define pass2(intervals); (1(intervals >Vi> 1) 
liveint(intervals(i)); end Vi; return; end pass2; 

define liveint(intervals); externals, p, thru, inside, live; 
/i{ pass through the interval in reverse order j;-/ 
live(interval(l)) = live(interval); 
(;#"interval >Vi> 2) b=interval(i); live(b) = inside(b); 

( V sb f.__ s(b)) live(b) = live(b) ~ (thru(b, sb) int 
(if .] [y] E. s(interval) I sb ~ y(l) then live(y) 

else live(sb)); end V sb; 
/j test for split nodes :jt/ 

if~ b ~ pair then live(hd b) = live(b) ~ 

(if live(hd b) ~.Jl.then nl else live(hd b));; 
end i; return; end liveint; 

This is the complete algorithm with node-splitting included. 
It is now in a form which is suitable for implementation as part 
of an optimizing compiler based on interval techniques. 


