
SETL Newsletter #39

More detailed suggestions

May 31, 1971

J. T. Schwartz

concerning 'data strategy' elaborations for SETL

This note will contain remarks concerning

SETL implementation and 31, i.

ii. The possibility (raised in newsletter 30, pp. 31-32,/Pp.5-7)

of securing increased efficiency by adding a system of optional

elaborations to the language. These elaborations, if present,

should increase running speed considerably and lead also to

significant data compressions.

I. Main outlines of the ground to be covered.

Implementation of 'collections'.

SETL allows finite sets to be entirely general and by

this will often attain real advantages, both in expressive

power and in that it will allow many problems concerning

data structure to be postponed. Nevertheless, a survey of

SETL algorithms shows that sets are generally used in quite

stereotyped ways. The use-forms most frequently appearing

seem to me to be as follows:

A. Sets used as maps. That is, sets f always referenced

by addressing with a fixed number of indices, either in the

sinister form

f(a,b, ...)

or in the dexter form

= ... f(a,b, ...)

B. Sets actually used as collections of elements; i.e.,

either as iteration controllers, 'workpiles', etc.

Let us, in order to focus our thoughts, examine uses of

type Bin more detail. Nine basic operations are supported:

x ~ a, a with x, a less x, 7a,

a gt b, Vx € a (the iterator}.

#a, random a, a~ b,

We may also mention the

compound operations au b, a int b, a-b, etc., which can

of course be defined in terms of the above operations, but

39-2

which can deserve special treatment for purposes of efficiency.

Yet another very significant issue, set copying, enters at

the implementation level but is hidden from the direct view

of the SETL users. We may also mention the operation

a ~sf x, whose discussion however belongs rather under

subheading A than under the subheading B with which we are

now concerned.

We may consider a number of plausible techniques for the

internal representation of sets.

a. Representation by linked linear lists

b. Representation by 'piling', i.e., by accumulation of

elements within a delimited range.

c. Representation by trees, in which elements are located

by a hash-assisted tree search, possibly with auxiliary

bit-tables entering, so that several approximately equal

sets may share a single tree

d. Representation by some purer and possibly more efficient

hash scheme.

e. Representation by bit-vectors, i.e., deliberately

as subsets of some larger set.

The following table describes the general manner in which

each of these treatments might affect the efficiency of the

basic operations which must be supported.

Table estimating number of nominal cycles re~uir~ to

perform basic set operations, as function of number~

of set elements

39.3

~
list tree hash bit footnotes range vector

p

~a 1 l,assum 1 1 la a assuming packing dense
ing enough so that few
range words are identically
dense zero.

#a 1 or 1 or 1 or 1 or 1 or bdepending on whether
b b b b b current count

n n n n n
is kept

\J-x n,assum- C C C assuming auxiliary list € a n n n n
ing of members
range is kept.
dense

ld
- d

X € a n n log n <log n, assuming element
possib- directly represented
ly 1 _j)y its bit position

---:T~ ~

a with X 1 or 1 or log n <log n, 1 edepending on whEt:.her -- possib- equality with exist-e e
n n

ly 1 ing element must be
r checked

ld
·--~

a less X n n log n <log n, -- possib-
ly 1

a eq b n nlognt 1 (if 1 (if n/Pg fmost efficient method

log f 2 not not involves sorting n or n equal) equal) operation
2 or n

a ge b nlogn f nlognt #b or 1, n/Pg gwhere p is the n,or average
2 2 n/Pg n/Pg number of 1-bits per or n or n word

random a n 1 log n? n n/Pg

miscel- copy copy h~e w = number of
laneous h

=n/w11
bits per word, in bit •n/W or- bit-assisted schemes

additional good not l adaptable to fast
comments data always search on first

' density avail- ; tuple component
able I

I I

Note also that in a relatively static situation, ranges

might be sort~

~ might be addressed by a specially contrived hash

which allows elements present to be located in a specially

small number of cycles.

These are the basic facts concerning the performance of

various of the implementation methods which might be considered.

Next let us consider the typical ways in which sets (when playing

the 'collection' rather than the 'map' role) tend to be used.

These seem to me to be as follows.

i. As a set with entries and deletions also used as a map.

This is rare, but does occur; for example, in the nodal span

parsing algorithm.

ii. As a set with frequent entries and specific deletions,

but never used as a map (also rare).

iii. As a set being built up (possibly by the SETL set-former).

Frequent entries which must be checked for identity with

existing elements, but no deletions.

iv. As a static set, used for membership testing only.

(Relatively rare.}

v. As a 'workpile'. Frequent entries, and deletions

of 'unspecific' elements; i.e. using x from a rather than

a less x. It may in some cases be certain that no duplicate

elements can occur, and it may for other reasons be unnecessary

to check for duplicates.

vi. As one of a family of sets frequently combined by

particular higher level operations, e.g. union and intersection.

In classifying the usage-mode of sets, it is also quite

important to try to take copying frequency into account.

Copying will normally be necessary only wpen sets are changed

subsequent to a point at which they are made members of other

sets; this is fortunately a relatively infrequent case.

It is vital, however, that the optimizing SETL compiler not

be fooled into performing unnecessary copying operations.

39.5

Concerning the various uage modes described above we may

make the following observations.

a. If a set is used in either of the 'general' modes

i or ii, the taitative SETL hashed-tree approach ('tentative

SETL mode') might perform as efficiently as the normal lower

level programmer's invention. The same remark applies to

usage mode iii. In all three cases, the use of subsidiary

bit vectors can bring advantages. This last remark applies

to usage mode vi. Most of advantage of bit-vector

schemes can probably be gained by the introduction of a

method which explicitly forces a common reference-index

scheme upon the members of several sets.

8. Usage iv can be accommodated either in the tentative

SETL mode or by using a sorted range, possibly assisted by

a specially contrived hash.

y. The common usage v can be accommodated in any one of

our proposed implementations; it is, however, most efficiently

realized by the use of ranges. (Though most commonly

programmed at a low level by using lists.)

We conclude that if SETL provides

1. Sets of tentative SETL mode;

2. a method of forcing a common reference-index scheme

upon the members of several sets;

3. ranges, i.e. 'vectors' which may be entered by

indexing, but which may be grown, i.e., are not of

fixed or preallocated size;

and if these three devices are available at convenient user

option, it should be possible to obtain good efficiency

when using sets as collections.

Later certain additional variant stora~e forms aimed at

efficiency in particular situations will be suggested.

Note here that lists implemented in the normal chained

manner become unnecessary if ranges are available.

39,6

Next note that ranges are a very convenient and efficient

mode in which to implement various of the other basic SETL

objects and operations.

a. Variable length bit strings, variable length

character strings. Ranges give dense packing, and easy

indexed access to particular bits.

b. Multi-precision integers. Multiple precision

arithmetic is implementable by quite fast loop.

c. Tuples. An n-tuple can be implemented by a range

storing n elements. This gives fast indexing and last-element

insertion. In fact, it assimilates the notion of a tuple

to that of a squence, and pushes, in accordance with suggestions

that have been made all along, to a different treatment

at the SETL level, in which tuples would be systematically

identified with sequences. In such a treatment

i. <a,b,c, ..• d>

would be a notation for the sequence whose terms are a, ... ,d;

ii.

iii.

hd tuple would be an abbreviation for tuple (1) (as now)

tZ tuple would be <b,c, ... d> ,i.e., would abbreviate

tuple (2: #tuple) (as now)

iv. The construction tuple = <x,tuple> , which

presently adds a new initial element to a tuple, would have

a different meaning and its present usage would be abandoned.

Instead, the form

tuple(#tuple+l)=x; equivalently newlast tuple=x;

would be used, as is presently the practice for sequences.

The present multiple assignments

<a,b,c> = tuple

and

<a,b,c,-> = tuple

could however retain their syntactic form.

All of these possibilities depend upon our ability

to implement "ranges" efficient;ty, i.e., to accommodate

an indefinite number of 'arrays' able at least to grow

at their upper boundaries; and I now turn to sketch a

method which allows this to be done.

II. Implementation of 'Ranges.'

A plausible scheme for the implementation of ranges is

as follows.

1. Words will be allocated in blocks of 1, 2, 4 and 8

by an allocator; the 'buddy' system described by Knuth

can be used for this.

2. Each range will have a one-word range descriptor.

39.7

This will give the range size (up to 128K or so maximum size)

and if the range is of less than 8 words in size, will

contain information defining the block size used and the

defined-undefined state of various range elements. For

larger ranges, this latter information will be contained

in the primary range index, to which the range descriptor

will point; in this case, the range descriptor will contain

an integer field describing the number of levels of indexing

used. The range descriptor may also contain a small amount

of additional information as needed.

3. The structure of a large or fully expanded rnage

will be as depicted in the following diagram(which

shows a structure involving 3 levels of indexing.}

possible secondary .
. d 1 /'➔ tertiary in ex 1 . d. in ices

If
etc.

• I primary /
index _) 1

\
I
\

...
, secondary u8

tertiary
index

data
block

;LJ
I

(2, 4, or 8
words)

data block

(2,J 8
words)

39.8

4. In structures like that shown above, the element

R(I) whose index is I is located by the following procedure.
lev lev a. Calculate J = I/8 , I= I//8 +l and (// denotes

residue), where lev is the number of levels of indexing

used. J then locates an entry in the primary index; which

points to a secondary index. Repeat this division and

chaining process through the 2
nd , etc. level indices,

nd using I' in place of I at the 2 level, etc. until at the

end of all indices the desired data item is reached.

5. We also can allow for the possibility that the range

(think of it for the moment as a SETL sequence} is sparsely

populated, i.e., that many of the elements R(I) are undefined.

In this case, we may use compression as an additional technique,

as follows. Associated (in an index) with the pointer to

each data block will be a set of 8 bits; '0' bits indicate

undefined values; 1 1 1 bits indicate defined values.

The true location of the item expected in position j is

the number of 'l' bits found in positions 1 through j among

those 8 bits. In this treatment, execution of a new

definition R(I) = val may lead to the shifting of up to 3

items. (A slightly better 'double layer' compression might

be worth exploring.) When more than 3 of 8 items are defined,

compression can be abandoned.

If all the items in the data block which an index entry

would reference become undefined, an 'undefined' flag in

the index entry itself will be set, and the data block omitted.

This flag may then be transmitted back to lower index levels,

allowing, for very sparsely populated ranges, the elision

of entire index blocks, etc.

6. Space allocation and disallocation can work as follows.

A reasonably current value for the maximum index I for
tna.x

which R(I) is defined will be kept in the range descriptor.

When a new value R(I) is defined, an attempt will be made

39.9

access its storage location. At this time, any missing

indices belonging to the access path will be allocated,

and insufficiently large indices will be enlarged (from

4 to 8 half-words); this may involve the movement of

index entries. When first created, an index block

or data block will consist of two words; indices may be

enlarged to 4 words, and data blocks to 8 words. Enlargement

of a block will of course normally involve movement of data.

When previously defined values R(I} are made undefined

by executing R(I) = ~, it may only be necessary to change

a flag in an index. On the other hand, this 'disallocation'

will cause an examination to be made of the number of items

in the same data block which are still defined. If this

fails from 4 to 3, compression can begin and half of an

8-word data block can be returned to the allocator.

If it falls to 1, half of a 4-word block will be returned.

As appropriate, index blocks themselves may be compressed.

The scheme outlined is most typically wasteful of space

when a randomly distributed 1/S'th of the elements of a large

range are defined. This requires a full set of index blocks.

Approximately 3 words are then used for every data item stored.

Still sparser occupation of a range should not affect this

ratio much. Of course, denser occuptation, in the manner

normally expected in connection with ranges, leads to a

density ratio close to 1.

An additional example: suppose that for a range, consisting

initially of elements none of which are defined, the first

instruction executed is R(3000) = 1. This creates the

following st ru5:~~rlevel index 2nd level index 3rd level i..rrlex data block

fiescriptorr/t ~2 I)L b I >1 ~)atum I
2 words ~ words 2 words 2 words

Subsequent retrieval of the value of R(3000) requires 4

levels of indirection, and probabily some 20-30 cycles.

Of course, for smaller ranges, this will be reduced.

Note also that proper optimization of storage/

retrieval loops involving successive indices I,

especially with some associative hardware assist, might

allow this scheme to perform almost as efficiently as

39.10

standard indexing. Special operations which decoded the

compression fields, etc. would in themselves serve to increase

by a factor of approximately 5 the access efficiency attained

by this scheme.

To summarize, the attributes to be associated with a

1-dimensional range are probably:

a) sparse (causes compression to be switched on}

b) item size (probably 1 for bitstrings, 6 for character

strings, 30 for compound SETL objects, 30 for integers,

60 for reals).

It is now time to observe that the same techniques may

be used to implement multi-dimensioned ranges with a fair

degree of efficiency.

Multi-dimensioned ranges. A multi-dimensioned range is

addressed by two or more indices, e.g. R(I,J). Each of

the indices is an integer, neither has an upper bound.

We handle this situation as if it were R(I) (J}, i.e.,

I is used in the manner already described to locate a

range descriptor, and J is then used as an index in this

subrange. Here the typical effects on storage •efficiency

of 'sparseness' are as follows: if for most I at least

one value of J is defined, then approximately 4 (or in the

general case of ad-dimensional range approximately d+3)

words will be used per true data item stored. On the other

hand, if I is independently sparse, i.e., for most I no value

R(I,J) is defined, then approximately 6 words (and in the

39.11

general case approximately 3*d words) will be used per

true data item stored. Thus sparse multidimensioned ranges

behave (for access and storage) in a manner not too different

from sparse singly dimensioned ranges, e,g. a sparsely

defined '60x60' array performs comparably to a sparsely

defined range of I =3600. max
Note that in the presence of additional information, there

exist two evident ways in which access to a range may be

made more efficient. If a range has attained its full size,

it can be allocated, i.e., a contiguous, block of space

sufficiently large to contain all its elements can be

obtained from a central space allocator, all the entries

in the range moved to this block, and the indices otherwise

needed to support the range dropped. If the first index

of a two dimensional range R(I,J) has a known variation,

the range can be dimensioned, i.e., reduced to a one-dimensional

range by the normal address transformation I'= I*dim+J.

This makes the indexing chains needed to access a given range

slightly shorter. The same remark evidently applies to 3, 4,

etc. dimensional ranges.

Interesting mixtures of the 'range' technique suggested

here and the paging -- segmentation techniques used to handle

secondary storage probably exist. This deserves investigation.

III. Typical uses of sets as maps.

Next we turn to survey the typical usages of sets used as

maps, i.e. sets always referenced, in dexter or sinister fashion,

by addressing with a fixed number of indices. These seem to me

to be as follows.

i. As stacks, growing at one end only, and always referenced

at this end.

ii. As sequences, generally growing at one end, but in which

any element is liable to be referenced using its (integer) index.

iii. As sequences of fixed size, or at any rate of a size not

varying for many cycles of a SETL program. It is sequences

39.12

of this sort which correspond most closely to the arrays used

in programming languages than SETL.

iv. As maps assigning attributes to the members of a fixed

or growing set a. The 'symbol table' typically used within

compilers and assemblers has this character. In this situation,

several maps f,g, etc. may be 'associated', in the sense

that values f(x}, g(x) will normally be defined for all or

most of the elements x ea. Maps of this kind may be single

valued or multi-valued. The attributes, once defined, may be

fixed, or may vary rapidly, as in the case of a map whose value

is a 'count' associated in some way with a particular object.

v. As maps serving to define the structure of a data object,

as for example •next' pointers in lists or 'descendant'

pointers in trees. This usage resembles usage iv, except that

in this case the 'attributes' defined by the maps are the

elements of sets appearing explicitly in a SETL algorithm,

rather than being integers or other atoms having some essentially

'external' significance. In many cases of this sort, additional

maps may serve to associate other attributes with the individual

'nodes' or 'links' of a compound data item.

vi. As maps f(p,j) of two indices, the second an integer,

which serve to define families of sequences or of stacks

depending on a parameter p. In cases of this sort, one may

occasionally wish to refer to the set f{p} as a totality,

perhaps only to calculate the number of elements which it contains.

vii. As maps serving to record, and to allow the rapid

retrieval of, certain associations between pairs or triples

of elements.

viii. As static maps, serving to assign fixed attributes to

each of a fixed collection of elements.

ix. As maps serving to record some relationship, possibly

boolean, between pairs or triples of elements, etc.; or as

boolean-valued maps recording some true-false property of

the members of a collection of elements.

x. As maps whose values are sets, which serve to give fast

access to sets of particular importance in an algorithm.

39.13

xi. As maps depending on several parameters each of whose

parameters has a relatively fixed domain, in which case a

treatment like those customarily accorded to 'multiply

dimensioned arrays' in programming languages of lower level

may be appropriate.

xii. As maps depending on several parameters which together

define a moderately or highly irregular domain, in which case

efficient storage an access may require hashing techniques

like those normally provided by SETL.

This list covers many of the most significant cases likely

to be encountered. The SETL elaboration language to be described

below aims, by adding optional statements to an algorithm, to

make it possible for an optimizing compiler to produce a code

considerably more efficient (both in regard to running speed

and in regard to data space required) than might otherwise be

possible.

The elaboration language will incorporate various devices,

but one of these is of such central importance as to deserve

special mention. Very often a program written in a language of

lower level than SETL takes a key step toward efficiency by

systematically referencing the objects with which it is concerned

not directly but in terms of reference numbers associated with the

objects in one or another manner. Thus, to take a typical example,

a string Smay be referred to, not by the characters of which it

consists, but by its serial number j within some enumerated

collection of strings. This basic device not only helps in the

compression of data but, even more significantly, allows direct

'indexing' operations to replace more complex 'hashed access'

operations systematically. For example, in the case considered

above, the values of a function of S might be stored in an array

accessed efficiently by using the associated indP.x j. Knowing

and systematically exploiting these 'representation conventions',

a programmer working in a language of lower level can develop

an efficient code. The elaboration language to be described below

aims to make it possible .to set down an explicit description of

this normally implicit representation strategy, and in this way

to attain a degree of efficiency that normally would require

the use of a programming language of lower level than SETL.

39.14

IV. Tentative form for an elaboration language. Sets and ranges.

Guided by the above remarks, we shall now propose syntactic

and semantic forms which can serve to define the elaboration

language which we desire. Later in this newsletter, the use

of this language for the elaboration of certain algorithms

taken from the SETL notes will be illustrated.

The elaboration language will serve to define:

A. The manner in which certain maps are stored within ranges.

B. The manner in which ranges are addressed.

c. The manner in which certain sets are stored within ranges.

D. The manner in which reference is made to the elements of sets.

E. Various subsidiary operations and items of information,

to be described below.

We begin with item D. We take it that, as elements are added

to a set, the SETL implementation will assign them implicit or

explicit 'reference numbers', in an essentially ascending order,

as members of this set. To make this point clearer, suppose,

for example, that sets are implemented using hashtables which

point to entries in indexed ranges (i.e. ranges of the type

considered in section II), and that these ranges contain chained

lists of items, as in the following diagram.

item locates
hash ____ /

(low bits
only)

hash table item table

X

I chain of items

.J with given hash

Particular set member,

at i-th position in item table.

The hash table and the item table shown in the above figure

together represent a set a; the 'reference number' (as a member

of a) of the item marked x in the figure, that is, of the ith item

39.15

in the item table, is i. Note that in this case the serial

number i gives fast access to the item x, even if the item

hash is not known initially.

Even if the eventual implementation of sets in SETL is

somewhat different, we assume that for the elements of any

set declared as a pile (see below for additional details)

reference numbers having the principal properties noted above

will be available. If x is a member of the set~, the quantity

x asel t a refers to this reference number. A serial number

of this kind, rather like a pointer in programming languages

of lower level, retains its validity as long as x remains an

element of the set~, and as long as the value of a is not

reassigned by any operations more extensive than a= a with x,

a= a less x. More radical reassignments might leave

'dangling reference numbers'; basically, we regard the

avoidance of this situation as the programmer's responsibility,

if he chooses to elaborate SETL.

The following syntactic discussion will begin to put the

intended semantics of reference numbers into sharper focus.

A set occurring in a SETL program may either be declared

or undeclared. (In unelaborated SETL, all sets will be

undeclared.} An undeclared s~t will be treated in a standard

fashion; declared sets will generally be treated in a manner

which is logically equivalent to this standard treatment,

but which attains higher efficiency. A set a is declared

if its name occurs in a set declaration (or in a range,

see below for this possibility).

The first part of such a declaration, the so-called opener

of the declaration, has one of the forms

(1) pile a;

(2) E_ile nodup a;
(3) hash a;
(4} set a;

39.16

The intended semantics of these set declaration openers

are as follows. The declaration (2), i.e., eile nodup a,states that

a is a set into which no two identical elements will

ever be place<l, or, at any rate, one in which the presence

of duplicate members may be ignored. This declaration

there·Bore suppresses the SETL identi ty-wi th-existin~J-elemen t

check which must normally be made whenever a new member

is introduced into a set. Sets a declared in this way

can be maintained in stack-like form (without any hash-table)

particularly advantageous for the implementation of the Vx ~ a

iterator and the x from a sequence. On the other hand, the

operation a= a less x may have an inefficient implementation.

If a set a is declared in the pile nodup mode (2}, then each

element x of a retains a fixed reference number from the

time it is introduced into a to the time that it is removed

from a. The same is true if a is declared in the simpler

eile mode (1). Note that this requirement may interfere

somewhat with our ability to reclaim space by repacking

the 'item table' shown in the figure above.

As has been noted, the declaration pile a serves to

guarantee that elements of a will retain fixed reference

numbers as long as a is not modified by any operation more

radical than a= a with z or a= a less z. on the other

hand, the addition of elements to a set declared in this mode

will still involve an (efficient) check for identity with some

existing element.

Note then that both the pile nodup and the pil~ declara

tions serve to guard the validity of element refere~ce numbers,

i.e., to ensure that two separate uses of x aselt a yield

the same integer if x has not been changed and a has not been

radically changed between these two uses.

39,17

The declaration hash a has much the force of pile a,

except that if a is declared in this mode any reference

x aselt a will add x to a if it is not already a member

of a. Sets declared in this way will generally be used

simply to systematize reference to elements of other sets,

and to define the manner in which ranges (see below} are

addressed.

The opener in set a merely states that a is to be treated

in the standard SETL mode; the reason why such an opener may

sometimes be required will shortly become clear.

Following upon the opener (1-4} of a set declaration, there

will follow a content describer. This will have one of the

following forms:

(5}

(6)

(7)

(8)

(9)

(10)

(11)

a list of

(12)

obj;

int,

string,

bit

elt b

subset b;

or more specifically
II

II

II

string k;

bit k;

elt b:k;

tupl(•..), where within parentheses there occurs

content describers, separated by commas;

set cd , where cd is itself some content describer.

The semantic intent of this set of syntactic forms is as follows.

i. The describer obj signifies that the set a contains

general items, represented in the standard SETL manner. This

requires a field long enough to hold a standard-form SETL object

reference.

ii. The describer a int signifies that the members of a,

are integers. For the representation of these integers, a

field long enough to hold a standard SETL object-reference is

required. However, if the integer value is small enough for its

binary representation to be stored directly in such a field,

this value may be given directly.

The describer

are integers n

39.18

a int k signifies tha the members of a

confined to the range lnl < 2k-l_ A field

of k bits suffices to store these values, which, in the case

of sets declared as pile nodup, may lead to storage economies. -- ----
An attempt to introduce an out-of-range element into a is

an error.

iii. The describers string and s~ring k: mutis mutandis
--...-. -

from the preceding case, except that in the case of strings

whose values are availble directly rather than indirectly one

character will be reserved to indicate the length of the

directly stored string. Similarly for the describers bit and

·bit k.

iv. The describer elt b signifes that the elements of a

are also members of the set b, and that at the implementation

level a is represented in a manner actually giving its elements

in terms of their reference numbers as members of b. This

serial number will be given directly, in a field large enough

to contain the maximum plausible reference number. The describer

elt b:k has a similar significance, but also certifies that

the total number of elements added to b since its inception is

certainly less than 2k. Reference numbers to elements of b may

therefore be stored in a field at most k bits long, which

can lead to storage economies if a has been declared as Eile ~dup.

v. The describer subset b signifies that the elements of a

are subsets of a set b, and these subsets are represented by

bit-vectors, the bit-position corresponding to any element of

such a subset being determined by its serial number as an

element of b.

vi. The describer tupl(cdseq), where cdses is a sequence

of content describers separated by commas, asserts that the elements

of a set are n-tuples of fixed length, and that the components

of these n-tuples are of the type described by the successive

39.19

members of the describer sequence cdseq. Fields of

appropriate length, coded in the manner determined by cdseq

according to the conventions set forth in the last few

paragraphs, are then reserved for the representation of

these components.

vii. The describer ~ cd, where cd is itself some

content describer, indicates that the elements of a set a

are themselves sets; cd describes the nature of the

elements of these sets.

After the opener and the content describer of a set

there may follow an optional it€ration describer. This can

be of one of the two following forms:

(13}

(14)

iter asobj;

iter aselt;

These describers control an aspect of the SETL iterator (Vx € a)

which is important for efficiency. If a set is declared with

the iteration describer (14}, then in the implementation of an

iterator of the form (Vx Ea) the variable x will run

iteratively over the reference numbers of the elements of a

(i.e., their reference numbers as elements of a), rather than

over the corresponding sequences of standard SETL object

references. If no iteration describer is present, then in an

iterator of the form (Yx Ea) the variable x will run iteratively

over the elements of a, represented however not as standard

SETL object references but in whatever way the content

describer used in a's declaration causes them to be represented.

Thus, for example, if a is declared as

pile a; elt b;

then in an iteration (Yx Ea) the values successively as~igned

variable x will be the reference numbers which members of a have

as elements of b. On the other hand, suppose that a is declared

as

pile a; elt b; iter ~selt;

Then, even though the representation of a (at the SETL implementa

tion level} willdescribefu: elements of a using their reference

39.20

numbers as elements of b, the iterator (~x € a) will cause x

to assume successive values all of which are a-reference numbers.

If it subsequently becomes necessary to reduce x to a standard

SETL object reference, two successive layers of indirection

will have to be resolved.

The iteration describer (13), i.e., iter asobj, forces the

iterator (Vx c a) to set x successively to a sequence of standard

form SETL object describers, irrespective of the manner in which

a stores its elements, i.e., independently of the content-describer

occurring in the declaration of a.

Having said enough for the moment concerning item D of

the list given at the beginning of the current section we

turn to item B, i.e., to describe the manner in which

logical ranges can be employed to represent sets used

as maps in a SETL algorithm, and the manner in which these

ranges can be addressed.

A logical range is defined by a range declaration.

1. The first part of thi& which is the addressing declaration

for the range, opens with a statement of the form

(15) range name (x 2 ,x 2 , ••• ,xn);

where name is the range name, and where x 1 , ... ,xn are

the parameters using which the range will be addressed. We

call these its addressing parameters, and call the statement

(15) the declaration opener.

2. Next there follow a set of Earameter description units,

separated by commas. These have one of the following forms

(16)i. x. int, x. blank index, x. bit index, x. string index;
l -- l ------- l ----- l

ii. x. aselt a, or more generally
l

iii. x. hash a,
1.

iv. x. hash
1.

"

"

aselt a,

<x. , ... , x. > hash a
1 1 1.k

<x. , ... , x. > hash
1.l 1.k

Here a is a SETL name; the value associated with this name will

be some set. Every parameter of the range must be mentioned

in precisely one parameter description unit.

39.21

The semantic intent of the syntactic forms shown above

is as follows. The SETL range declared in (15) will be implemented

as a singly- or multiply-dimensioned indexed range R

of the kind described in section II. The number of dimensions

of R will (for a reason that should soon be clear} equal the

number of parameter description units (16) that follow the

opener (15}. Each access to R is of course indexed by integers;

the parameter description units serve to describe the manner

in which the indices supplied to the logical range~ are

converted into integers to be transmitted to the indexed

range R. More specifically

i. If x. is described as an int l __ , it will be an integer

to be transmitted directly to R.

If x. is described as a blank index, it will be an integer
l

whose 'least significant' part is to be transmitted directly

to R. The 'most significant' part will be an additional

integer serving to identify a blank atom uniquely. Indices

of the form here envisaged will be produced by calls on the

elaborated newat function; see below.

If x. is described as a bit index, it will be a bit-string,
l

and the integer bin x. is then to be transmitted to R.
-- l

If x. is described as
l

character string, and the

a string index,

integer bin hol ----
34, p. 1) is then to be transmitted to R.

it will be a

X.
l

(cf. newsletter

ii. If the declaration x. aselt a occurs, then x. is
l --- l

an element of~ represented either directly or indirectly,

and quite possibly by the reference number which x. has as
l

a member of a. In this case, this referen::::e number, i.e.,

the integer x. aselt a, is to be transmitted to R.
l

If the declaration <x. , ... ,x. > asel t a occurs then
l l

the indicated k-tuple, fo!med fro~ the group of parameters

xi , ... ,x. , is a member of the set designated by the name a.
1 lk

In this case, the serial number <x. , ... ,x. > aselt a is
ll lk

to be transmitted to R; this reference number will of course

stand for an entire group of parameters of the logical range

name.

iii. If the declaration x. hash a occurs, then~
l --

names a set not used in an unelaborated SETL program, but

which is to be used to supply an index to be transmitted

to R. The element x. will then be inserted into the set~,
l

and the serial number x. asel t a is supplied to R. The
l

declaration <x. , ... ,x. > hash a has a similar meaning,
ll lk

which the reader will readily supply.

Several separate indices x. may occur in addressing
l .

declarations x. hash a with fixed a,either in one or in several
l

separate ranges; likewise, several separate groups of indices

may occur. The set designated by a name~ used

in this way will continually increase, unless all the ranges

in which a is so used are simultaneously drop'ed (see below),

in which case a will be reset to nt.

iv. The simplified forms

are respectively equivalent to

x. hash and
l

x. hash aa
l ---

where~ is some unique generated name.

<x . , ... , x. > hash
ll lk --

and <x. , ... ,x.> hash
J.l lk

3. After the opener and the parameter description units

forming the first part of a range declaration follows a group

of storage description units. These are introduced by the

token

stores

and have the form

(17) f contentdescriber,

where contentdescriber is a content describer of one of the

forms described earlier, and where f is the name of some set

used as a mapping within a SETL program.

aa,

39.23

A set whose name occurs in a storage description unit (17)

of some logical ranger is said to be stored within r;

the precise manner in which its values are represented within

r is determined by the contentdescriber of (17), in the manner

explained in our earlier discussion of the semantic signifi

cance of content describers.

Note that a given set name f may not be mentioned in more

than one storage description unit, and not in two storage

description units belonging to different ranges.

4. After the opener, parameter description units, and

storage description units of a range declaration follow an

optional group of sharing assertions. These are introduced

by the token

share

followed by a list of sharing groups, enclosed in parentheses

and separated by commas. Each sharing group has either the form

(18) (f,g, ...)

or

{19) (f,g, ...)k .

Here f,g, ... are set-names mentioned in a storage description

unit of the range declaration. A given set-name may not be

contained in more than one sharing group.

The occurrence of a sharing group (19) has the following

significance. Not more thank of the functions f,Sf are likely

to be defined for any given set of logical parameter-values.

A field large enough to store k entries of the type appropriate

to the declared value-types of each of these functions, allowing

a 'typical average' field size if the field-sizes specified

(in the preceding storage description units) for these various

functions differ. In addition, a number of bits are reserved

for flags which indicate which of the values f,g, etc. are defined

and which are undefined. If more function values become defined

than will fit into the total field, one passes automatically to

a variant storage technique, in which one or more

overflow •areas belonging to the indexed range R are used.

The special variant (18) is roughly equivalent to

(f,g, ...)l

39.24

it reserves a field equal in size to the maximum size of

the fields required to store f,g, etc.

If a range is to be used to store the values of any

mapping f(x
1

, ... ,xn} which might be multi-valued, its opener

should have the special form

multi range name(x 1 , ... ,xn);

This indicates to the SETL compiler that an implementation

efficient for cases of this kind is required.

If the address-transformations to be used with a range

are not such as to guarantee that the numerical indices into

which addresses will be transformed fall into a densely

populated interval,the keyword

sparse

should be prefixed to the range opener. This will guarantee

that the indexed range R within which the logical range~

is stored employs compression, which, in the manner described

in section II, will attain acceptable data packing even in

the sp~~ case.

V. The elaboration language, continued. Conversions,

dimensioning, range operations.

The SETL elaboration language, as descrih~d so far, allows

sets and their elements to be referenced in various ways.

E.g., an object can be represented by a standard SETL object

reference, by a number which specifies one such object

reference among all the elements of a particular set, etc.

We intend in this connection that conversions (between

the various possible representations of a single object}

should be postponed as long as possible; this principle can

be of fundamental importance in attaining high efficiency.

Thus, for example, if a is a set declared as

39.25

pile_ nodup a; string; iter aselt;

while f and g are functions stored in the manner described by

(20) range fg(x}; x aselt a; stores f int, g ~~;

then in the code sequence

(21) (Vx ea) if f(x} ~ 3 then ...

the iterator will set x equal to the reference numbers of

successive elements of a; since these reference numbers are

precisely the indices which serve to locate the various values

f(x) required within the code sequence (21), a suitable

optimizer can convert (21) into efficient code which uses

'direct indexing', even though from the abstract SETL point

of view x remains a character string of unrestricted length.

If, on the other hand, f and g were stored in the manner

described by the declaration

(22) range fg(x); x hash; stores f int, g obj;

then in the code sequence (21) the evaluation of f(x) would

require a 'conversion•. Specifically:

i. The reference number of x as a member of~ initially

available when f(x} is to be evaluated, must first be converted into

a standard SETL object-describer;

ii. This object-describer will then be sought in the

'hash-table' implicitly specified in the declaration (22);

if not already present in this table, it will be inserted.

iii. The serial position of x's object-describer in this

hash table will then serve as the index locating the actual

value of f(x).

Effective use of the elaboration language requires the

design of a set of declarations which minimize the number of

conversions and other 'overhead' operations

appearing in the compiled form of SETL code.

39-26

The elaboration language contains various

statements designed to aid the programmer's in controlling

the mode in which objects occurring in a SETL code are referenced

and stored. The expression

(2 3) x aselt a

converts an object into its reference number as an element of a.

If x is not a member of a, (23} is erroneous unless a has been

declared to be a~; in this case. (23} adds x as a new

member of a.

The expression

(24} x asobj

converts a reference number into the standard SETL object

describer which this reference number represents. It must be

used in those cases in which an object described by a reference

number will 'outlive' the set used to assign it a reference

number.

These same keywords can be attached to iterators. By

writing

(2 5} (Vx € a asobj)

we cause the successive values of x to be standard SETL

describers corresponding to the successive members of a,

irrespective of the manner in which a may have been declared.

Similarly, by writing

(26) (Vx € a asel t b) ,

we cause the successive values of x to be the reference numbers

which the elements of a have as elements of a (possibly different}

set b. The diction

(27} (Vx € a ashash b)

has a similar significance, which the reader will readily supply.

A related convention applies to the SETL set-former

construction. The unmodified set-former

(2 8) {xE:a I C(x)},

39.27

together with its more elaborate variants, creates a set

in standard SETL form. On the other hand, if bis a declared

set, then

(2 9) {x ea I C(x)} inr b

builds the same set in the special, and generally more

efficient, form declared for b; when the set-forming opeation

concludes, b will have beenmade equal to the set (28}.

A similar convention applies if b has been declared as a set

of n+l-tuples used as a mapping and stored within a logical

range name. In this case, it is required that the set (28)

consist of n+l-tuples of corresponding form; the evaluation

of (29) then makes b equal to the set (28}. Of course, b is

maintained in its declared form. Any attempt to place an

element x whose form is logically incompatible with a given

range into a set stored within the range is an error.

Remarks similar to those just made apply to various other

set-creating operations. For example, if a has been declared

to be stored within a range the statement

(30) read a;

will convert~ directly from its external form to the special,

efficiently represented form declared for a. The evaluation of

(31) {x € a I C(x}} assub b

or of any such more complex variant of (31) as

(32) {e(x,y), x ea, y € aa(x} C(x,y}} assub b,

builds a new set, representing it as a bit-vector, in which the

bit position of an element is its reference number as an

element of b. Here b should have been declared as f~, hash, or

possibly pile nodup. The set formed in (31) or (32) must be a subset

of b, unless b has been declared as hash, in which case elements

39,28

present in the set (31) but not initially present in b will be

added to bas necessary. A similar remark applies to such an

instruction as

(3 3) read a assub b;

whose semantics the reader should be able to supply without

difficulty.

Assignments

(34) a= expn;

operate as follows in the presence of SETL elaborations. If the

set name a is undeclared, i.e., if no declaration requiring~

to be stored within a pile, heap, or range has been made, then

after (34) has been executed the value of a will be stored in

whatever manner is dictated by the right-hand side of (34).

This accords with our general desire that conversions should

be postponed as long as possible. Thus, for example, if no

special storage mode has been declared for a, the assignment

{ 35) a= b assub c;

will cause a to reference a bitvector, whose 1-bits correspond

of course to those elements of c which belong to its subset b.

Similarly, the assignment

(36) a = f (x) ;

would in the presence of a declaration of the form

(3 7) range fg(x); x int; stores f,g aselt b;

cause the value of a to be a reference number corresponding to

some certain element of the set b; provided, that is, that no

special storage mode has been declared for a.

If, on the other hand, a special storage mode is declared

for a, then the assignment (34) implies a conversion of the

value~ into whatever form this storage mode requires.

39.29

Of course, if the value expn already has the correct form,

conversion is unnecessary and the operation (34) is maximally

simple. On the other hand, if the value expn is such as to

make its conversion to the declared storage mode of a

impossible, an error results.

The same rules carry over, in appropriate form, to indexed

assignments, read operations, and so forth.

If a is a set used within a SETL algorithm, then the

(executable) instruction

(38) pin a

converts a from its normal form (whether undeclared or declared)

to a special form advantageous for use in connection with sets

to which additions and deletions will be addressed only rarely.

One possible form in which such a pinned set might be

maintained is as follows. A block, equal in size to the

number of elements of ~can be set aside. This block can contain

entries of the form

I TI chain I descriptor
_ pointer

Items are located in the pinned set using an index derived by

hashing. The single 'flag' bit shown in the above diagram is

set to 1 for i terns that are valid table entranres, and to zero

for all other items. The 'chain pointer' field connects all

items which have identical initial indices; all but the

first of these entries have their flag bit set to zero.

The 'descriptor' contains the item reference itself, maintained

in whatever form may have been declared for the entire pinned

set a of items. Individual items within a collection maintained

in this form may be located quite rapidly. Note that the

membership test x ea and the iteration (Vx ~ a) can be

implemented with particular efficiency for pinned sets.

39.30

If enough items are added to a 'pinned' set~ to cause

it to overflow the area reserved for its representation, an

error condition will arise. Thus, before adding new items

to a pinned set, one should execute the instruction

(39) unpin a;

this returns a to its normal representation.

When a set a is pinned (or unpinned) the reference indices

associated with its members all change. Thus pinning/unpinning

of~ is only possible at moments when no range within which

particular parameters or stored values are referenced aselt a

contain any entries. One way in which this restriction can

be accommodated is as follows. A function f whose values are

eventually to be indexed aselt a, where a is to be pinned,

can be represented in the standard SETL form before a is pin-

nQd, (which means that no special storage mode should be

d~clared for f). After a is pinned one may execute ff= f;

followed by f = ff;. Here ff should be a mapping whose values

are declared to be stored within a range indexed aselt a.

As has been noted above, the first of these assignments will

cause f to be converted from the standard SETL form to whatever

special form is declared for ff; the second assignment will

transmit this converted form back to f. Since we assume that

no special storage form has been declared for f, this second

assignment does not imply any special conversion. Note also that

the restrictions encountered here relate to the fundamental

fact that sets fused as mappings and stored within ranges

cannot be exastly reconstructed in their entirety, since the

special form in which they are maintained, which is contrived

to support indexed assignment and retrieval operations

correctly and efficiently, suppresses some of the ('reverse

direction1) connections between indices and the elements which

they index which would be necessary for this purpose. We also

remark that, if the reconstruction of maps is associated with it,

pinning can be an expensive operation, and one may therefore prefer

to pin sets only when they will remain unchanged through a

substantial sequence of S.ETL operations.)

39.31

If a logical ranger is used to store the values of only

one single map f, the instruction

f = nl;

will be efficiently implemented; essentially, it will cause

the ranger to revert to an initial 'null' condition. If,

on the other hand, r is used to store the values of

only several maps, execution of the above instruction may be

quite expensive, as it may involve an examination of every

item stored in r. In such cases, it may be

preferable to execute the composite 'range nulling' operation

drop r;

This is logically equivalent to the sequence of instructions

etc.

where f,g, ... are all the maps whose values are declared to

be stored within r. However, the drop instruction always has

an efficient implementation, and causes r to revert to its

initial 'null' condition.

Note that the possibility of using the drop instruction

in this way may influence the programmer's grouping of functions

to be stored within a common range.

If a reasonable maximum size can be assigned on a. priori

grounds to a declared set or range, the set or range can be

allocated, using the executable instruction

(40) a alloc n

where a is a declared set or range name, and where n 1s an

integer. This operation reserves for the storage of a

contiguous block large enough to contain n entries, and thus

facilitates access to~ by eliminating some of the overhead

associated with the maintenance of variable-size ob:jects.

If subsequent to the execution of (40) enough entries to a

are made to cause a to overflow its allocated area, a will

automatically revert to the standard format used to implement

entities of variable size.

39.32

A related operation which can be called dimensioning may be

worth providing in connection with arrays. A plausible syntax

for this operation might be as follows. Suppose that a ranger

is declared in some such form as

(41)

In this case, the instruction

(4 2) dim r (x . : n 1 , . . . , x . : nk) ,
ll lk

in which x. , ... ,x. are paramete1s appearing in (41) and
ll lk

n 1 , ... ,nk are integers, may be executed. The effect of this

instruction can be explained as follows. Whenever a value

stored in the ranger is accessed, the parameters x 1 , ... ,xn

are converted to integer indices 11_, ••• ,Pn, in the manner

described earlier in the present newsletter. These integer

indices are then used to access an element in an indexed range

R of the type described in section II above. This accessing

opeation may involve a sequence of steps, during which successive

indices p 1 , ... ,pn are converted into machine addresses with the

help of whatever auxiliary index tables associated with R may

be required. The instruction (42) speeds up this addressing

process by converting the subcollection p. , ... ,p. of indices to a
ll lk

single
1

linearized
1

index p, this index p being calculated by

the customary fornula

(43) p = pil + (pi2-l)*nl + (pi3-l)*n1*n2+ ... +(pik-l}*n1*···*nk~l·

(Clearly, the last integer nk appearing in (42) is irrelevant;

it may be omitted.) It is only appropriate to apply the index

transformation (43) if it is known a priori that the varia-

is confined to the tion of the individual indices p. , ... ,p.
ll lk

intervals

(4 4) 1 < p. < n 1 ,
ll

, 1 < p. < nk .
lk

39.33

rt may also be remarked that the use of the transformation (43)

will normally be associated with situations in which the

intervals (44) are densely (rather than sparsely) populated

with indices generated in addressing the range (41).

Once a range (41) has been dimensioned using (42), the occurrence

of an excessively large or nonpositive index p. constitutes
J

an error.

The form (42) of dimension statement can only be used if the

addressing part of the basic declaration (41) contains no state

ments of the form

(4 5) <x. , ... ,x. > aselt a
J1 Jn

<x. , ... ,x. > hash , etc.
J1 Jm

or

which cause a group of range parameters to be used collectively

for the generation of an index. If such forms as (45) are used

in the addressing part of (41), and if it is desired to use

the numerical indices thereby generated in forming a linearized

address pas in (43), the instruction (42) should have some such

modified form as

(46) <x. , ... ,x. >: n 2 , ...) .
J 1 Jm

The instruction

(47) undim r

causes the ranger to revert to its initial 'undimensioned' form;

this might be necessary if, for example, indices p. not belonging
J

to the stated intervals (44) might be encountered in a particular

section of SETL code.

Both (42) and (47) will normally be expensive instructions

to execute, and one will normally use them only when the

dimensions established by executing (42) need not be changed

until a substantial number of references tor have been made.

39.34

VI. The elaboration language, concluded.

Miscellaneous conventions, remaining deficiencies.

The SETL elaboration language will incorporate certain conven

tions related to the blank atom generator function newat. If r is

the name of a logical range of one integer parameter, i.e., a

range declared in some such form as

(48) range r(x); x int;

then newat r denotes an integer (probably the smallest integer)

for which every function-value f(x) stored in the logical ranger

is undefined. In effect, the function call newat r 'allocates'

one entry E of the standard form declared for r, within r

flags all the values stored in this entry as being undefined,

and returns the location of E as its value. Indexed assignments

of the form f(x) = expn may then assign values other than n to

certain of the logical 'storage fields' of E.

An alternate elaboration of the newat function provided for

use in those cases in which one wishes to generate sequences of

blank atoms which can serve initially to address a logical range

r but which may 'outlive' drastic changes in r. This has the form

(49) newat ofseq a,

in which a itself is a blank atom. This form of blank atom

generator works as follows. As blank atoms are generated, they

are assigned identifying sequence numbers long enough to prevent

inadvertent duplications from occurring. The form (49) causes

this sequence number of have high bits calculated from the low

bits of a, but to have low bits which range sequentially from 0

to some large integer. This low bits can then be used directly

to index a range; which will be done if some parameter of the range

is declared to be addressed a blank index.

I will not now attempt to suggest detailed semantic conventions

concerning the automatic copying of sets declared as pile or hash,

or concerning the conventions to be applied when such sets appear

within routines used recursively. A study of these important

questions will be undertaken later. Hopefully, the SETL optimizer

will be able to discover enough hf the cases in which the copying

of an entire set is unnecessary so that a single fully automatic

39.35

copying system can be applied both to sets for which no special

storage form is declared and to sets declared as pile, pile nodup,

or hash. If this hope is not realized, the elaboration language

may have to include some explicit 'copy' instruction applicable to

declared sets. A similar remark applies to ranges and to maps

whose values are declared to be stored within a range.

We assume here that any storage declaration made for a set

or mapping~ has the same scope as the name a itself. Thus the

storage mode declared for a will apply consistently to a whenever

it is referenced by a subroutine used in a larger SETL program.

This rule is to be applied even when~ is made available as a

parameter to a subroutine or function.

Consideration of the examples to be presented in the following

section reveals a number of shortcomings in the elaboration language

as it has just been outlined; among these, the following deserve

to be noted.

i. No form is available for specifying either that the elements

of a set or that the elements stored in a particular 'field'

within a range are tuples, of indeterminate lengt~ but all of whose

components are of a particular type. This may deprive an

optimizer of information of which it could make good use.

ii. No 'union type' like that of ALGOL 68 is available.

This means that if an item to be stored in a range exhibits any

structural variability whatsoever, it must be declared as obj, which

is an entirely general declaration, and which may deprive an

optimizer of information of which it would make good use.

iii. The elaboration language as it stands provides no mechanism

whereby the items of a doubly indexed range d(x,j), whose second

index is an integer varying over an interval 1 < j ~ n(x), can be

'stacked' into a single linear range in a manner calculated to

make indexing efficient. Note however that the 'pinning' of such

a range might be implemented in a manner accomplishing this.

iv. In some cases a doubly indexed range d(x,j) and a singly

indexed range f(x) will be associated, in the sense that the

indices x are the same for both ranges, and that the second index

j occurring in one of these ranges is an integer varying over an

interval 1 ~ j < n(x). The elaboration language contains no

mechanism for expressingthis association, a fact which may have

certain intransparencies of expression among its consequences,

and which may also lead to certain inefficiencies in data packing
and indexing.

39.36

VII. Use of the elaboration language: some illustrations.

We now illustrate the use of the elaboration mechanisms

proposed in the preceding pages, applying them to various

algorithms taken from the SETL notes. Our first example

is the tree selection sort, given on page 112. We modify

the unelaborated algorithm slightly so that it applies to

the sorting of other objects than integers (as, for example,

strings) ; indicate all I/O explicitly for the sake of

completeness; and write the_elaborated and unelabora.ted

algorithms in parallel columns to make the elaborations

stand out vividly. I have attempted to write a set of

elaborations from which a fairly straightforward, optimizer

could produce reasonably efficient code.

PURE SETL ALGORITHM

read seq;

treesort (seq) ; print seq;

exit;

definef treesort(seq};

/*first build the tree*/

,Q,=n,Q,• r =n£· _, _,

ELABORATED ALGORITHM

read seq;

ran3~ seq(x); x ~; stores seq obj;

treesort (seq) ; print seq;

exit;

definef treesort(seq);

/*first build the tree*/ pin seq;

range tnodes(x); x in~;

stores £,r,par int, v obj;

drop tnodes;

,Q,=n,Q, · r=n,Q, · -' _,
v={<newat,seq(j)>,l~Vj~#seq}; v={<newatt:nodes,seq(j)>,l~Vj~#seq};

trees= hd[v] trees= hd[v];

loop: newtrees=n,Q,;

(while trees ne n,Q,) ---
nd = newat;

.Q.n from trees;

rn from trees;

nd in newtrees;

pile nodup trees; int;

loop: newtrees=n,Q,;

pile nodup newtrees; int;

(while trees ne n,Q,) --
nd = newat tnodes;

,Q,n from trees;

rn from trees ;

nd in newtrees;

i(nd)=tn;v(nd)=v(tn)

iff (rn ~ D)?

rnlit? quit,

setrt, setlf;

setlf: r(nd)=rn;

setrt: i(nd)=rn;

r(nd)=tn;v(nd)=v(rn)

t(nd)=tn; v(nd)=v(tn)

iff (rn ne D) ?

rnlit? quit,

setrt, setlf;

setlf: r(nd)=r(n)

setrt:i(nd)=rn;

r(nd)=tn; v(nd}=v(rn)

3 9. 37

rnlit := smaller(v(rn) ,v(tn)); rnlit := smaller(v(rn) ,v(tn))

end iff; end iff;

/*'smaller' is a macro /* same comment*/

to be supplied. it specities

the ordering principle for

the objects to be sorted*/

/* for integers it would be*/ /*same comment*/

block smaller (vl, v2) ; block smaller (vl, v2 l ;

vl it v2; end smaller; vl it v2; end smaller;

end while trees; end while trees;

if #newtrees gt 1 if #newtrees 51! 1

then trees=newtrees; then trees=newtrees;

go to loop; go to loop;

pin tnodes;

/*then put in parent links*/ /* same comment*/

par=nt; /* this may be omitted, because of

previnus drop of tnodes */

(Vx € hd[i])par(i(x))=x;; (Vy E:i) par(ti y)=hd y;;

/* which generates a loop covering

the whole range 'tnode'*/

(Vx € hd[r])par(r(x))=x;; (Vy€ r)par(ti y) = hd y;;

/* now tree is built. /* same comment*/

begin main selection and

repair process*/

top =) newtrees;

seq = ni;

top = ;?; newtrees;

seq = nt;

39_38

(while 51.,(top) ne n) node=top; (while 51.,(top) ne n) node=top;

(while 5/.,(node)ne n) (while 5/.,(node) ne n)

node = 51., (node) ; ;

seq (#seq+l) =v {node) ;

5/.,(par(node)) = n;

(while par(node}~~ n}

node= par(node);

iff (r(node) eq n)?

(5/.,(node) eq n)? isnoleft?

takeleft,dropnode,

takeright, compare;

takeleft:v(node)=v(l(node))

dropnode:5/.,(par(nodeD=n;

takeright:v(node)=v(r(node));

5/.,(node)=r(node);

r(node)=n;

compare:

if smaller(v(r(node),

v (5/., (node) } }

then 51.,(node)=r(node);

r(node)=f/.,(node); end if;

v(node)=v(t(node));

isnoleft:=i(node) eq D;

end iff; end while par;

seq(#seq+l)=v(top);

end while;

return;

end treesort;

node= 51.,(node};

seq(#seq+l)=v(node)

t(par(node)) = n;

(while par(node) ne n)

node= par(node);

iff (r(node) eq n)?

(51., (node) eq n)? isnoleft?

takeleft, dropnode,

takeright, compare;

takeleft: v (node) =v (f/., (node)) ;

dropnode:t(par(node))=O;

takeright:v(node)=v(r(node)};

51., (node) =r (node) ;

r(node)=n;

compare:

if smaller(v(r(node)),

v (R-(node)))

then 5/.,(node}=r(node);

r(node)=J/.,(node); end if;

v(node)=v(J/.,(node)};

isnoleft: =f/., (node) eq n;•

end iff; end while par;

seq(#seq+l)=v(top)

end while;

return;

end treesort;

It will be observed that relatively few elaborations need be

made; hopefully, these will suffice to give good efficiency.

Next we show the elaboratimof a SETL code which as

it stands is more highly set-theoretic than the preceding

algorithm: the set of procedures for flow-analysis and live

dead tracing given in the SETL notes. Again, we write in

two parallel columns so that the unelaborated and elaborated

algorithms may be compared.

PURE SETL ALGORITHM

/*hypothetical 'main

optimizer program'*/

39.39

ELABORATED ALGORITKM

/* same comment*/

/* it is assumed that an initial/* same comment*/

successor function',set of

nodes, and 'uses' function

is given, each value of this

last function being a subset

of some comprehensive set of

variables*/

builduse(nodes,entry);

/* now we begin the series of

subroutines which build up the

principal processes used above*

define£ interval(x);

optimizer external cesor,

nodes, npreds, followers;

int = n9..;

followers= {x};

count= {<y,0>, y €nodes};

/* except for x, 'count' counts

the number of predecessors of

a node which belong to the

interval being constructed*/

count (x) =npreds (x) ;

(while {y € followers

npreds(y) eq count(y)}

is newin ne nt)

/* the set of variables will

be called 'vars'

below*/

builduse(nodes,entry)

pile nodup nodes; elt allnodes;

range cesor(x); x aselt allnodes;

stores cesor set (el t allnodes) ;

range npreds(x) ;x aselt allnodes;

stores npred int 12;

hash allnodes; obj;

/* same comment*/

define£ interval (x) ;

optimizer external cesor,

nodes, npreds, followers, allnodes;

int = nt;

followers ={x} aselt allnodes;

count= {<y,0>, y € nodes}

/* same comment*/

range int(j); j int;

stores int int; range count(x);

x asel t allnodes; stores count int 12;

count(x) = npreds(x);

(while {y £ followers

npreds(y) eq count(y)}

is newin ne n9..)

pile nodup newin; elt allnodes;

(Vz € newin) int(#int+l)=z;

followers= followers less z;

(Vy E: cesor (z) I y ne x)

count(y) = count{y)+l;

y in followers; ;

end Vz;

return int;

end interval;

define£ intervals(nodes,entry)

optimizer external cesor,

followers, follow, intof;

ints = n2;

seen= {entry};

(while seen ne n,Q,)

node from seen;

interval(node) is 1 in ints;

follow(i) = followers;

(Vb e t2[i] /*t2[i] is

the set of all nodes in i * /)

intov(b) = i;;

seen= seen u followers;

end while;

return ints;

end intervals;

/* now the derived graph

algorithm*/

define£ dg(nodes,entry)

optimizer external cesor,

follow, intov, dent;

39,40

I
(Vz € newin) int(#int+l)=z;

followers= followers less z;

l(Vy € cesor(z) I y ne x)

count(y)= count(y)+l;

y in followers;;

end V.z; pin int;

return int;

end interval;

define£ intervals(nodes,entry)

optimizer external cesor,

followers, follow, intof,allnodes;

ints = n2;

pile nodup ints; set elt allnodes; ----
pile nodup seen; elt allnodes;

seen = {entry};

(while seen ne n,Q,)

node from seen;

interval(node) is i in ints;

follow(i) = followers;

range follow(x) ; x aselt allnodes;

stores follow pil~ nodup(elt

allnodes);

(Vbb € i) b = t,Q, bb;

intov(b) = i;

irange intov(b); b aselt allnodes;

' stores intov elt allnodes;

·seen= seen u followers;

'end whi:J_.e;

!return ints;

I

' end intervals;

/* same comment*/

define£ dg(nodes,entry);

optimizer external cesor,

follow, intov, dent, allnodes;

pin nodes;

npreds = n.Q,;

(Vx E nodes, y E cesor(x})

npreds(y)=

if npreds(y) is np eq ~

then np+l

else l;

ints=intervals(nodes,entry)

dent= intov(entry);

(If i € ints)

cesor (i) =intov[follow(i)],,

return ints;

end dg;

/* now the algorithm giving

the full derivation sequence*/

define£ dseq(nodes,entry)

optimizer external dent;

seq={<l,nodes,entry>};

<n,e> = <nodes,entry>;

(while#(dg(n,e) is der)

.Q,t #n

doing<n,e>=<der,dent>;)

seq(#seq+l)=<der,dent>;;

end dseq;

/* now the inner-to-outer

pass of the dead trace

algorithm*/

define£ builda(nodes,entry)

optimizer external cesor,

intv, uses, thru, seqd;

seqd dseq(nodes,entry);

(1 < Yk .::_ #seqd,

intv E hd seqd(k))

39.41

npreds = n.Q,;

(Yx E nodes, y E cesor(x})

, npreds(y) =

if npreds (y) is np :eq ~

then np+l

else l;

; ints=intervals(nodes,entry)
I

dent= intov(entry);

(Vi E: ints)

cesor(i) = intov[follow(i)] ;;

return ints;

end dg;

/* same comment*/

define£ dseq(nodes,entry)

optimizer external dent;

seq = {<l,nodes,entry>};

range seq(n); n int;

stores tupl(pile elt allnodes,

elt allnodes);

<n,e> = <nodes,entry>;

(while #(dg(n,e) is der)

it #n

doing<n,e>=<der,dent>;)

seq(#seq+l)=<der,dent>;;

:end dseq;

,/* same comment*/
!

define£ builda(nodes,entry);

,optimizer external cesor, throo,

intv, uses,thru,seqd,allnodes,vars;

seqd=dseq(nodes,entry)

(1 < \fk .::_ #seqd,

intv E hd seqd(k))

naux = n£; taux

head = intv(l);

(#intv > \fn > 1)

b = intv(n);

= n£;

39.42

ange naux(b); b aselt allnodes;

stores naux subset vars; sparse

ange taux(b,x); b,x aselt allnodes;

stores taux subset vars;

aux = n£~ taux = n£;

ead = intv(l);

> Vn > 1)

= intv(n) ;

forward ={y E cesor(b} forward ={y E cesor(b)

lintov(b) eq intv and y ne head} I intov(b) eq intv and y ne head};

if k eq 2 then

naux(b)=uses(b) u

(thru(b) *

[~: y E forward]naux(y)) ;;

(Vintx E cesor(intv))

if intx(l) € cesor(b) then

taux(b,intx)=thru(b);

else taux(b,intx)=thru(b)*

[u: y E forward] taux(y ,intx) ;

end else; end rintx;

else/* k gt 2 */

naux(b) = uses(b) u

[~: y c forward]

(thru(b,y) *nc:.ux(y));

('fintx E cesor(intv))

taux(b,intx) =

(if intx(l) E cesor(b} then

thru(b,intx(l)) else n£) u - -
[~: y E forward]

(thru(b,y) * taux(y,intx));

end Vintx; end else;

uses (b) = naux (b) ;

ile nodup forward; elt allnodes;

!if k eq 2 then
i
1 naux (b) = uses (b) u

I (thru·(b) *

i[~: y E forward] naux(y)),,

(Vintx E cesor(intv))

if intx(l) E cesor(b} then

taux(b,intx)=thru(b)

lse taux(b,intx) = thru(b)*

[u: y E forward] taux(y,intx);

end else; end Vintx;
I

I else /* k gt 2 * /

!naux (b) = uses (b} u

i[u: y c forward]
i -

l
i(throo(b,y) *naux(y));

('fintx E cesor(inL~))
i

ltaux(b,intx) =

l(if intx(l) E cesor(b) then

f throo(b,intx(l)) else n£) u

![~: y E forward]

!(throo(b,y) *taux(y ,intx))
i
lend 'fintx; end else;

uses (b) = naux (b) ;

~parse range uses(b)
I

I b asel t allnodes;

btores uses subset vars;

end Vn;

uses(intv)=naux(head);

(Vintx e cesor(intv))

39.43

sparse range throo(b,y);

b aselt allnodes, y hash;

stores throo subset vars;

range thru(b); b a.selt allnodes;

stores thru subset vars;

end Vn;

uses(intv)=naux(head)

(Yintx E cesor(intv))

thru (intv, intx) =taux (head, intx);; throo (intv, intx) =ta.ux (head, intx) , ,

end Vk; return;

end builda;

/* now the routine which

completes the construction

of 'uses' */

define builduse(nodes,entry)

optimizer external cesor,

intov,uses,thru,seqd;

builda (nodes ,entry) ;

(#seqd > Vk ~ l,

intv € hd seqd(k))

(#intv > Vn > 1)

b =intv(n);

end Vk; return;

end builda;

/* same comment*/

define builduse(nodes,entry)

optimizer external cesor,

intov,uses,thru,seqd,

throo,allnodes,vars;

build(nodes,entry)

(#seqd > Yk ~ 1,

intv E hd seqd(kl)

(#intv > Vn > 1)

b = intv(n);

backorexit={c E cesor(b) backorexit = {c E cesor(b)

c n E t£[intv] or c eq intv(l)}; c n E t£[intv] or c eq intv(l)};

uses(b) = uses(b) u

if k eq 2 then

thru(b)*[u: c E backorexit]

uses(intov(c));

else

[u: c E backorexit]

(thru (b ,c) *uses (intov (c))) ;

end Vn; end Vk;

return;

end builduse;

uses(b) = uses(b) u

if k eq 2 then

thru(b)* [u: c E backorexit]

uses(intov(c))

else

[u: c E backorexit]

(throo(b,c)*uses(intov(c)));

end \fn; end Vk;

return;

end builduse;

3 9. 4 4

Next, we illustrate the application of the SETL elaboration

language to the lexical analyzer, preparse, postparse set of

programs described in the SETL notes. Here we give the

elaborated algorithms only, in fact only those sections of

the elaborated algorithms which differ from the basic

algorithms given in the notes. This set of elaborations will

serve to illustrate the manner in which, by elaborating a

SETL algorithm, we solve some of the key problems which must

be faced when the algorithm is to be realized in a programming

language of lower level than SETL. We qegin with the lexical

scan algorithm.

definef nextoken;

initially setup(typex, tablex, rpak, cstring);

range table(type,state); state aselt states; type aselt typeset;

stores table tupl (el t cases, obj) ;

range type(char); char string index; stores type aselt typeset;

range switchf (case); case aselt cases; stores switch. obj;

pile typeset; string;

pile cases~ string;

pile states; string;

n=l; <nxt,end,go,skip,cont,do>=;

switchx={<end,endc>,<go,goc>,<skip,loop>,<cont,contc>,<do,doc>}

/* build 'cases', and then 'switch' */

cases = hd [switchx] ; pin cases; switchf=switchx; pi~ switch;

/* build 'typset' and 'states' */

typeset = (hd ti) [typex]; /*note that this involves the tuple

conventions set forth in newsletter 42 */

states = states u (hd t.Q,) [tablex]; pin states;

type= typex; pin type;

table= tablex; dim table(type: #typeset,state:) pi1~ table;

/* note that our new tuple conventions require tablex to

have a form differing slightly from that assumed in the

setup routine given on pp. 129-131 of the notes*/

end initially;

state= nxt aselt states;

nn = n-1; data= D; token= nulc;

loop: nn=n+l; action=table(type(cstring(nn) ,state)

switch: go to switchf (hd action) ;

goc: state= tt action;

/* may not attain maximum possible efficiency*/

cone: token = token + cstring(nn);

/* efficiency might be improved by declaration that

both arguments are strings*/

go to loop;

endc: n =nn; return of data ne ~ then <state,token,data>

else <state,token>;

doc: <-,rout,action> = action; rpak(rout);

go to if action eq D then loop else switch;

end nextoken;

39.45

/* next follows the elaborated form of the preparse routine*/

define preparse(treetop)

initially setup; var=;

/* set up collection of all preparse related 'kinds' of tokens*/

pile kinds; string; kinds=(hd tt) [symbkind] ~(hd tt[typkind]

with var;

pin kinds;

/* now initialize sumbkind and typkind hy using auxiliary ranges*/

domsymkind = hd[symbkind] pile domsymkind; string;

pin domsymkind;

range symbaux (x) ; x asel t dom.symbkind; stores symbaux el t kinds;

symbaux = symbkind; symbkind = symbaux; pin symbkind;

domtkind = hd[typkind] pile domtkind; string;

pin domtkind ;

range typaux(x); x aselt domtkind; stores typaux elt kinds;

typaux-typkind; typkind=typaux; pin typkind;

/* now in much the same way we initialize the 'mask' and 'label'

functions used below*/

range maskaux(x); x aselt kinds; stores maskaux bit 15;

maskaux=mask; mask=maskaux; pin mask;

range labaux(x); x hash; stores labaux obj;

labaux=label; label-labaux; pin label;

39. 4 b

/* next we initialize the left and right procedure arrays*/

range raux(x); x aselt kinds; stores raux int 12;

range laux(x) x aselt kinds; stores laux int 12;

raux=rprec; rprec=raux; pin rprec;

laux=lprec; lprec=laux; pin lprec;

/* and in much the same way, initialize the 'gross' mapping*/

range gaux (x) ; x asel t kinds; stores gaux asel t kinds;

gaux=gross; gross=gaux; pin gross;

end initially ;

/* now we give those intiailization operations which are to be

performed each time that 'preparse' is called to produce a tree*/

statstak=nt; desc=nt; nodtype=nt; nodepile = nt;

range statstak(j); j int; stores statstak tupl(bit 15, elt

kinds, obj) ;

range bakstak(j); j int; stores bakstak tupl(elt kinds, obj)

statstak = nt; bakstak = {<l,er,nt>}

zero=OOOOOo; state=zero; go to jumpin;

/*stack routines identical with notes page 173-not repeated-*/

/* begin of mai.n process up to subroutine 'getkind' identical

with notes page 173-not repeated-*/

/* auxiliary subroutine 'getkind' to classify token*/

preparse external symbkind, typkind, kinds;

<type,token,-> = tokdat;

return if symbkind(token) is x ne ~ then x

else if typkind(type) is x ne ~ then x else 'var' aselt kinds;

end getkind ;

newstate: state=lb+state(l:#state-1) or starts and mask(kind)

go to label(state and finish);

nnon: /* same as notes p. 173 */

39.47

/* note (cf. p. 173 for slightly different comment) that

the elements on statstak have the form <Domolki-state,

token kind, <token lexical type, token, token-associated

data (if any)>> */

/* part-finders for statstak */

define£ knd stelt; return stelt(2); end knd;

define£ tokof stelt; return stelt(3) (2); end tokof;

define£ tdat stelt; return stelt(3); end tdat;

/* next follow notes p. 174 for 5 lines, till test which

should read as follows: */

if gross(knd 2 elem statstak) eq ('var' aselt kinds)

then condensenon; else new=newat aselt nodepile; condeseon;

hash nodepile; stores obj;

/* this auxiliary set will initially be null when 'preparse'

starts to act*/

range nodtype(x); x aselt nodepile; stores nodtype string;

range desc(x,j); x aselt nodepile; j int; stores desc obj;

/* this set of declarations will not attain the full efficiency

of lower-level code. the difficulty experienced here

indicates that something like the ALGOL 68 'union' type

ought to be included in the SETL elaboration language*/

/* note also that the lower-level implementation that one

would normally think of using for desc(x,j) might use

chained lists. with initial access through the field

storing 'nodtype'. The implementation that will result from the

the elaborated SETL is somewhat inferior to this, but not

drastically so. these differences deserve to be pondered, as

it may suggest useful extensions to the elaboration

language. a fast realization of the present algorithm

might allocate space for two descendants of x in fields

attached to the field storing nodtype(x); extensions to the

elaboration language which allow one to call for a

realization of this type might also be useful*/

39.48

newcycle: tokdat = new;

newcyc: kind= 'var' aselt kinds;

/* every occurrence of 'var' in the remainder of the preparse

algorithm ought to be replaced by a reference to 'var'

aselt kinds. the tokens which could appear as node types

ought to be 'recoded' in much the same way using a

'pinned hash', but this is harder to accomplish without

substantial changes in fue SETL 'preparse' algorithm

as it stands*/

/* aside from the points described above, and from the fact

that the switch 'go to <er,") " , erp , " (" , er , per , ... ' etc . >

occurring on page 175 can be speeded up by dimensioning and

pinning, the remainder of the preparse algorithm can stand

as is*/

end preparse;

/* now we discuss the postparse algorithm*/

/* in a few cases, updates to the algorithm appearing in the

SETL notes, pp. 199 ff, will be shown, in addition

to elaborations*/

definef postparse(syntype,node,nodenum)

parser external lockey,altset,secaltset, sesor, threshold,

namekeyelt, namesynt, pretests, preacts, postests, postacts,

rpak, reval, gathalt, minlast, fixed, oblig, literals, lexics;

/* the above sets and mappings are all 'fixed tables' for the

postparse. they will be declared and 'pinned' for fast access

in the manner shown below. cf. the table descriptions given

on pp. 194-196 */

parser external mstak,desc,nodtype; preparse external nodepile:

/* 'desc' and 'nodtype' here are taken to refer to the

preparse-produced tree structures which are input to the

postparse routine. the corresponding functions for the

internally stored 'tree-fragments' defining the structure

of the syntactic alternatives will be given the names

'idesc' and 'inodtype' in what follows, and will be treated

somewhat differently to achieve efficiency*/

39.49

initially setup; mstak = n£;

/* first obtain the collection of all syntactic types, and

pin it*/

allsynt = hd [keysymbol]; pile allsynt; string; pin allsynt;

/* next form the set of all alternatives, and all

alternative nodes*/

allalts = [u: x E (altset u secaltset)]x(3) u[u: x E t£[lexalts]]x;

/* now initialize and pin a pile giving all alternative nodes

and their subnodes, as preparation for initializing the internal

'idesc' and 'inodtype' functions*/

pile altnodes; obj;

new= allalts; (while new ne n£) node from new;

if node n c altnodes then node in altnodes; new=new u idesc{node};

end while new; pin altnodes;

/* now pin allalts */ pile allaux; elt altnodes;

allaux = allalts; allalts = allaux; pin allaux;

/* next initialize and pin various maps with allsynt as domain*/

range nameaux(synt); synt aselt allsynt;

stores nameaux, keyaux string, prelaux obj, lexaux ~:et el t allal ts,

sesaux elt allsynt; sactaux, sucaux set int; share(lexaux,sesaux,

nameaux = namesynt; keyaux

keysymbol = keyaux;

sactaux, sucaux) ;

keysymbol; namesynt=narneaux,

sesaux = sesor; sesor=sesaux; lexaux = lexalts; lexa.lts

prelaux = prelacts; prelacts = prelaux;

sactaux = sucacts; sucacts = sactaux;

sucaux = suctests; suctests=sucaux; pin nameaux;

/* now initialize and pin a range giving all the principal

information associated with an alternative*/

lexaux;

range altaux(alt); alt aselt allalts; stores apretests, apreactions,

apostests, apostacts obj, aminlast int 3, aaltname string,

agathalt obj; share(apretests, apreactions, apostest.s,aminlast)

apretests = pretests; pretests=apretests;

apreactions = preactions; preactions = apreactions;

apostests = postests; postests = apostests;

apostacts = postacts; postacts = apostacts;

aminlast = minlast; minlast = aminlast;

aaltname = altname; altname = aaltname; pin altaux;

39.50

/* surely a better syntax is required for the abov~ through

perhaps a suitable macro suffices*/

oblig = oblig assub allnodes;

literals= literals assub allnodes;

lexics = lexics assub allnodes;

/* now we create and pin the pile of twigs*/

pile twigs; elt altnodes; twigs={node e altnodesldesc(node,l)eq 51};

pin twigs;

/* and then initialize and pin two functions which are only

defined on twigs*/

range ltaux(x); x aselt twigs; stores lextyaux set string,

fixaux int;

share (lextyaux, f ixaux) ;

lextyaux = lextype; lextype = lextyaux;

fixaux = fixed; fixed= fixaux; pin ltaux;

/* now we initialize and pin the maps 'inodtype' and 'idesc',

which define the basic tree structure of alternatives*/

range auxnod(alt); alt aselt altnodes; stores auxnod obj;

range auxdesc(alt,j); alt aselt altnodes, j int;

stores auxdesc elt altnodes;

auxnod = inodtype; inodtype = auxnod;

auxdesc = idesc; idesc = auxdesc; pin auxnod; pin auxdesc;

end initially;

/* now we begin the postparse code proper*/

pin auxnod; pin auxdesc;

synt = syntype; tastak = nt; /* test and action stack*/

range tastak (x) ; x int; stores tastak tupl (set int, set int)

[syntry:] /* perform preliminary actions*/

(1 < Vn < if prelacts(synt) is pane n then O else #pa)

rpak (pa (n)) ; ;

39.51

iff nodeterm?

arelexalts? islockey?

lextrue+ maynext, keypres? area],:ts?

findalt, aresecalts? maynext,findalt,maynext,

findalt, maynext;

nodeterm := nodtype(node) eq n;

arelexalts := lexalts(synt) is setalts ne n;

islockey : lextry=!; lockey(synt,nodetype(node))

is keyloc ne n;

arealts := altset(synt,nodtype(node)) is setalts ne n;

keypres := desc(node,keyloc) is keydesc ne n;
aresecalts : key= if nodtype(keydesc) is x ne n then x

else hd t£ keydesc; = secaltset(synt,key) is setalts ne n;

lextrue: lextry=!;

end iff nodeterm;

[maynext:] iff issesor?

testoracts? guessneeded?

stackacts+ syntry, goguess, returnfalse,

syntry;

issesor := sesor(synt) is x ~ n;

testoracts := suctests(synt) is tsts ne nor sucacts(synt) ne ~;

guessneeded := nodnum ge 0;

returnfalse: return f;

stackacts: tsts = if tsts eq n then n£ else tsts;

tastak(#tastak+l) = if(acts is sucacts(synt)) eq r.l

then <tsts,n£> else <tsts,acts>;

synt = x;

end iff issesor;

[goguess:] guess(node,syntype,score)

/* algorithm is now identical with notes, p. 200, up to label

'matched : ' * /
[matched:] rpak[preacts(alt)]

39.52

if nodnurn ge 0 then rnstak(#rnstak+l) = <nodnurn,narnesynt(synt)>;

range rnstak(j); j int; stores rnstak tupl(int 12, string)

ok=t; typecount=ni; range typecount(x); x aselt allsynt;

stores typecount int;

(Vpart € partseq) <subsynt,subnode,start> = part;

if start eq n then/* case of non-multiple node*/

subnum = ifx (nodnum it 0)?

(nodnurn) , isfixed?

(x) , istc?

(tc+l), (1)

isfixed := fixed(subnode) is x ne ~;

istc := typecount(subsynt) is tc ne D; end ifx;

if nodnum gt 0 and x eq ~ then typecount(subsynt)=subnum;;

ok=ok and postparse(subsynt,subnode,subnurn)

else/* case of multiple node*/

(start< Vj ~ #desc{node})

subnum = ifx (nodnum it 0)?

(nodnum), (typecount(subsynt) is tc ne D)?

(tc+l), (1); end ifx;

if nodnum gt 0 then typecount(subsynt) = subnum;;

ok=ok and po.~tparse(subsynt,desc(subnode,j) ,subnurn)

end ~j; end else;

/* if failure, simply return*/

if n ok then return f ;;

/* otherwise do all post-tests and post-actions*/

(Vactmsg € postests(alt))<act,msg> = actmsg; rpak(act)

(ok eq _!_)?

(nodnum ge 0)?

printout+

returnfalse;

returnfalse,

(nodnum ge 0)?

quit, returntrue,

printout: print prefix(synt,nodnum) + msg;

returnfalse: return f;

returntrue: return t;

end iff;

39.53

rpak[postacts(alt)]; /*also work off accumulation of tests

and actions from predecessor types*/

(Vtact € tastak)<tests,acts> = tact;

(Vtmesg E tests)<act,mesg> = tmesg; rpak(act)

iff (ok eq f)?

(nodnum ge 0)?

printout+ returnfalse;

returnfalse;

returnfalse: return f;

end iff;

quit,

end Vtmesg; if nodnum ge 0 then rpak[acts] ,,

end Vtact; return t;

/* this is end of main body of postparse routine*/

/* the subroutine 'matches' which tests a region in a

parse-tree against a pattern and pretests specified by

a tree-grammar alternative is essentially thesame as notes,

p. 202 */

/* the inner recursive routine 'matcher• is somewhat different,

and appears as follows*/

definef matcher(alt,node);

matches external partseq;

postparse external desc, idesc, nodtype, inodtype, rninlast,

literals, lexics, oblig, lextype;

postparse external allsynt, allalts, altnodes, nodepile;

if idesc(alt,1) eq ~ then go to twig;

/* else not twig; type and subparts to be examined*/

if nodtype(node) is nt eq ~ then return!;;

if nt n e inodtype(alt) then return!;;

desreq = #idesc{alt} is ndesca + if minlast(alt) is rnin ne ~

then min-1 else 0;

/* check on appropriate number of descendants*/

if #desc{node}is ndesc it desreq or (min eq ~ and ndesc ne desreq)

then return!;;

/* otherwise check parts individually*/

39.54

if 1 ~ 3j ~ ndesca - if min ne Q then 1 else O I
n matcher(idesc(alt,j), desc(node,j)) then return f;;

if min eq Q then return t;;

/* otherwise last is multiple; check on whether

obligatory or not*/

if idesc(alt,ndesca) is descalt £ oblig then

/*obligatory-check subparts first*/

if ndesca ~ 3j ~ ndesc

desc (node, j) , -1)

n postparse(inodtype(descalt),

then return f;; end if idesc;

/* make additon to partseq */

partseq(#partseq+l) = <inodtype(alt) ,node>; return t;

range partseq(j); j int; stores partseq tupl(string,elt nodepile);

end matcher;

This is as far as we choose to extend our elaboration of the

postparse algorithm. The sections already elaborated are in fact

those most crucial to the efficiency of the postparse. The

reader, basing himself on the material given above, should have

little difficulty in supplying the few elaborations necessary

for the remainder of the postparse algorithm (notes, pp. 202-207).

