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concerning 'data strategy' elaborations for SETL 

This note will contain remarks concerning 

SETL implementation and 31, i. 

ii. The possibility (raised in newsletter 30, pp. 31-32,/Pp.5-7) 

of securing increased efficiency by adding a system of optional 

elaborations to the language. These elaborations, if present, 

should increase running speed considerably and lead also to 

significant data compressions. 

I. Main outlines of the ground to be covered. 

Implementation of 'collections'. 

SETL allows finite sets to be entirely general and by 

this will often attain real advantages, both in expressive 

power and in that it will allow many problems concerning 

data structure to be postponed. Nevertheless, a survey of 

SETL algorithms shows that sets are generally used in quite 

stereotyped ways. The use-forms most frequently appearing 

seem to me to be as follows: 

A. Sets used as maps. That is, sets f always referenced 

by addressing with a fixed number of indices, either in the 

sinister form 

f(a,b, ... ) 

or in the dexter form 

= ... f(a,b, ... ) 

B. Sets actually used as collections of elements; i.e., 

either as iteration controllers, 'workpiles', etc. 

Let us, in order to focus our thoughts, examine uses of 

type Bin more detail. Nine basic operations are supported: 

x ~ a, a with x, a less x, 7a, 

a gt b, Vx € a (the iterator}. 

#a, random a, a~ b, 

We may also mention the 

compound operations au b, a int b, a-b, etc., which can 

of course be defined in terms of the above operations, but 
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which can deserve special treatment for purposes of efficiency. 

Yet another very significant issue, set copying, enters at 

the implementation level but is hidden from the direct view 

of the SETL users. We may also mention the operation 

a ~sf x, whose discussion however belongs rather under 

subheading A than under the subheading B with which we are 

now concerned. 

We may consider a number of plausible techniques for the 

internal representation of sets. 

a. Representation by linked linear lists 

b. Representation by 'piling', i.e., by accumulation of 

elements within a delimited range. 

c. Representation by trees, in which elements are located 

by a hash-assisted tree search, possibly with auxiliary 

bit-tables entering, so that several approximately equal 

sets may share a single tree 

d. Representation by some purer and possibly more efficient 

hash scheme. 

e. Representation by bit-vectors, i.e., deliberately 

as subsets of some larger set. 

The following table describes the general manner in which 

each of these treatments might affect the efficiency of the 

basic operations which must be supported. 



Table estimating number of nominal cycles re~uir~ to 

perform basic set operations, as function of number~ 

of set elements 
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Note also that in a relatively static situation, ranges 

might be sort~ 

~ might be addressed by a specially contrived hash 

which allows elements present to be located in a specially 

small number of cycles. 

These are the basic facts concerning the performance of 

various of the implementation methods which might be considered. 

Next let us consider the typical ways in which sets (when playing 

the 'collection' rather than the 'map' role) tend to be used. 

These seem to me to be as follows. 

i. As a set with entries and deletions also used as a map. 

This is rare, but does occur; for example, in the nodal span 

parsing algorithm. 

ii. As a set with frequent entries and specific deletions, 

but never used as a map (also rare). 

iii. As a set being built up (possibly by the SETL set-former). 

Frequent entries which must be checked for identity with 

existing elements, but no deletions. 

iv. As a static set, used for membership testing only. 

(Relatively rare.} 

v. As a 'workpile'. Frequent entries, and deletions 

of 'unspecific' elements; i.e. using x from a rather than 

a less x. It may in some cases be certain that no duplicate 

elements can occur, and it may for other reasons be unnecessary 

to check for duplicates. 

vi. As one of a family of sets frequently combined by 

particular higher level operations, e.g. union and intersection. 

In classifying the usage-mode of sets, it is also quite 

important to try to take copying frequency into account. 

Copying will normally be necessary only wpen sets are changed 

subsequent to a point at which they are made members of other 

sets; this is fortunately a relatively infrequent case. 

It is vital, however, that the optimizing SETL compiler not 

be fooled into performing unnecessary copying operations. 
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Concerning the various uage modes described above we may 

make the following observations. 

a. If a set is used in either of the 'general' modes 

i or ii, the taitative SETL hashed-tree approach ('tentative 

SETL mode') might perform as efficiently as the normal lower

level programmer's invention. The same remark applies to 

usage mode iii. In all three cases, the use of subsidiary 

bit vectors can bring advantages. This last remark applies 

to usage mode vi. Most of advantage of bit-vector 

schemes can probably be gained by the introduction of a 

method which explicitly forces a common reference-index 

scheme upon the members of several sets. 

8. Usage iv can be accommodated either in the tentative 

SETL mode or by using a sorted range, possibly assisted by 

a specially contrived hash. 

y. The common usage v can be accommodated in any one of 

our proposed implementations; it is, however, most efficiently 

realized by the use of ranges. (Though most commonly 

programmed at a low level by using lists.) 

We conclude that if SETL provides 

1. Sets of tentative SETL mode; 

2. a method of forcing a common reference-index scheme 

upon the members of several sets; 

3. ranges, i.e. 'vectors' which may be entered by 

indexing, but which may be grown, i.e., are not of 

fixed or preallocated size; 

and if these three devices are available at convenient user 

option, it should be possible to obtain good efficiency 

when using sets as collections. 

Later certain additional variant stora~e forms aimed at 

efficiency in particular situations will be suggested. 

Note here that lists implemented in the normal chained 

manner become unnecessary if ranges are available. 
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Next note that ranges are a very convenient and efficient 

mode in which to implement various of the other basic SETL 

objects and operations. 

a. Variable length bit strings, variable length 

character strings. Ranges give dense packing, and easy 

indexed access to particular bits. 

b. Multi-precision integers. Multiple precision 

arithmetic is implementable by quite fast loop. 

c. Tuples. An n-tuple can be implemented by a range 

storing n elements. This gives fast indexing and last-element 

insertion. In fact, it assimilates the notion of a tuple 

to that of a squence, and pushes, in accordance with suggestions 

that have been made all along, to a different treatment 

at the SETL level, in which tuples would be systematically 

identified with sequences. In such a treatment 

i. <a,b,c, ..• d> 

would be a notation for the sequence whose terms are a, ... ,d; 

ii. 

iii. 

hd tuple would be an abbreviation for tuple (1) (as now) 

tZ tuple would be <b,c, ... d> ,i.e., would abbreviate 

tuple (2: #tuple) (as now) 

iv. The construction tuple = <x,tuple> , which 

presently adds a new initial element to a tuple, would have 

a different meaning and its present usage would be abandoned. 

Instead, the form 

tuple(#tuple+l)=x; equivalently newlast tuple=x; 

would be used, as is presently the practice for sequences. 

The present multiple assignments 

<a,b,c> = tuple 

and 

<a,b,c,-> = tuple 

could however retain their syntactic form. 



All of these possibilities depend upon our ability 

to implement "ranges" efficient;ty, i.e., to accommodate 

an indefinite number of 'arrays' able at least to grow 

at their upper boundaries; and I now turn to sketch a 

method which allows this to be done. 

II. Implementation of 'Ranges.' 

A plausible scheme for the implementation of ranges is 

as follows. 

1. Words will be allocated in blocks of 1, 2, 4 and 8 

by an allocator; the 'buddy' system described by Knuth 

can be used for this. 

2. Each range will have a one-word range descriptor. 
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This will give the range size (up to 128K or so maximum size) 

and if the range is of less than 8 words in size, will 

contain information defining the block size used and the 

defined-undefined state of various range elements. For 

larger ranges, this latter information will be contained 

in the primary range index, to which the range descriptor 

will point; in this case, the range descriptor will contain 

an integer field describing the number of levels of indexing 

used. The range descriptor may also contain a small amount 

of additional information as needed. 

3. The structure of a large or fully expanded rnage 

will be as depicted in the following diagram(which 

shows a structure involving 3 levels of indexing.} 

possible secondary . 
. d 1 /'➔ tertiary in ex 1 . d. in ices 

If 
etc. 

• I primary / 
index _) 1 

\ 
I 
\ 

... 
, secondary u8 

tertiary 
index 

data 
block 

;LJ 
I 

(2, 4, or 8 
words) 

data block 

(2,J 8 
words) 
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4. In structures like that shown above, the element 

R(I) whose index is I is located by the following procedure. 
lev lev a. Calculate J = I/8 , I= I//8 +l and (// denotes 

residue), where lev is the number of levels of indexing 

used. J then locates an entry in the primary index; which 

points to a secondary index. Repeat this division and 

chaining process through the 2
nd , etc. level indices, 

nd using I' in place of I at the 2 level, etc. until at the 

end of all indices the desired data item is reached. 

5. We also can allow for the possibility that the range 

(think of it for the moment as a SETL sequence} is sparsely 

populated, i.e., that many of the elements R(I) are undefined. 

In this case, we may use compression as an additional technique, 

as follows. Associated (in an index) with the pointer to 

each data block will be a set of 8 bits; '0' bits indicate 

undefined values; 1 1 1 bits indicate defined values. 

The true location of the item expected in position j is 

the number of 'l' bits found in positions 1 through j among 

those 8 bits. In this treatment, execution of a new 

definition R(I) = val may lead to the shifting of up to 3 

items. (A slightly better 'double layer' compression might 

be worth exploring.) When more than 3 of 8 items are defined, 

compression can be abandoned. 

If all the items in the data block which an index entry 

would reference become undefined, an 'undefined' flag in 

the index entry itself will be set, and the data block omitted. 

This flag may then be transmitted back to lower index levels, 

allowing, for very sparsely populated ranges, the elision 

of entire index blocks, etc. 

6. Space allocation and disallocation can work as follows. 

A reasonably current value for the maximum index I for 
tna.x 

which R(I) is defined will be kept in the range descriptor. 

When a new value R(I) is defined, an attempt will be made 
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access its storage location. At this time, any missing 

indices belonging to the access path will be allocated, 

and insufficiently large indices will be enlarged (from 

4 to 8 half-words); this may involve the movement of 

index entries. When first created, an index block 

or data block will consist of two words; indices may be 

enlarged to 4 words, and data blocks to 8 words. Enlargement 

of a block will of course normally involve movement of data. 

When previously defined values R(I} are made undefined 

by executing R(I) = ~, it may only be necessary to change 

a flag in an index. On the other hand, this 'disallocation' 

will cause an examination to be made of the number of items 

in the same data block which are still defined. If this 

fails from 4 to 3, compression can begin and half of an 

8-word data block can be returned to the allocator. 

If it falls to 1, half of a 4-word block will be returned. 

As appropriate, index blocks themselves may be compressed. 

The scheme outlined is most typically wasteful of space 

when a randomly distributed 1/S'th of the elements of a large 

range are defined. This requires a full set of index blocks. 

Approximately 3 words are then used for every data item stored. 

Still sparser occupation of a range should not affect this 

ratio much. Of course, denser occuptation, in the manner 

normally expected in connection with ranges, leads to a 

density ratio close to 1. 

An additional example: suppose that for a range, consisting 

initially of elements none of which are defined, the first 

instruction executed is R(3000) = 1. This creates the 

following st ru5:~~rlevel index 2nd level index 3rd level i..rrlex data block 

fiescriptorr/t ~2 I )L b I >1 ~ )atum I 
2 words ~ words 2 words 2 words 



Subsequent retrieval of the value of R(3000) requires 4 

levels of indirection, and probabily some 20-30 cycles. 

Of course, for smaller ranges, this will be reduced. 

Note also that proper optimization of storage/ 

retrieval loops involving successive indices I, 

especially with some associative hardware assist, might 

allow this scheme to perform almost as efficiently as 
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standard indexing. Special operations which decoded the 

compression fields, etc. would in themselves serve to increase 

by a factor of approximately 5 the access efficiency attained 

by this scheme. 

To summarize, the attributes to be associated with a 

1-dimensional range are probably: 

a) sparse (causes compression to be switched on} 

b) item size (probably 1 for bitstrings, 6 for character 

strings, 30 for compound SETL objects, 30 for integers, 

60 for reals). 

It is now time to observe that the same techniques may 

be used to implement multi-dimensioned ranges with a fair 

degree of efficiency. 

Multi-dimensioned ranges. A multi-dimensioned range is 

addressed by two or more indices, e.g. R(I,J). Each of 

the indices is an integer, neither has an upper bound. 

We handle this situation as if it were R(I) (J}, i.e., 

I is used in the manner already described to locate a 

range descriptor, and J is then used as an index in this 

subrange. Here the typical effects on storage •efficiency 

of 'sparseness' are as follows: if for most I at least 

one value of J is defined, then approximately 4 (or in the 

general case of ad-dimensional range approximately d+3) 

words will be used per true data item stored. On the other 

hand, if I is independently sparse, i.e., for most I no value 

R(I,J) is defined, then approximately 6 words (and in the 
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general case approximately 3*d words) will be used per 

true data item stored. Thus sparse multidimensioned ranges 

behave (for access and storage) in a manner not too different 

from sparse singly dimensioned ranges, e,g. a sparsely 

defined '60x60' array performs comparably to a sparsely 

defined range of I =3600. max 
Note that in the presence of additional information, there 

exist two evident ways in which access to a range may be 

made more efficient. If a range has attained its full size, 

it can be allocated, i.e., a contiguous, block of space 

sufficiently large to contain all its elements can be 

obtained from a central space allocator, all the entries 

in the range moved to this block, and the indices otherwise 

needed to support the range dropped. If the first index 

of a two dimensional range R(I,J) has a known variation, 

the range can be dimensioned, i.e., reduced to a one-dimensional 

range by the normal address transformation I'= I*dim+J. 

This makes the indexing chains needed to access a given range 

slightly shorter. The same remark evidently applies to 3, 4, 

etc. dimensional ranges. 

Interesting mixtures of the 'range' technique suggested 

here and the paging -- segmentation techniques used to handle 

secondary storage probably exist. This deserves investigation. 

III. Typical uses of sets as maps. 

Next we turn to survey the typical usages of sets used as 

maps, i.e. sets always referenced, in dexter or sinister fashion, 

by addressing with a fixed number of indices. These seem to me 

to be as follows. 

i. As stacks, growing at one end only, and always referenced 

at this end. 

ii. As sequences, generally growing at one end, but in which 

any element is liable to be referenced using its (integer) index. 

iii. As sequences of fixed size, or at any rate of a size not 

varying for many cycles of a SETL program. It is sequences 
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of this sort which correspond most closely to the arrays used 

in programming languages than SETL. 

iv. As maps assigning attributes to the members of a fixed 

or growing set a. The 'symbol table' typically used within 

compilers and assemblers has this character. In this situation, 

several maps f,g, etc. may be 'associated', in the sense 

that values f(x}, g(x) will normally be defined for all or 

most of the elements x ea. Maps of this kind may be single

valued or multi-valued. The attributes, once defined, may be 

fixed, or may vary rapidly, as in the case of a map whose value 

is a 'count' associated in some way with a particular object. 

v. As maps serving to define the structure of a data object, 

as for example •next' pointers in lists or 'descendant' 

pointers in trees. This usage resembles usage iv, except that 

in this case the 'attributes' defined by the maps are the 

elements of sets appearing explicitly in a SETL algorithm, 

rather than being integers or other atoms having some essentially 

'external' significance. In many cases of this sort, additional 

maps may serve to associate other attributes with the individual 

'nodes' or 'links' of a compound data item. 

vi. As maps f(p,j) of two indices, the second an integer, 

which serve to define families of sequences or of stacks 

depending on a parameter p. In cases of this sort, one may 

occasionally wish to refer to the set f{p} as a totality, 

perhaps only to calculate the number of elements which it contains. 

vii. As maps serving to record, and to allow the rapid 

retrieval of, certain associations between pairs or triples 

of elements. 

viii. As static maps, serving to assign fixed attributes to 

each of a fixed collection of elements. 

ix. As maps serving to record some relationship, possibly 

boolean, between pairs or triples of elements, etc.; or as 

boolean-valued maps recording some true-false property of 

the members of a collection of elements. 

x. As maps whose values are sets, which serve to give fast 

access to sets of particular importance in an algorithm. 
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xi. As maps depending on several parameters each of whose 

parameters has a relatively fixed domain, in which case a 

treatment like those customarily accorded to 'multiply 

dimensioned arrays' in programming languages of lower level 

may be appropriate. 

xii. As maps depending on several parameters which together 

define a moderately or highly irregular domain, in which case 

efficient storage an access may require hashing techniques 

like those normally provided by SETL. 

This list covers many of the most significant cases likely 

to be encountered. The SETL elaboration language to be described 

below aims, by adding optional statements to an algorithm, to 

make it possible for an optimizing compiler to produce a code 

considerably more efficient (both in regard to running speed 

and in regard to data space required) than might otherwise be 

possible. 

The elaboration language will incorporate various devices, 

but one of these is of such central importance as to deserve 

special mention. Very often a program written in a language of 

lower level than SETL takes a key step toward efficiency by 

systematically referencing the objects with which it is concerned 

not directly but in terms of reference numbers associated with the 

objects in one or another manner. Thus, to take a typical example, 

a string Smay be referred to, not by the characters of which it 

consists, but by its serial number j within some enumerated 

collection of strings. This basic device not only helps in the 

compression of data but, even more significantly, allows direct 

'indexing' operations to replace more complex 'hashed access' 

operations systematically. For example, in the case considered 

above, the values of a function of S might be stored in an array 

accessed efficiently by using the associated indP.x j. Knowing 

and systematically exploiting these 'representation conventions', 

a programmer working in a language of lower level can develop 

an efficient code. The elaboration language to be described below 

aims to make it possible .to set down an explicit description of 

this normally implicit representation strategy, and in this way 

to attain a degree of efficiency that normally would require 

the use of a programming language of lower level than SETL. 
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IV. Tentative form for an elaboration language. Sets and ranges. 

Guided by the above remarks, we shall now propose syntactic 

and semantic forms which can serve to define the elaboration 

language which we desire. Later in this newsletter, the use 

of this language for the elaboration of certain algorithms 

taken from the SETL notes will be illustrated. 

The elaboration language will serve to define: 

A. The manner in which certain maps are stored within ranges. 

B. The manner in which ranges are addressed. 

c. The manner in which certain sets are stored within ranges. 

D. The manner in which reference is made to the elements of sets. 

E. Various subsidiary operations and items of information, 

to be described below. 

We begin with item D. We take it that, as elements are added 

to a set, the SETL implementation will assign them implicit or 

explicit 'reference numbers', in an essentially ascending order, 

as members of this set. To make this point clearer, suppose, 

for example, that sets are implemented using hashtables which 

point to entries in indexed ranges (i.e. ranges of the type 

considered in section II), and that these ranges contain chained 

lists of items, as in the following diagram. 

item locates 
hash ____ / 

(low bits 
only) 

hash table item table 

X 

I chain of items 

.J with given hash 

Particular set member, 

at i-th position in item table. 

The hash table and the item table shown in the above figure 

together represent a set a; the 'reference number' (as a member 

of a) of the item marked x in the figure, that is, of the ith item 
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in the item table, is i. Note that in this case the serial 

number i gives fast access to the item x, even if the item 

hash is not known initially. 

Even if the eventual implementation of sets in SETL is 

somewhat different, we assume that for the elements of any 

set declared as a pile (see below for additional details) 

reference numbers having the principal properties noted above 

will be available. If x is a member of the set~, the quantity 

x asel t a refers to this reference number. A serial number 

of this kind, rather like a pointer in programming languages 

of lower level, retains its validity as long as x remains an 

element of the set~, and as long as the value of a is not 

reassigned by any operations more extensive than a= a with x, 

a= a less x. More radical reassignments might leave 

'dangling reference numbers'; basically, we regard the 

avoidance of this situation as the programmer's responsibility, 

if he chooses to elaborate SETL. 

The following syntactic discussion will begin to put the 

intended semantics of reference numbers into sharper focus. 

A set occurring in a SETL program may either be declared 

or undeclared. (In unelaborated SETL, all sets will be 

undeclared.} An undeclared s~t will be treated in a standard 

fashion; declared sets will generally be treated in a manner 

which is logically equivalent to this standard treatment, 

but which attains higher efficiency. A set a is declared 

if its name occurs in a set declaration (or in a range, 

see below for this possibility). 

The first part of such a declaration, the so-called opener 

of the declaration, has one of the forms 

(1) pile a; 

(2) E_ile nodup a; 
( 3) hash a; 
( 4} set a; 
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The intended semantics of these set declaration openers 

are as follows. The declaration (2), i.e., eile nodup a,states that 

a is a set into which no two identical elements will 

ever be place<l, or, at any rate, one in which the presence 

of duplicate members may be ignored. This declaration 

there·Bore suppresses the SETL identi ty-wi th-existin~J-elemen t 

check which must normally be made whenever a new member 

is introduced into a set. Sets a declared in this way 

can be maintained in stack-like form (without any hash-table) 

particularly advantageous for the implementation of the Vx ~ a 

iterator and the x from a sequence. On the other hand, the 

operation a= a less x may have an inefficient implementation. 

If a set a is declared in the pile nodup mode (2}, then each 

element x of a retains a fixed reference number from the 

time it is introduced into a to the time that it is removed 

from a. The same is true if a is declared in the simpler 

eile mode (1). Note that this requirement may interfere 

somewhat with our ability to reclaim space by repacking 

the 'item table' shown in the figure above. 

As has been noted, the declaration pile a serves to 

guarantee that elements of a will retain fixed reference 

numbers as long as a is not modified by any operation more 

radical than a= a with z or a= a less z. on the other 

hand, the addition of elements to a set declared in this mode 

will still involve an (efficient) check for identity with some 

existing element. 

Note then that both the pile nodup and the pil~ declara

tions serve to guard the validity of element refere~ce numbers, 

i.e., to ensure that two separate uses of x aselt a yield 

the same integer if x has not been changed and a has not been 

radically changed between these two uses. 
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The declaration hash a has much the force of pile a, 

except that if a is declared in this mode any reference 

x aselt a will add x to a if it is not already a member 

of a. Sets declared in this way will generally be used 

simply to systematize reference to elements of other sets, 

and to define the manner in which ranges (see below} are 

addressed. 

The opener in set a merely states that a is to be treated 

in the standard SETL mode; the reason why such an opener may 

sometimes be required will shortly become clear. 

Following upon the opener (1-4} of a set declaration, there 

will follow a content describer. This will have one of the 

following forms: 

(5} 

( 6) 

( 7) 

(8) 

( 9) 

(10) 

(11) 

a list of 

(12) 

obj; 

int, 

string, 

bit 

elt b 

subset b; 

or more specifically 
II 

II 

II 

string k; 

bit k; 

elt b:k; 

tupl( •.. ), where within parentheses there occurs 

content describers, separated by commas; 

set cd , where cd is itself some content describer. 

The semantic intent of this set of syntactic forms is as follows. 

i. The describer obj signifies that the set a contains 

general items, represented in the standard SETL manner. This 

requires a field long enough to hold a standard-form SETL object 

reference. 

ii. The describer a int signifies that the members of a, 

are integers. For the representation of these integers, a 

field long enough to hold a standard SETL object-reference is 

required. However, if the integer value is small enough for its 

binary representation to be stored directly in such a field, 

this value may be given directly. 



The describer 

are integers n 
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a int k signifies tha the members of a 

confined to the range lnl < 2k-l_ A field 

of k bits suffices to store these values, which, in the case 

of sets declared as pile nodup, may lead to storage economies. -- ----
An attempt to introduce an out-of-range element into a is 

an error. 

iii. The describers string and s~ring k: mutis mutandis 
--...-. -

from the preceding case, except that in the case of strings 

whose values are availble directly rather than indirectly one 

character will be reserved to indicate the length of the 

directly stored string. Similarly for the describers bit and 

·bit k. 

iv. The describer elt b signifes that the elements of a 

are also members of the set b, and that at the implementation 

level a is represented in a manner actually giving its elements 

in terms of their reference numbers as members of b. This 

serial number will be given directly, in a field large enough 

to contain the maximum plausible reference number. The describer 

elt b:k has a similar significance, but also certifies that 

the total number of elements added to b since its inception is 

certainly less than 2k. Reference numbers to elements of b may 

therefore be stored in a field at most k bits long, which 

can lead to storage economies if a has been declared as Eile ~dup. 

v. The describer subset b signifies that the elements of a 

are subsets of a set b, and these subsets are represented by 

bit-vectors, the bit-position corresponding to any element of 

such a subset being determined by its serial number as an 

element of b. 

vi. The describer tupl(cdseq), where cdses is a sequence 

of content describers separated by commas, asserts that the elements 

of a set are n-tuples of fixed length, and that the components 

of these n-tuples are of the type described by the successive 
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members of the describer sequence cdseq. Fields of 

appropriate length, coded in the manner determined by cdseq 

according to the conventions set forth in the last few 

paragraphs, are then reserved for the representation of 

these components. 

vii. The describer ~ cd, where cd is itself some 

content describer, indicates that the elements of a set a 

are themselves sets; cd describes the nature of the 

elements of these sets. 

After the opener and the content describer of a set 

there may follow an optional it€ration describer. This can 

be of one of the two following forms: 

(13} 

(14) 

iter asobj; 

iter aselt; 

These describers control an aspect of the SETL iterator (Vx € a) 

which is important for efficiency. If a set is declared with 

the iteration describer (14}, then in the implementation of an 

iterator of the form (Vx Ea) the variable x will run 

iteratively over the reference numbers of the elements of a 

(i.e., their reference numbers as elements of a), rather than 

over the corresponding sequences of standard SETL object 

references. If no iteration describer is present, then in an 

iterator of the form (Yx Ea) the variable x will run iteratively 

over the elements of a, represented however not as standard 

SETL object references but in whatever way the content 

describer used in a's declaration causes them to be represented. 

Thus, for example, if a is declared as 

pile a; elt b; 

then in an iteration (Yx Ea) the values successively as~igned 

variable x will be the reference numbers which members of a have 

as elements of b. On the other hand, suppose that a is declared 

as 

pile a; elt b; iter ~selt; 

Then, even though the representation of a (at the SETL implementa

tion level} willdescribefu: elements of a using their reference 
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numbers as elements of b, the iterator (~x € a) will cause x 

to assume successive values all of which are a-reference numbers. 

If it subsequently becomes necessary to reduce x to a standard 

SETL object reference, two successive layers of indirection 

will have to be resolved. 

The iteration describer (13), i.e., iter asobj, forces the 

iterator (Vx c a) to set x successively to a sequence of standard 

form SETL object describers, irrespective of the manner in which 

a stores its elements, i.e., independently of the content-describer 

occurring in the declaration of a. 

Having said enough for the moment concerning item D of 

the list given at the beginning of the current section we 

turn to item B, i.e., to describe the manner in which 

logical ranges can be employed to represent sets used 

as maps in a SETL algorithm, and the manner in which these 

ranges can be addressed. 

A logical range is defined by a range declaration. 

1. The first part of thi& which is the addressing declaration 

for the range, opens with a statement of the form 

(15) range name (x 2 ,x 2 , ••• ,xn); 

where name is the range name, and where x 1 , ... ,xn are 

the parameters using which the range will be addressed. We 

call these its addressing parameters, and call the statement 

(15) the declaration opener. 

2. Next there follow a set of Earameter description units, 

separated by commas. These have one of the following forms 

(16)i. x. int, x. blank index, x. bit index, x. string index; 
l -- l ------- l ----- l 

ii. x. aselt a, or more generally 
l 

iii. x. hash a, 
1. 

iv. x. hash 
1. 

" 

" 

aselt a, 

<x. , ... , x. > hash a 
1 1 1.k 

<x. , ... , x. > hash 
1.l 1.k 

Here a is a SETL name; the value associated with this name will 

be some set. Every parameter of the range must be mentioned 

in precisely one parameter description unit. 
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The semantic intent of the syntactic forms shown above 

is as follows. The SETL range declared in (15) will be implemented 

as a singly- or multiply-dimensioned indexed range R 

of the kind described in section II. The number of dimensions 

of R will (for a reason that should soon be clear} equal the 

number of parameter description units (16) that follow the 

opener (15}. Each access to R is of course indexed by integers; 

the parameter description units serve to describe the manner 

in which the indices supplied to the logical range~ are 

converted into integers to be transmitted to the indexed 

range R. More specifically 

i. If x. is described as an int l __ , it will be an integer 

to be transmitted directly to R. 

If x. is described as a blank index, it will be an integer 
l 

whose 'least significant' part is to be transmitted directly 

to R. The 'most significant' part will be an additional 

integer serving to identify a blank atom uniquely. Indices 

of the form here envisaged will be produced by calls on the 

elaborated newat function; see below. 

If x. is described as a bit index, it will be a bit-string, 
l 

and the integer bin x. is then to be transmitted to R. 
-- l 

If x. is described as 
l 

character string, and the 

a string index, 

integer bin hol ----
34, p. 1) is then to be transmitted to R. 

it will be a 

X. 
l 

(cf. newsletter 

ii. If the declaration x. aselt a occurs, then x. is 
l --- l 

an element of~ represented either directly or indirectly, 

and quite possibly by the reference number which x. has as 
l 

a member of a. In this case, this referen::::e number, i.e., 

the integer x. aselt a, is to be transmitted to R. 
l 

If the declaration <x. , ... ,x. > asel t a occurs then 
l l 

the indicated k-tuple, fo!med fro~ the group of parameters 

xi , ... ,x. , is a member of the set designated by the name a. 
1 lk 

In this case, the serial number <x. , ... ,x. > aselt a is 
ll lk 

to be transmitted to R; this reference number will of course 

stand for an entire group of parameters of the logical range 

name. 



iii. If the declaration x. hash a occurs, then~ 
l --

names a set not used in an unelaborated SETL program, but 

which is to be used to supply an index to be transmitted 

to R. The element x. will then be inserted into the set~, 
l 

and the serial number x. asel t a is supplied to R. The 
l 

declaration <x. , ... ,x. > hash a has a similar meaning, 
ll lk 

which the reader will readily supply. 

Several separate indices x. may occur in addressing 
l . 

declarations x. hash a with fixed a,either in one or in several 
l 

separate ranges; likewise, several separate groups of indices 

may occur. The set designated by a name~ used 

in this way will continually increase, unless all the ranges 

in which a is so used are simultaneously drop'ed (see below), 

in which case a will be reset to nt. 

iv. The simplified forms 

are respectively equivalent to 

x. hash and 
l 

x. hash aa 
l ---

where~ is some unique generated name. 

<x . , ... , x. > hash 
ll lk --

and <x. , ... ,x.> hash 
J.l lk 

3. After the opener and the parameter description units 

forming the first part of a range declaration follows a group 

of storage description units. These are introduced by the 

token 

stores 

and have the form 

(17) f contentdescriber, 

where contentdescriber is a content describer of one of the 

forms described earlier, and where f is the name of some set 

used as a mapping within a SETL program. 

aa, 
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A set whose name occurs in a storage description unit (17) 

of some logical ranger is said to be stored within r; 

the precise manner in which its values are represented within 

r is determined by the contentdescriber of (17), in the manner 

explained in our earlier discussion of the semantic signifi

cance of content describers. 

Note that a given set name f may not be mentioned in more 

than one storage description unit, and not in two storage 

description units belonging to different ranges. 

4. After the opener, parameter description units, and 

storage description units of a range declaration follow an 

optional group of sharing assertions. These are introduced 

by the token 

share 

followed by a list of sharing groups, enclosed in parentheses 

and separated by commas. Each sharing group has either the form 

(18) (f,g, ... ) 

or 

{19) (f,g, ... )k . 

Here f,g, ... are set-names mentioned in a storage description 

unit of the range declaration. A given set-name may not be 

contained in more than one sharing group. 

The occurrence of a sharing group (19) has the following 

significance. Not more thank of the functions f,Sf are likely 

to be defined for any given set of logical parameter-values. 

A field large enough to store k entries of the type appropriate 

to the declared value-types of each of these functions, allowing 

a 'typical average' field size if the field-sizes specified 

(in the preceding storage description units) for these various 

functions differ. In addition, a number of bits are reserved 

for flags which indicate which of the values f,g, etc. are defined 

and which are undefined. If more function values become defined 

than will fit into the total field, one passes automatically to 

a variant storage technique, in which one or more 

overflow •areas belonging to the indexed range R are used. 
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(f,g, ... )l 
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it reserves a field equal in size to the maximum size of 

the fields required to store f,g, etc. 

If a range is to be used to store the values of any 

mapping f(x
1

, ... ,xn} which might be multi-valued, its opener 

should have the special form 

multi range name(x 1 , ... ,xn); 

This indicates to the SETL compiler that an implementation 

efficient for cases of this kind is required. 

If the address-transformations to be used with a range 

are not such as to guarantee that the numerical indices into 

which addresses will be transformed fall into a densely 

populated interval,the keyword 

sparse 

should be prefixed to the range opener. This will guarantee 

that the indexed range R within which the logical range~ 

is stored employs compression, which, in the manner described 

in section II, will attain acceptable data packing even in 

the sp~~ case. 

V. The elaboration language, continued. Conversions, 

dimensioning, range operations. 

The SETL elaboration language, as descrih~d so far, allows 

sets and their elements to be referenced in various ways. 

E.g., an object can be represented by a standard SETL object 

reference, by a number which specifies one such object 

reference among all the elements of a particular set, etc. 

We intend in this connection that conversions (between 

the various possible representations of a single object} 

should be postponed as long as possible; this principle can 

be of fundamental importance in attaining high efficiency. 

Thus, for example, if a is a set declared as 
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pile_ nodup a; string; iter aselt; 

while f and g are functions stored in the manner described by 

(20) range fg(x}; x aselt a; stores f int, g ~~; 

then in the code sequence 

( 21) (Vx ea) if f(x} ~ 3 then ... 

the iterator will set x equal to the reference numbers of 

successive elements of a; since these reference numbers are 

precisely the indices which serve to locate the various values 

f(x) required within the code sequence (21), a suitable 

optimizer can convert (21) into efficient code which uses 

'direct indexing', even though from the abstract SETL point 

of view x remains a character string of unrestricted length. 

If, on the other hand, f and g were stored in the manner 

described by the declaration 

( 22) range fg(x); x hash; stores f int, g obj; 

then in the code sequence (21) the evaluation of f(x) would 

require a 'conversion•. Specifically: 

i. The reference number of x as a member of~ initially 

available when f(x} is to be evaluated, must first be converted into 

a standard SETL object-describer; 

ii. This object-describer will then be sought in the 

'hash-table' implicitly specified in the declaration (22); 

if not already present in this table, it will be inserted. 

iii. The serial position of x's object-describer in this 

hash table will then serve as the index locating the actual 

value of f(x). 

Effective use of the elaboration language requires the 

design of a set of declarations which minimize the number of 

conversions and other 'overhead' operations 

appearing in the compiled form of SETL code. 
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The elaboration language contains various 

statements designed to aid the programmer's in controlling 

the mode in which objects occurring in a SETL code are referenced 

and stored. The expression 

(2 3) x aselt a 

converts an object into its reference number as an element of a. 

If x is not a member of a, (23} is erroneous unless a has been 

declared to be a~; in this case. (23} adds x as a new 

member of a. 

The expression 

(24} x asobj 

converts a reference number into the standard SETL object

describer which this reference number represents. It must be 

used in those cases in which an object described by a reference 

number will 'outlive' the set used to assign it a reference 

number. 

These same keywords can be attached to iterators. By 

writing 

(2 5} (Vx € a asobj) 

we cause the successive values of x to be standard SETL 

describers corresponding to the successive members of a, 

irrespective of the manner in which a may have been declared. 

Similarly, by writing 

(26) ( Vx € a asel t b) , 

we cause the successive values of x to be the reference numbers 

which the elements of a have as elements of a (possibly different} 

set b. The diction 

(27} (Vx € a ashash b) 

has a similar significance, which the reader will readily supply. 
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construction. The unmodified set-former 

( 2 8) {xE:a I C(x)}, 

39.27 

together with its more elaborate variants, creates a set 

in standard SETL form. On the other hand, if bis a declared 

set, then 

(2 9) {x ea I C(x)} inr b 

builds the same set in the special, and generally more 

efficient, form declared for b; when the set-forming opeation 

concludes, b will have beenmade equal to the set (28}. 

A similar convention applies if b has been declared as a set 

of n+l-tuples used as a mapping and stored within a logical 

range name. In this case, it is required that the set (28) 

consist of n+l-tuples of corresponding form; the evaluation 

of (29) then makes b equal to the set (28}. Of course, b is 

maintained in its declared form. Any attempt to place an 

element x whose form is logically incompatible with a given 

range into a set stored within the range is an error. 

Remarks similar to those just made apply to various other 

set-creating operations. For example, if a has been declared 

to be stored within a range the statement 

(30) read a; 

will convert~ directly from its external form to the special, 

efficiently represented form declared for a. The evaluation of 

( 31) {x € a I C(x}} assub b 

or of any such more complex variant of (31) as 

(32) {e(x,y), x ea, y € aa(x} C(x,y}} assub b, 

builds a new set, representing it as a bit-vector, in which the 

bit position of an element is its reference number as an 

element of b. Here b should have been declared as f~, hash, or 

possibly pile nodup. The set formed in ( 31) or (32) must be a subset 

of b, unless b has been declared as hash, in which case elements 
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present in the set (31) but not initially present in b will be 

added to bas necessary. A similar remark applies to such an 

instruction as 

( 3 3) read a assub b; 

whose semantics the reader should be able to supply without 

difficulty. 

Assignments 

( 34) a= expn; 

operate as follows in the presence of SETL elaborations. If the 

set name a is undeclared, i.e., if no declaration requiring~ 

to be stored within a pile, heap, or range has been made, then 

after (34) has been executed the value of a will be stored in 

whatever manner is dictated by the right-hand side of (34). 

This accords with our general desire that conversions should 

be postponed as long as possible. Thus, for example, if no 

special storage mode has been declared for a, the assignment 

{ 35) a= b assub c; 

will cause a to reference a bitvector, whose 1-bits correspond 

of course to those elements of c which belong to its subset b. 

Similarly, the assignment 

(36) a = f (x) ; 

would in the presence of a declaration of the form 

( 3 7) range fg(x); x int; stores f,g aselt b; 

cause the value of a to be a reference number corresponding to 

some certain element of the set b; provided, that is, that no 

special storage mode has been declared for a. 

If, on the other hand, a special storage mode is declared 

for a, then the assignment (34) implies a conversion of the 

value~ into whatever form this storage mode requires. 
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Of course, if the value expn already has the correct form, 

conversion is unnecessary and the operation (34) is maximally 

simple. On the other hand, if the value expn is such as to 

make its conversion to the declared storage mode of a 

impossible, an error results. 

The same rules carry over, in appropriate form, to indexed 

assignments, read operations, and so forth. 

If a is a set used within a SETL algorithm, then the 

(executable) instruction 

(38) pin a 

converts a from its normal form (whether undeclared or declared) 

to a special form advantageous for use in connection with sets 

to which additions and deletions will be addressed only rarely. 

One possible form in which such a pinned set might be 

maintained is as follows. A block, equal in size to the 

number of elements of ~can be set aside. This block can contain 

entries of the form 

I TI chain I descriptor 
_ pointer 

Items are located in the pinned set using an index derived by 

hashing. The single 'flag' bit shown in the above diagram is 

set to 1 for i terns that are valid table entranres, and to zero 

for all other items. The 'chain pointer' field connects all 

items which have identical initial indices; all but the 

first of these entries have their flag bit set to zero. 

The 'descriptor' contains the item reference itself, maintained 

in whatever form may have been declared for the entire pinned 

set a of items. Individual items within a collection maintained 

in this form may be located quite rapidly. Note that the 

membership test x ea and the iteration (Vx ~ a) can be 

implemented with particular efficiency for pinned sets. 
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If enough items are added to a 'pinned' set~ to cause 

it to overflow the area reserved for its representation, an 

error condition will arise. Thus, before adding new items 

to a pinned set, one should execute the instruction 

(39) unpin a; 

this returns a to its normal representation. 

When a set a is pinned (or unpinned) the reference indices 

associated with its members all change. Thus pinning/unpinning 

of~ is only possible at moments when no range within which 

particular parameters or stored values are referenced aselt a 

contain any entries. One way in which this restriction can 

be accommodated is as follows. A function f whose values are 

eventually to be indexed aselt a, where a is to be pinned, 

can be represented in the standard SETL form before a is pin-

nQd, (which means that no special storage mode should be 

d~clared for f). After a is pinned one may execute ff= f; 

followed by f = ff;. Here ff should be a mapping whose values 

are declared to be stored within a range indexed aselt a. 

As has been noted above, the first of these assignments will 

cause f to be converted from the standard SETL form to whatever 

special form is declared for ff; the second assignment will 

transmit this converted form back to f. Since we assume that 

no special storage form has been declared for f, this second 

assignment does not imply any special conversion. Note also that 

the restrictions encountered here relate to the fundamental 

fact that sets fused as mappings and stored within ranges 

cannot be exastly reconstructed in their entirety, since the 

special form in which they are maintained, which is contrived 

to support indexed assignment and retrieval operations 

correctly and efficiently, suppresses some of the ('reverse

direction1) connections between indices and the elements which 

they index which would be necessary for this purpose. We also 

remark that, if the reconstruction of maps is associated with it, 

pinning can be an expensive operation, and one may therefore prefer 

to pin sets only when they will remain unchanged through a 

substantial sequence of S.ETL operations.) 



39.31 

If a logical ranger is used to store the values of only 

one single map f, the instruction 

f = nl; 

will be efficiently implemented; essentially, it will cause 

the ranger to revert to an initial 'null' condition. If, 

on the other hand, r is used to store the values of 

only several maps, execution of the above instruction may be 

quite expensive, as it may involve an examination of every 

item stored in r. In such cases, it may be 

preferable to execute the composite 'range nulling' operation 

drop r; 

This is logically equivalent to the sequence of instructions 

etc. 

where f,g, ... are all the maps whose values are declared to 

be stored within r. However, the drop instruction always has 

an efficient implementation, and causes r to revert to its 

initial 'null' condition. 

Note that the possibility of using the drop instruction 

in this way may influence the programmer's grouping of functions 

to be stored within a common range. 

If a reasonable maximum size can be assigned on a. priori 

grounds to a declared set or range, the set or range can be 

allocated, using the executable instruction 

(40) a alloc n 

where a is a declared set or range name, and where n 1s an 

integer. This operation reserves for the storage of a 

contiguous block large enough to contain n entries, and thus 

facilitates access to~ by eliminating some of the overhead 

associated with the maintenance of variable-size ob:jects. 

If subsequent to the execution of (40) enough entries to a 

are made to cause a to overflow its allocated area, a will 

automatically revert to the standard format used to implement 

entities of variable size. 
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A related operation which can be called dimensioning may be 

worth providing in connection with arrays. A plausible syntax 

for this operation might be as follows. Suppose that a ranger 

is declared in some such form as 

( 41) 

In this case, the instruction 

( 4 2) dim r ( x . : n 1 , . . . , x . : nk) , 
ll lk 

in which x. , ... ,x. are paramete1s appearing in (41) and 
ll lk 

n 1 , ... ,nk are integers, may be executed. The effect of this 

instruction can be explained as follows. Whenever a value 

stored in the ranger is accessed, the parameters x 1 , ... ,xn 

are converted to integer indices 11_, ••• ,Pn, in the manner 

described earlier in the present newsletter. These integer 

indices are then used to access an element in an indexed range 

R of the type described in section II above. This accessing 

opeation may involve a sequence of steps, during which successive 

indices p 1 , ... ,pn are converted into machine addresses with the 

help of whatever auxiliary index tables associated with R may 

be required. The instruction (42) speeds up this addressing 

process by converting the subcollection p. , ... ,p. of indices to a 
ll lk 

single
1

linearized
1 

index p, this index p being calculated by 

the customary fornula 

(43) p = pil + (pi2-l)*nl + (pi3-l)*n1*n2+ ... +(pik-l}*n1*···*nk~l· 

(Clearly, the last integer nk appearing in (42) is irrelevant; 

it may be omitted.) It is only appropriate to apply the index

transformation (43) if it is known a priori that the varia-

is confined to the tion of the individual indices p. , ... ,p. 
ll lk 

intervals 

( 4 4) 1 < p. < n 1 , 
ll 

, 1 < p. < nk . 
lk 
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rt may also be remarked that the use of the transformation (43) 

will normally be associated with situations in which the 

intervals (44) are densely (rather than sparsely) populated 

with indices generated in addressing the range (41). 

Once a range (41) has been dimensioned using (42), the occurrence 

of an excessively large or nonpositive index p. constitutes 
J 

an error. 

The form (42) of dimension statement can only be used if the 

addressing part of the basic declaration (41) contains no state

ments of the form 

( 4 5) <x. , ... ,x. > aselt a 
J1 Jn 

<x. , ... ,x. > hash , etc. 
J1 Jm 

or 

which cause a group of range parameters to be used collectively 

for the generation of an index. If such forms as (45) are used 

in the addressing part of (41), and if it is desired to use 

the numerical indices thereby generated in forming a linearized 

address pas in (43), the instruction (42) should have some such 

modified form as 

(46) <x. , ... ,x. >: n 2 , ... ) . 
J 1 Jm 

The instruction 

(47) undim r 

causes the ranger to revert to its initial 'undimensioned' form; 

this might be necessary if, for example, indices p. not belonging 
J 

to the stated intervals (44) might be encountered in a particular 

section of SETL code. 

Both (42) and (47) will normally be expensive instructions 

to execute, and one will normally use them only when the 

dimensions established by executing (42) need not be changed 

until a substantial number of references tor have been made. 
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VI. The elaboration language, concluded. 

Miscellaneous conventions, remaining deficiencies. 

The SETL elaboration language will incorporate certain conven

tions related to the blank atom generator function newat. If r is 

the name of a logical range of one integer parameter, i.e., a 

range declared in some such form as 

(48) range r(x); x int; 

then newat r denotes an integer (probably the smallest integer) 

for which every function-value f(x) stored in the logical ranger 

is undefined. In effect, the function call newat r 'allocates' 

one entry E of the standard form declared for r, within r 

flags all the values stored in this entry as being undefined, 

and returns the location of E as its value. Indexed assignments 

of the form f(x) = expn may then assign values other than n to 

certain of the logical 'storage fields' of E. 

An alternate elaboration of the newat function provided for 

use in those cases in which one wishes to generate sequences of 

blank atoms which can serve initially to address a logical range 

r but which may 'outlive' drastic changes in r. This has the form 

(49) newat ofseq a, 

in which a itself is a blank atom. This form of blank atom 

generator works as follows. As blank atoms are generated, they 

are assigned identifying sequence numbers long enough to prevent 

inadvertent duplications from occurring. The form (49) causes 

this sequence number of have high bits calculated from the low 

bits of a, but to have low bits which range sequentially from 0 

to some large integer. This low bits can then be used directly 

to index a range; which will be done if some parameter of the range 

is declared to be addressed a blank index. 

I will not now attempt to suggest detailed semantic conventions 

concerning the automatic copying of sets declared as pile or hash, 

or concerning the conventions to be applied when such sets appear 

within routines used recursively. A study of these important 

questions will be undertaken later. Hopefully, the SETL optimizer 

will be able to discover enough hf the cases in which the copying 

of an entire set is unnecessary so that a single fully automatic 
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copying system can be applied both to sets for which no special 

storage form is declared and to sets declared as pile, pile nodup, 

or hash. If this hope is not realized, the elaboration language 

may have to include some explicit 'copy' instruction applicable to 

declared sets. A similar remark applies to ranges and to maps 

whose values are declared to be stored within a range. 

We assume here that any storage declaration made for a set 

or mapping~ has the same scope as the name a itself. Thus the 

storage mode declared for a will apply consistently to a whenever 

it is referenced by a subroutine used in a larger SETL program. 

This rule is to be applied even when~ is made available as a 

parameter to a subroutine or function. 

Consideration of the examples to be presented in the following 

section reveals a number of shortcomings in the elaboration language 

as it has just been outlined; among these, the following deserve 

to be noted. 

i. No form is available for specifying either that the elements 

of a set or that the elements stored in a particular 'field' 

within a range are tuples, of indeterminate lengt~ but all of whose 

components are of a particular type. This may deprive an 

optimizer of information of which it could make good use. 

ii. No 'union type' like that of ALGOL 68 is available. 

This means that if an item to be stored in a range exhibits any 

structural variability whatsoever, it must be declared as obj, which 

is an entirely general declaration, and which may deprive an 

optimizer of information of which it would make good use. 

iii. The elaboration language as it stands provides no mechanism 

whereby the items of a doubly indexed range d(x,j), whose second 

index is an integer varying over an interval 1 < j ~ n(x), can be 

'stacked' into a single linear range in a manner calculated to 

make indexing efficient. Note however that the 'pinning' of such 

a range might be implemented in a manner accomplishing this. 

iv. In some cases a doubly indexed range d(x,j) and a singly 

indexed range f(x) will be associated, in the sense that the 

indices x are the same for both ranges, and that the second index 

j occurring in one of these ranges is an integer varying over an 

interval 1 ~ j < n(x). The elaboration language contains no 

mechanism for expressingthis association, a fact which may have 

certain intransparencies of expression among its consequences, 

and which may also lead to certain inefficiencies in data packing 
and indexing. 
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VII. Use of the elaboration language: some illustrations. 

We now illustrate the use of the elaboration mechanisms 

proposed in the preceding pages, applying them to various 

algorithms taken from the SETL notes. Our first example 

is the tree selection sort, given on page 112. We modify 

the unelaborated algorithm slightly so that it applies to 

the sorting of other objects than integers (as, for example, 

strings) ; indicate all I/O explicitly for the sake of 

completeness; and write the_elaborated and unelabora.ted 

algorithms in parallel columns to make the elaborations 

stand out vividly. I have attempted to write a set of 

elaborations from which a fairly straightforward, optimizer 

could produce reasonably efficient code. 

PURE SETL ALGORITHM 

read seq; 

treesort (seq) ; print seq; 

exit; 

definef treesort(seq}; 

/*first build the tree*/ 

,Q,=n,Q,• r =n£· _, _, 

ELABORATED ALGORITHM 

read seq; 

ran3~ seq(x); x ~; stores seq obj; 

treesort (seq) ; print seq; 

exit; 

definef treesort(seq); 

/*first build the tree*/ pin seq; 

range tnodes(x); x in~; 

stores £,r,par int, v obj; 

drop tnodes; 

,Q,=n,Q, · r=n,Q, · -' _, 
v={<newat,seq(j)>,l~Vj~#seq}; v={<newatt:nodes,seq(j)>,l~Vj~#seq}; 

trees= hd[v] trees= hd[v]; 

loop: newtrees=n,Q,; 

(while trees ne n,Q,) ---
nd = newat; 

.Q.n from trees; 

rn from trees; 

nd in newtrees; 

pile nodup trees; int; 

loop: newtrees=n,Q,; 

pile nodup newtrees; int; 

(while trees ne n,Q,) --
nd = newat tnodes; 

,Q,n from trees; 

rn from trees ; 

nd in newtrees; 



i(nd)=tn;v(nd)=v(tn) 

iff (rn ~ D)? 

rnlit? quit, 

setrt, setlf; 

setlf: r(nd)=rn; 

setrt: i(nd)=rn; 

r(nd)=tn;v(nd)=v(rn) 

t(nd)=tn; v(nd)=v(tn) 

iff (rn ne D) ? 

rnlit? quit, 

setrt, setlf; 

setlf: r(nd)=r(n) 

setrt:i(nd)=rn; 

r(nd)=tn; v(nd}=v(rn) 
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rnlit := smaller(v(rn) ,v(tn)); rnlit := smaller(v(rn) ,v(tn)) 

end iff; end iff; 

/*'smaller' is a macro /* same comment*/ 

to be supplied. it specities 

the ordering principle for 

the objects to be sorted*/ 

/* for integers it would be*/ /*same comment*/ 

block smaller (vl, v2) ; block smaller (vl, v2 l ; 

vl it v2; end smaller; vl it v2; end smaller; 

end while trees; end while trees; 

if #newtrees gt 1 if #newtrees 51! 1 

then trees=newtrees; then trees=newtrees; 

go to loop; go to loop; 

pin tnodes; 

/*then put in parent links*/ /* same comment*/ 

par=nt; /* this may be omitted, because of 

previnus drop of tnodes */ 

(Vx € hd[i])par(i(x))=x;; (Vy E:i) par(ti y)=hd y;; 

/* which generates a loop covering 

the whole range 'tnode'*/ 

(Vx € hd[r])par(r(x))=x;; (Vy€ r)par(ti y) = hd y;; 

/* now tree is built. /* same comment*/ 

begin main selection and 

repair process*/ 

top = ) newtrees; 

seq = ni; 

top = ;?; newtrees; 

seq = nt; 



39_38 

(while 51.,(top) ne n) node=top; (while 51.,(top) ne n) node=top; 

(while 5/.,(node)ne n) (while 5/.,(node) ne n) 

node = 51., (node) ; ; 

seq ( #seq+l) =v {node) ; 

5/.,(par(node)) = n; 

(while par(node}~~ n} 

node= par(node); 

iff (r(node) eq n)? 

(5/.,(node) eq n)? isnoleft? 

takeleft,dropnode, 

takeright, compare; 

takeleft:v(node)=v(l(node)) 

dropnode:5/.,(par(nodeD=n; 

takeright:v(node)=v(r(node)); 

5/.,(node)=r(node); 

r(node)=n; 

compare: 

if smaller(v(r(node), 

v ( 5/., (node) } } 

then 51.,(node)=r(node); 

r(node)=f/.,(node); end if; 

v(node)=v(t(node)); 

isnoleft:=i(node) eq D; 

end iff; end while par; 

seq(#seq+l)=v(top); 

end while; 

return; 

end treesort; 

node= 51.,(node}; 

seq(#seq+l)=v(node) 

t(par(node)) = n; 

(while par(node) ne n) 

node= par(node); 

iff (r(node) eq n)? 

(51., (node) eq n)? isnoleft? 

takeleft, dropnode, 

takeright, compare; 

takeleft: v (node) =v (f/., (node)) ; 

dropnode:t(par(node))=O; 

takeright:v(node)=v(r(node)}; 

51., ( node) =r (node) ; 

r(node)=n; 

compare: 

if smaller(v(r(node)), 

v ( R-(node) ) ) 

then 5/.,(node}=r(node); 

r(node)=J/.,(node); end if; 

v(node)=v(J/.,(node)}; 

isnoleft: =f/., (node) eq n;• 

end iff; end while par; 

seq(#seq+l)=v(top) 

end while; 

return; 

end treesort; 

It will be observed that relatively few elaborations need be 

made; hopefully, these will suffice to give good efficiency. 

Next we show the elaboratimof a SETL code which as 

it stands is more highly set-theoretic than the preceding 

algorithm: the set of procedures for flow-analysis and live

dead tracing given in the SETL notes. Again, we write in 

two parallel columns so that the unelaborated and elaborated 

algorithms may be compared. 



PURE SETL ALGORITHM 

/*hypothetical 'main 

optimizer program'*/ 
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ELABORATED ALGORITKM 

/* same comment*/ 

/* it is assumed that an initial/* same comment*/ 

successor function',set of 

nodes, and 'uses' function 

is given, each value of this 

last function being a subset 

of some comprehensive set of 

variables*/ 

builduse(nodes,entry); 

/* now we begin the series of 

subroutines which build up the 

principal processes used above* 

define£ interval(x); 

optimizer external cesor, 

nodes, npreds, followers; 

int = n9..; 

followers= {x}; 

count= {<y,0>, y €nodes}; 

/* except for x, 'count' counts 

the number of predecessors of 

a node which belong to the 

interval being constructed*/ 

count (x) =npreds (x) ; 

(while {y € followers 

npreds(y) eq count(y)} 

is newin ne nt) 

/* the set of variables will 

be called 'vars' 

below*/ 

builduse(nodes,entry) 

pile nodup nodes; elt allnodes; 

range cesor(x); x aselt allnodes; 

stores cesor set ( el t allnodes) ; 

range npreds(x) ;x aselt allnodes; 

stores npred int 12; 

hash allnodes; obj; 

/* same comment*/ 

define£ interval (x) ; 

optimizer external cesor, 

nodes, npreds, followers, allnodes; 

int = nt; 

followers ={x} aselt allnodes; 

count= {<y,0>, y € nodes} 

/* same comment*/ 

range int(j); j int; 

stores int int; range count(x); 

x asel t allnodes; stores count int 12; 

count(x) = npreds(x); 

(while {y £ followers 

npreds(y) eq count(y)} 

is newin ne n9..) 

pile nodup newin; elt allnodes; 



(Vz € newin) int(#int+l)=z; 

followers= followers less z; 

( Vy E: cesor (z) I y ne x) 

count(y) = count{y)+l; 

y in followers; ; 

end Vz; 

return int; 

end interval; 

define£ intervals(nodes,entry) 

optimizer external cesor, 

followers, follow, intof; 

ints = n2; 

seen= {entry}; 

(while seen ne n,Q,) 

node from seen; 

interval(node) is 1 in ints; 

follow(i) = followers; 

(Vb e t2[i] /*t2[i] is 

the set of all nodes in i * / ) 

intov(b) = i;; 

seen= seen u followers; 

end while; 

return ints; 

end intervals; 

/* now the derived graph 

algorithm*/ 

define£ dg(nodes,entry) 

optimizer external cesor, 

follow, intov, dent; 
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I 
(Vz € newin) int(#int+l)=z; 

followers= followers less z; 

l(Vy € cesor(z) I y ne x) 

count(y)= count(y)+l; 

y in followers;; 

end V.z; pin int; 

return int; 

end interval; 

define£ intervals(nodes,entry) 

optimizer external cesor, 

followers, follow, intof,allnodes; 

ints = n2; 

pile nodup ints; set elt allnodes; ----
pile nodup seen; elt allnodes; 

seen = {entry}; 

(while seen ne n,Q,) 

node from seen; 

interval(node) is i in ints; 

follow(i) = followers; 

range follow(x) ; x aselt allnodes; 

stores follow pil~ nodup(elt 

allnodes); 

(Vbb € i) b = t,Q, bb; 

intov(b) = i; 

irange intov(b); b aselt allnodes; 

' stores intov elt allnodes; 

·seen= seen u followers; 

'end whi:J_.e; 

!return ints; 

I

' end intervals; 

/* same comment*/ 

define£ dg(nodes,entry); 

optimizer external cesor, 

follow, intov, dent, allnodes; 

pin nodes; 



npreds = n.Q,; 

(Vx E nodes, y E cesor(x}) 

npreds(y)= 

if npreds(y) is np eq ~ 

then np+l 

else l; 

ints=intervals(nodes,entry) 

dent= intov(entry); 

( If i € ints) 

cesor (i) =intov[follow(i)],, 

return ints; 

end dg; 

/* now the algorithm giving 

the full derivation sequence*/ 

define£ dseq(nodes,entry) 

optimizer external dent; 

seq={<l,nodes,entry>}; 

<n,e> = <nodes,entry>; 

(while#(dg(n,e) is der) 

.Q,t #n 

doing<n,e>=<der,dent>;) 

seq(#seq+l)=<der,dent>;; 

end dseq; 

/* now the inner-to-outer 

pass of the dead trace 

algorithm*/ 

define£ builda(nodes,entry) 

optimizer external cesor, 

intv, uses, thru, seqd; 

seqd dseq(nodes,entry); 

(1 < Yk .::_ #seqd, 

intv E hd seqd(k)) 
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npreds = n.Q,; 

(Yx E nodes, y E cesor(x}) 

, npreds(y) = 

if npreds (y) is np :eq ~ 

then np+l 

else l; 

; ints=intervals(nodes,entry) 
I 

dent= intov(entry); 

( Vi E: ints) 

cesor(i) = intov[follow(i)] ;; 

return ints; 

end dg; 

/* same comment*/ 

define£ dseq(nodes,entry) 

optimizer external dent; 

seq = {<l,nodes,entry>}; 

range seq(n); n int; 

stores tupl(pile elt allnodes, 

elt allnodes); 

<n,e> = <nodes,entry>; 

(while #(dg(n,e) is der) 

it #n 

doing<n,e>=<der,dent>;) 

seq(#seq+l)=<der,dent>;; 

:end dseq; 

,/* same comment*/ 
! 

define£ builda(nodes,entry); 

,optimizer external cesor, throo, 

intv, uses,thru,seqd,allnodes,vars; 

seqd=dseq(nodes,entry) 

(1 < \fk .::_ #seqd, 

intv E hd seqd(k)) 



naux = n£; taux 

head = intv(l); 

( #intv > \fn > 1) 

b = intv(n); 

= n£; 
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ange naux(b); b aselt allnodes; 

stores naux subset vars; sparse 

ange taux(b,x); b,x aselt allnodes; 

stores taux subset vars; 

aux = n£~ taux = n£; 

ead = intv(l); 

> Vn > 1) 

= intv(n) ; 

forward ={y E cesor(b} forward ={y E cesor(b) 

lintov(b) eq intv and y ne head} I intov(b) eq intv and y ne head}; 

if k eq 2 then 

naux(b)=uses(b) u 

(thru(b) * 

[~: y E forward]naux(y)) ;; 

(Vintx E cesor(intv)) 

if intx(l) € cesor(b) then 

taux(b,intx)=thru(b); 

else taux(b,intx)=thru(b)* 

[u: y E forward] taux(y ,intx) ; 

end else; end rintx; 

else/* k gt 2 */ 

naux(b) = uses(b) u 

[~: y c forward] 

(thru(b,y) *nc:.ux(y)); 

('fintx E cesor(intv)) 

taux(b,intx) = 

(if intx(l) E cesor(b} then 

thru(b,intx(l)) else n£) u - -
[~: y E forward] 

(thru(b,y) * taux(y,intx)); 

end Vintx; end else; 

uses (b) = naux (b) ; 

ile nodup forward; elt allnodes; 

!if k eq 2 then 
i 
1 naux (b) = uses (b) u 

I ( thru·(b) * 

i[~: y E forward] naux(y)),, 

(Vintx E cesor(intv)) 

if intx(l) E cesor(b} then 

taux(b,intx)=thru(b) 

lse taux(b,intx) = thru(b)* 

[u: y E forward] taux(y,intx); 

end else; end Vintx; 
I 

I else /* k gt 2 * / 

!naux (b) = uses (b} u 

i[u: y c forward] 
i -

l
i(throo(b,y) *naux(y)); 

('fintx E cesor(inL~)) 
i 

ltaux(b,intx) = 

l(if intx(l) E cesor(b) then 

f throo(b,intx(l)) else n£) u 

![~: y E forward] 

!(throo(b,y) *taux(y ,intx)) 
i 
lend 'fintx; end else; 

uses (b) = naux (b) ; 

~parse range uses(b) 
I 

I b asel t allnodes; 

btores uses subset vars; 



end Vn; 

uses(intv)=naux(head); 

(Vintx e cesor(intv)) 
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sparse range throo(b,y); 

b aselt allnodes, y hash; 

stores throo subset vars; 

range thru(b); b a.selt allnodes; 

stores thru subset vars; 

end Vn; 

uses(intv)=naux(head) 

(Yintx E cesor(intv)) 

thru ( intv, intx) =taux (head, intx);; throo ( intv, intx) =ta.ux (head, intx) , , 

end Vk; return; 

end builda; 

/* now the routine which 

completes the construction 

of 'uses' */ 

define builduse(nodes,entry) 

optimizer external cesor, 

intov,uses,thru,seqd; 

builda (nodes ,entry) ; 

(#seqd > Vk ~ l, 

intv € hd seqd(k)) 

(#intv > Vn > 1) 

b =intv(n); 

end Vk; return; 

end builda; 

/* same comment*/ 

define builduse(nodes,entry) 

optimizer external cesor, 

intov,uses,thru,seqd, 

throo,allnodes,vars; 

build(nodes,entry) 

(#seqd > Yk ~ 1, 

intv E hd seqd(kl) 

(#intv > Vn > 1) 

b = intv(n); 

backorexit={c E cesor(b) backorexit = {c E cesor(b) 

c n E t£[intv] or c eq intv(l)}; c n E t£[intv] or c eq intv(l)}; 

uses(b) = uses(b) u 

if k eq 2 then 

thru(b)*[u: c E backorexit] 

uses(intov(c)); 

else 

[u: c E backorexit] 

(thru (b ,c) *uses ( intov (c))) ; 

end Vn; end Vk; 

return; 

end builduse; 

uses(b) = uses(b) u 

if k eq 2 then 

thru(b)* [u: c E backorexit] 

uses(intov(c)) 

else 

[u: c E backorexit] 

(throo(b,c)*uses(intov(c))); 

end \fn; end Vk; 

return; 

end builduse; 
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Next, we illustrate the application of the SETL elaboration 

language to the lexical analyzer, preparse, postparse set of 

programs described in the SETL notes. Here we give the 

elaborated algorithms only, in fact only those sections of 

the elaborated algorithms which differ from the basic 

algorithms given in the notes. This set of elaborations will 

serve to illustrate the manner in which, by elaborating a 

SETL algorithm, we solve some of the key problems which must 

be faced when the algorithm is to be realized in a programming 

language of lower level than SETL. We qegin with the lexical 

scan algorithm. 

definef nextoken; 

initially setup(typex, tablex, rpak, cstring); 

range table(type,state); state aselt states; type aselt typeset; 

stores table tupl ( el t cases, obj) ; 

range type(char); char string index; stores type aselt typeset; 

range switchf (case); case aselt cases; stores switch. obj; 

pile typeset; string; 

pile cases~ string; 

pile states; string; 

n=l; <nxt,end,go,skip,cont,do>=; 

switchx={<end,endc>,<go,goc>,<skip,loop>,<cont,contc>,<do,doc>} 

/* build 'cases', and then 'switch' */ 

cases = hd [switchx] ; pin cases; switchf=switchx; pi~ switch; 

/* build 'typset' and 'states' */ 

typeset = (hd ti) [typex]; /*note that this involves the tuple 

conventions set forth in newsletter 42 */ 

states = states u (hd t.Q,) [tablex]; pin states; 

type= typex; pin type; 

table= tablex; dim table(type: #typeset,state:) pi1~ table; 

/* note that our new tuple conventions require tablex to 

have a form differing slightly from that assumed in the 

setup routine given on pp. 129-131 of the notes*/ 

end initially; 



state= nxt aselt states; 

nn = n-1; data= D; token= nulc; 

loop: nn=n+l; action=table(type(cstring(nn) ,state) 

switch: go to switchf (hd action) ; 

goc: state= tt action; 

/* may not attain maximum possible efficiency*/ 

cone: token = token + cstring(nn); 

/* efficiency might be improved by declaration that 

both arguments are strings*/ 

go to loop; 

endc: n =nn; return of data ne ~ then <state,token,data> 

else <state,token>; 

doc: <-,rout,action> = action; rpak(rout); 

go to if action eq D then loop else switch; 

end nextoken; 

39.45 

/* next follows the elaborated form of the preparse routine*/ 

define preparse(treetop) 

initially setup; var=; 

/* set up collection of all preparse related 'kinds' of tokens*/ 

pile kinds; string; kinds=(hd tt) [symbkind] ~(hd tt[typkind] 

with var; 

pin kinds; 

/* now initialize sumbkind and typkind hy using auxiliary ranges*/ 

domsymkind = hd[symbkind] pile domsymkind; string; 

pin domsymkind; 

range symbaux (x) ; x asel t dom.symbkind; stores symbaux el t kinds; 

symbaux = symbkind; symbkind = symbaux; pin symbkind; 

domtkind = hd[typkind] pile domtkind; string; 

pin domtkind ; 

range typaux(x); x aselt domtkind; stores typaux elt kinds; 

typaux-typkind; typkind=typaux; pin typkind; 

/* now in much the same way we initialize the 'mask' and 'label' 

functions used below*/ 



range maskaux(x); x aselt kinds; stores maskaux bit 15; 

maskaux=mask; mask=maskaux; pin mask; 

range labaux(x); x hash; stores labaux obj; 

labaux=label; label-labaux; pin label; 
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/* next we initialize the left and right procedure arrays*/ 

range raux(x); x aselt kinds; stores raux int 12; 

range laux(x) x aselt kinds; stores laux int 12; 

raux=rprec; rprec=raux; pin rprec; 

laux=lprec; lprec=laux; pin lprec; 

/* and in much the same way, initialize the 'gross' mapping*/ 

range gaux (x) ; x asel t kinds; stores gaux asel t kinds; 

gaux=gross; gross=gaux; pin gross; 

end initially ; 

/* now we give those intiailization operations which are to be 

performed each time that 'preparse' is called to produce a tree*/ 

statstak=nt; desc=nt; nodtype=nt; nodepile = nt; 

range statstak(j); j int; stores statstak tupl(bit 15, elt 

kinds, obj) ; 

range bakstak(j); j int; stores bakstak tupl(elt kinds, obj) 

statstak = nt; bakstak = {<l,er,nt>} 

zero=OOOOOo; state=zero; go to jumpin; 

/*stack routines identical with notes page 173-not repeated-*/ 

/* begin of mai.n process up to subroutine 'getkind' identical 

with notes page 173-not repeated-*/ 

/* auxiliary subroutine 'getkind' to classify token*/ 

preparse external symbkind, typkind, kinds; 

<type,token,-> = tokdat; 

return if symbkind(token) is x ne ~ then x 

else if typkind(type) is x ne ~ then x else 'var' aselt kinds; 

end getkind ; 

newstate: state=lb+state(l:#state-1) or starts and mask(kind) 

go to label(state and finish); 

nnon: /* same as notes p. 173 */ 
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/* note (cf. p. 173 for slightly different comment) that 

the elements on statstak have the form <Domolki-state, 

token kind, <token lexical type, token, token-associated 

data (if any)>> */ 

/* part-finders for statstak */ 

define£ knd stelt; return stelt(2); end knd; 

define£ tokof stelt; return stelt(3) (2); end tokof; 

define£ tdat stelt; return stelt(3); end tdat; 

/* next follow notes p. 174 for 5 lines, till test which 

should read as follows: */ 

if gross(knd 2 elem statstak) eq ('var' aselt kinds) 

then condensenon; else new=newat aselt nodepile; condeseon; 

hash nodepile; stores obj; 

/* this auxiliary set will initially be null when 'preparse' 

starts to act*/ 

range nodtype(x); x aselt nodepile; stores nodtype string; 

range desc(x,j); x aselt nodepile; j int; stores desc obj; 

/* this set of declarations will not attain the full efficiency 

of lower-level code. the difficulty experienced here 

indicates that something like the ALGOL 68 'union' type 

ought to be included in the SETL elaboration language*/ 

/* note also that the lower-level implementation that one 

would normally think of using for desc(x,j) might use 

chained lists. with initial access through the field 

storing 'nodtype'. The implementation that will result from the 

the elaborated SETL is somewhat inferior to this, but not 

drastically so. these differences deserve to be pondered, as 

it may suggest useful extensions to the elaboration 

language. a fast realization of the present algorithm 

might allocate space for two descendants of x in fields 

attached to the field storing nodtype(x); extensions to the 

elaboration language which allow one to call for a 

realization of this type might also be useful*/ 
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newcycle: tokdat = new; 

newcyc: kind= 'var' aselt kinds; 

/* every occurrence of 'var' in the remainder of the preparse 

algorithm ought to be replaced by a reference to 'var' 

aselt kinds. the tokens which could appear as node types 

ought to be 'recoded' in much the same way using a 

'pinned hash', but this is harder to accomplish without 

substantial changes in fue SETL 'preparse' algorithm 

as it stands*/ 

/* aside from the points described above, and from the fact 

that the switch 'go to <er,") " , erp , " (" , er , per , ... ' etc . > 

occurring on page 175 can be speeded up by dimensioning and 

pinning, the remainder of the preparse algorithm can stand 

as is*/ 

end preparse; 

/* now we discuss the postparse algorithm*/ 

/* in a few cases, updates to the algorithm appearing in the 

SETL notes, pp. 199 ff, will be shown, in addition 

to elaborations*/ 

definef postparse(syntype,node,nodenum) 

parser external lockey,altset,secaltset, sesor, threshold, 

namekeyelt, namesynt, pretests, preacts, postests, postacts, 

rpak, reval, gathalt, minlast, fixed, oblig, literals, lexics; 

/* the above sets and mappings are all 'fixed tables' for the 

postparse. they will be declared and 'pinned' for fast access 

in the manner shown below. cf. the table descriptions given 

on pp. 194-196 */ 

parser external mstak,desc,nodtype; preparse external nodepile: 

/* 'desc' and 'nodtype' here are taken to refer to the 

preparse-produced tree structures which are input to the 

postparse routine. the corresponding functions for the 

internally stored 'tree-fragments' defining the structure 

of the syntactic alternatives will be given the names 

'idesc' and 'inodtype' in what follows, and will be treated 

somewhat differently to achieve efficiency*/ 
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initially setup; mstak = n£; 

/* first obtain the collection of all syntactic types, and 

pin it*/ 

allsynt = hd [keysymbol]; pile allsynt; string; pin allsynt; 

/* next form the set of all alternatives, and all 

alternative nodes*/ 

allalts = [u: x E (altset u secaltset) ]x(3) u[u: x E t£[lexalts]]x; 

/* now initialize and pin a pile giving all alternative nodes 

and their subnodes, as preparation for initializing the internal 

'idesc' and 'inodtype' functions*/ 

pile altnodes; obj; 

new= allalts; (while new ne n£) node from new; 

if node n c altnodes then node in altnodes; new=new u idesc{node}; 

end while new; pin altnodes; 

/* now pin allalts */ pile allaux; elt altnodes; 

allaux = allalts; allalts = allaux; pin allaux; 

/* next initialize and pin various maps with allsynt as domain*/ 

range nameaux(synt); synt aselt allsynt; 

stores nameaux, keyaux string, prelaux obj, lexaux ~:et el t allal ts, 

sesaux elt allsynt; sactaux, sucaux set int; share(lexaux,sesaux, 

nameaux = namesynt; keyaux 

keysymbol = keyaux; 

sactaux, sucaux) ; 

keysymbol; namesynt=narneaux, 

sesaux = sesor; sesor=sesaux; lexaux = lexalts; lexa.lts 

prelaux = prelacts; prelacts = prelaux; 

sactaux = sucacts; sucacts = sactaux; 

sucaux = suctests; suctests=sucaux; pin nameaux; 

/* now initialize and pin a range giving all the principal 

information associated with an alternative*/ 

lexaux; 

range altaux(alt); alt aselt allalts; stores apretests, apreactions, 

apostests, apostacts obj, aminlast int 3, aaltname string, 

agathalt obj; share(apretests, apreactions, apostest.s,aminlast) 

apretests = pretests; pretests=apretests; 

apreactions = preactions; preactions = apreactions; 

apostests = postests; postests = apostests; 



apostacts = postacts; postacts = apostacts; 

aminlast = minlast; minlast = aminlast; 

aaltname = altname; altname = aaltname; pin altaux; 

39.50 

/* surely a better syntax is required for the abov~ through 

perhaps a suitable macro suffices*/ 

oblig = oblig assub allnodes; 

literals= literals assub allnodes; 

lexics = lexics assub allnodes; 

/* now we create and pin the pile of twigs*/ 

pile twigs; elt altnodes; twigs={node e altnodesldesc(node,l)eq 51}; 

pin twigs; 

/* and then initialize and pin two functions which are only 

defined on twigs*/ 

range ltaux(x); x aselt twigs; stores lextyaux set string, 

fixaux int; 

share ( lextyaux, f ixaux) ; 

lextyaux = lextype; lextype = lextyaux; 

fixaux = fixed; fixed= fixaux; pin ltaux; 

/* now we initialize and pin the maps 'inodtype' and 'idesc', 

which define the basic tree structure of alternatives*/ 

range auxnod(alt); alt aselt altnodes; stores auxnod obj; 

range auxdesc(alt,j); alt aselt altnodes, j int; 

stores auxdesc elt altnodes; 

auxnod = inodtype; inodtype = auxnod; 

auxdesc = idesc; idesc = auxdesc; pin auxnod; pin auxdesc; 

end initially; 

/* now we begin the postparse code proper*/ 

pin auxnod; pin auxdesc; 

synt = syntype; tastak = nt; /* test and action stack*/ 

range tastak (x) ; x int; stores tastak tupl (set int, set int) 

[syntry:] /* perform preliminary actions*/ 

(1 < Vn < if prelacts(synt) is pane n then O else #pa) 

rpak (pa (n)) ; ; 
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iff nodeterm? 

arelexalts? islockey? 

lextrue+ maynext, keypres? area],:ts? 

findalt, aresecalts? maynext,findalt,maynext, 

findalt, maynext; 

nodeterm := nodtype(node) eq n; 

arelexalts := lexalts(synt) is setalts ne n; 

islockey : lextry=!; lockey(synt,nodetype(node)) 

is keyloc ne n; 

arealts := altset(synt,nodtype(node)) is setalts ne n; 

keypres := desc(node,keyloc) is keydesc ne n; 
aresecalts : key= if nodtype(keydesc) is x ne n then x 

else hd t£ keydesc; = secaltset(synt,key) is setalts ne n; 

lextrue: lextry=!; 

end iff nodeterm; 

[maynext:] iff issesor? 

testoracts? guessneeded? 

stackacts+ syntry, goguess, returnfalse, 

syntry; 

issesor := sesor(synt) is x ~ n; 

testoracts := suctests(synt) is tsts ne nor sucacts(synt) ne ~; 

guessneeded := nodnum ge 0; 

returnfalse: return f; 

stackacts: tsts = if tsts eq n then n£ else tsts; 

tastak(#tastak+l) = if(acts is sucacts(synt)) eq r.l 

then <tsts,n£> else <tsts,acts>; 

synt = x; 

end iff issesor; 

[goguess:] guess(node,syntype,score) 

/* algorithm is now identical with notes, p. 200, up to label 

'matched : ' * / 
[matched:] rpak[preacts(alt)] 
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if nodnurn ge 0 then rnstak(#rnstak+l) = <nodnurn,narnesynt(synt)>; 

range rnstak(j); j int; stores rnstak tupl(int 12, string) 

ok=t; typecount=ni; range typecount(x); x aselt allsynt; 

stores typecount int; 

(Vpart € partseq) <subsynt,subnode,start> = part; 

if start eq n then/* case of non-multiple node*/ 

subnum = ifx (nodnum it 0)? 

(nodnurn) , isfixed? 

( x) , istc? 

(tc+l), (1) 

isfixed := fixed(subnode) is x ne ~; 

istc := typecount(subsynt) is tc ne D; end ifx; 

if nodnum gt 0 and x eq ~ then typecount(subsynt)=subnum;; 

ok=ok and postparse(subsynt,subnode,subnurn) 

else/* case of multiple node*/ 

(start< Vj ~ #desc{node}) 

subnum = ifx (nodnum it 0)? 

(nodnum), (typecount(subsynt) is tc ne D)? 

(tc+l), (1); end ifx; 

if nodnum gt 0 then typecount(subsynt) = subnum;; 

ok=ok and po.~tparse(subsynt,desc(subnode,j) ,subnurn) 

end ~j; end else; 

/* if failure, simply return*/ 

if n ok then return f ;; 

/* otherwise do all post-tests and post-actions*/ 

(Vactmsg € postests(alt) )<act,msg> = actmsg; rpak(act) 

( ok eq _!_)? 

(nodnum ge 0)? 

printout+ 

returnfalse; 

returnfalse, 

(nodnum ge 0)? 

quit, returntrue, 

printout: print prefix(synt,nodnum) + msg; 

returnfalse: return f; 

returntrue: return t; 

end iff; 
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rpak[postacts(alt)]; /*also work off accumulation of tests 

and actions from predecessor types*/ 

(Vtact € tastak)<tests,acts> = tact; 

(Vtmesg E tests)<act,mesg> = tmesg; rpak(act) 

iff (ok eq f)? 

(nodnum ge 0)? 

printout+ returnfalse; 

returnfalse; 

returnfalse: return f; 

end iff; 

quit, 

end Vtmesg; if nodnum ge 0 then rpak[acts] ,, 

end Vtact; return t; 

/* this is end of main body of postparse routine*/ 

/* the subroutine 'matches' which tests a region in a 

parse-tree against a pattern and pretests specified by 

a tree-grammar alternative is essentially thesame as notes, 

p. 202 */ 

/* the inner recursive routine 'matcher• is somewhat different, 

and appears as follows*/ 

definef matcher(alt,node); 

matches external partseq; 

postparse external desc, idesc, nodtype, inodtype, rninlast, 

literals, lexics, oblig, lextype; 

postparse external allsynt, allalts, altnodes, nodepile; 

if idesc(alt,1) eq ~ then go to twig; 

/* else not twig; type and subparts to be examined*/ 

if nodtype(node) is nt eq ~ then return!;; 

if nt n e inodtype(alt) then return!;; 

desreq = #idesc{alt} is ndesca + if minlast(alt) is rnin ne ~ 

then min-1 else 0; 

/* check on appropriate number of descendants*/ 

if #desc{node}is ndesc it desreq or (min eq ~ and ndesc ne desreq) 

then return!;; 

/* otherwise check parts individually*/ 
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if 1 ~ 3j ~ ndesca - if min ne Q then 1 else O I 
n matcher(idesc(alt,j), desc(node,j)) then return f;; 

if min eq Q then return t;; 

/* otherwise last is multiple; check on whether 

obligatory or not*/ 

if idesc(alt,ndesca) is descalt £ oblig then 

/*obligatory-check subparts first*/ 

if ndesca ~ 3j ~ ndesc 

desc (node, j) , -1) 

n postparse(inodtype(descalt), 

then return f;; end if idesc; 

/* make additon to partseq */ 

partseq(#partseq+l) = <inodtype(alt) ,node>; return t; 

range partseq(j); j int; stores partseq tupl(string,elt nodepile); 

end matcher; 

This is as far as we choose to extend our elaboration of the 

postparse algorithm. The sections already elaborated are in fact 

those most crucial to the efficiency of the postparse. The 

reader, basing himself on the material given above, should have 

little difficulty in supplying the few elaborations necessary 

for the remainder of the postparse algorithm (notes, pp. 202-207). 


