-

SETL Newsletter Number LU a July 6, 1971
Comprehensive SETL Specifications Kurt Maly

Basgic

objiects: Sets, tuples and atoms; sets or tuples may have

atoms,

Basic

tuples or sets as members. Atoms may be

Integer. examples: O, 2, -2
Real, examples: 2.5, -0.5 (but not .%5)
Boolean strings. examples: 1b, Ob, 770, 00bT7TT
Character strings, examples: 'aeiou', 'spaces- !
Label. (of statement) examples: label:, [label:]
Blank. (created by function newat)

Note: Special undefined blank atom 1is _/L
Subroutine., Function.

operations for atoms:

Integers: arithmetic: +, -, ¥, /, // (remainder), exp
comparison: eq, ne, ft, gt, ge, .Le
other: max, min, abs , random, bitr,

Examples: 5//2 1s 1; % max -1 is 3; abs -2 1s 2, bitr & ig 101D,

4

Reals: arithmetic: +, -, ¥, /, exp

comparison: eg, ne, 1t, gt, ge, le.
other: real log real, cos(x}, sin(x’.

x min y,x max y,abs v,floor x,ceiling x,

random x, bitr Xx.

cxanples: 2.0 log 8.0 is 2,0, floor-2.5 is -7 ceiling “.7 ‘e 7
bitr 2.5 1s 10b; bitr 10b 1s 2.0.
Booleans: logical: and, or, not (or n)
// (exclusive or), - (is the

operation and n), / (is the
operation or n).
logical constants t (or true; shorthand for 1b);
f (or false; shorthand for Ob).

Character strings: conversion: dec, oct

Ixamples: dec '12' is 123 oct '12' is 10,

dec 12 is '12's oct 10 is '12°',

Bit strings: comparison: eq, ne, 1t, gt, ge, le.

e —]

Rasic

(a ge b if a has a 1 wherever b has a 1; two strings
are made to be of equal length by filling in zeros at
the left.)

Strings (character or boolean):

+ (catenation), *(repetition), string(i), string(i:1),

string(i:),#string, 3 string g,¥xestring, f{string],nulb, nile

lempty strings). string% integer becomes a hash of
the string to give a bit-string of a length determined
by the integer; hol string regards a character string

as 8 bit string in some dense internal fcrmat; holl

is the number of bits needed to represent one character.
Thus the length of hol 'abc!' is Za#holl.
nol bitstrings pads a bitstring with rerces to the

nearest even multiple of holl, and then performs the

reverse conversion,
Ixamples: 'a' + 'b' is 'ab'; 2 ¥ 10b 1s 1010Db;
2 'ab' is 'abab', 'abe! (2) is 'h', 'ahcdef'! (2:3) is 'hed!,
'abed!' (2:) 1is 'bed', # 'abe' is 3, F nulb is 0, 3 'abe! is 'a’,
¥Yx€ 'abc'! ranges over 'a', tb', 'fcot, {Z'a', hty et 'N)}
[fac!] 1= '™d', 'b'g 'abe' is t, 'be! ¢ 'abe! s F

Ceneral: Any two atoms may be compared using eaq or ne:
atom a tests if a is an atom. To determine the type of

4

an obiect the function type may be used. type x eqa
tupl tests x for being a tupl. (Others are: =set,

integer, tupl, bstring, cstring, l2bel, hl-nl,

real, subroutine, function.,} Conversion of type is

done through the binary function as. e.g.,x as tupl.
The built-in funotion pair tests an ob‘ect for belnc a

.
opera%?ogsogo%egégg-

n € (nonmembership) & (membership test): nl (enptyv set);
> (arbitrary element), 4 (number of elements;: en, ne
(equality tests); ge, le, gt, 1t (various inclusion tests);:
with, less (addition and deletion of element': lesf

(ordered pair deletion).

pow(a) (set of all subsets of a';

npow(k,a) (set of all subsets of a having exactly k elements)
u)

+ (or (union); #¥(intersection); - (difference’:

// (symmetric difference)

Examples: a€ §a,b} ist, a¢ nl is £, a n€fa,b} is f,
Inliss1, 3 {a,b} is either a or b, # fa,b} is 2,
#nl is o, Zb}.ﬂliﬁ a is fa,b}, fa,b} less a is §b},
{a,b} less ¢ is fa,b}, {(a,b),(a,c},d} lesf a is £d§ :

pmdigﬁg) is{gl,fﬁ},{b},ga,b}}.
npow(2,{a,b,c}) is ffa,by, fa,cl, fv,cd} .

fa,b% + fci is{a,b,c};éa,b};t-zb,c} is $b
Za,b,c} - {b,c} is {a}: {é,b} /7’£b,c} 15 gé,cf.

Internal assignment operator: 1is {low right precedence,

high left precedence)
Examples: 1f a+b is ckd is e gﬁ 0 then ...
is equivalent to c=a+b; e=c¥kd; if e 53 0 then .
Ordered pairs: <a,b) first and second component extractors

are hd and tl.
Tuples: let X,y, ..., z be n SETL object, then t={x,y,...,z)
denotes the n-tuple,
Operations on tuples: t(k); t(i:1); #ts; hd t (or t(1));
t1 t (or t(2:4t-1)); 3t (or hd t); t(n:)
(or t(n:#ft-n+l)); t1+t2; £t] (is [+:Vxe tIKF(x)D);
1t {null-tuple); - D
Iteration header: (¥ xgt);
Examples: let t(1) = 2; t(2) = 5; t(5) = 1; t(6) = 3;
t1(1)=10; t1(2) = 9;
f= #10,117,49,87,<5,3)¢:
t(2:1) is 5,.,.,1 ;Ft is G3t1l+t 15 <10,9,2,5,.,.,1,2);
(period indicates that this component is undefined
(/1), period is not part of SETL).
rlt1]) 1s <11,8); VxE€ t ranges over 2,5,1,3;
1<Wnzft, t(n) ranges over 2,5,/1,1,1,3%:
Set-definition: by enumeration a,b,...,C

1l

Set former:
{e(xl, cees X)), Xy E gy Xy € ep(X)s .., Xy e:en(xl,...,xn_l)[
C(xl,...,xn)f.

-4 =

The range restrictions x € a(y) have the alternate

numerical form
min (y) < x < max (y)

vhen a(y) is an interval of integers.

Optional forms include {x € a | c(x)},
equivalent to fx, x€ a [C(x)}; and
{e(x), x ¢ a}, equivalent to fe(x), x ¢ a | t3.

Functional application: (of a set of ordered pairs, or a
programmed, value-returning function)
f{a} is {if#_gi_t_ v ea 1 then y(2) else tl v, yef‘f
type v eg tupl and t1y ne /L and hd y eq af i.e.,
is the set of all x such that a,x) € f
f(a) is: if#fia} ec 1 then Bfé:a} else /1,
i.e., is the unique element of f{a}, or is undefined.
fla] is [u: f{y}, vE al
More generslly,
ffa,b% 1is (ffa §)§v}; £fa,b,c} is ((£fap)fo})f~) 1 ete.
f(a,b,...,c,d) is (ffa,b,...,c}) (a).
Constructions like f{a,[b],c}, etc., are also provided.
Examples: let f=§¢1,2>,<1,3),€2,4>; x={1,2}; r{1} isfe,3}:
£(1) 1s 1 5 £(2) is U; r[x] is £2,3,4%;
The same notation can be used with operators, so that,

for example
[a]+1 1is {x+l,xé‘a}; or tlf[al is {Ei X, x € at;

Compound operator:
[op: x €sle(x) 1is e(xl) op e(xg) op... op e(xn),
where s isikl,...,xnf. ~
This construction is also provided in the general form

[op: xlgelxzeez(xl), ceus xdgen(xl,...,xn_l)lc(xl...xn)],

wvhere the range restrictions may also have the alternate

numerical form,

Examples: [max: x€{1,3,2}] (x+1) is 4,
[+: xe{i,},z}] (x+1) is 9, n
[+: 1lgignla(i) is SETL form of >3 ay .

i=1l
[op: while cond doing block] expn; (enutivalent to:
v=s/L; times=0:; (while cond doing block)
if times eo O then v=expn; tilmes=1;
else v=v op expn;; 1if v qg.Jq_ then quit;;
end while;)
[op: while condl when cond? doing block] expn;

Quantified boolean expressions:
Ixeal c(x) Vxeal clx
general form is
3xl€a1,xzea2(xl),b&3 Eaz(xl,xz),... [G(xl,...,xn),
where the range restrictions may also have the alternate

numerical form.

Search with assignment:

Jixlea ,C(x) has same value as Jxea[cC(x),
but sets x to first value found such that C(x! eq t.
If no such value, x becomes L.

Any number of variables attached to initial 7
quantifiers may be placed in souare brackets.

Alternate forms

min € [x] ¢ max, max > [x] 2min, max2 [x]>nin, etc.

of range restrictions may be used to control order of search.

Conditional expressions:

if bool1 then expn

Assignment and multiple assignment statements:
right-hand-side assignment statements:
a = expn;

left-hand~-side assignment statements:
rfexp} = expn; is same as
f = épef[(hd p) ne exp} u {(exp,x),xéﬁexpn};
f(exp) = expn; is same as f{exp§ ={expn§;
f{a,b) = expn; f{é,b}: expn; etc. also are provided.

1 else if b0012 then expn,. . . else expn .

In general this holds for all basic SETL retrieval
operators (like tl, hd, etc.) and also for programmer-
defined infix or prefix functions and for programmer-
defined functions of zero arguments. (See also definition

of functions.)

multiple assignment statements:
{a,by = expn; is same as a=hd expn; b=tl expn:
{a,b,...,cYy = expn;<{a,{b,c),...d>= expn; etc., are also
provided.
<f(a),gfb}>= expn; is same as
f(a) = hd expn; gfb} = tl expn:

Generalized forms:
<f(a), gfb,c},...,h(d)> = expn;
<f(a),<gfo,ct,n(d)>,..., k(e)> = expn;

etc., are also provided,

Control statements:

go to label;

if condl then block2 else if cond2 then blockz...else blockn:
if oond1 then block1 else,..else if oondn then blockn:
then blockl 1f condl else 1f cond2 then block?..

then hlockl 1if condl hut block?2 if cond2...:

The 1ff statement:
iff test? % header (the deepest-rightmosh

label, action; descendant must be an action-node
followed by our ':!')

test: block; =cond; trailer (In the block of an action node

action: block; the transfer statement: to name: may
. appear.) .
end iff; 3 or ';' or 'end iff test;!

To the lower-left of any test-node follows its positive-case
descendant and to the lower right its negative-case descendant,.
Any descendant may be & test node again, And the condition
itself may be substituted for the test node's name.

(e.g., iff (x gt 0)

Likewise the codes for an action node may be substituted if
placed in parentheses. Action nodes may be preceded by
iteration headers. The trailer may contain definition for

"

nodes in the form "=expn", not occurring in the header. Those

may be referenced from within any other definition.

Example:
1ff test?
testl?, actl
labl, (x gt y)?
(y=x+1; to on3), act2;
test: =a eqg b;
testl: a=b+H; =c 1t 43
actl: fn(xy); to on;
on: Xx=3; Ai no successor type indicated, so go to labl */

Xy: =a¥b;
actZ2: x=7; end iff;
labl: o o ¢ 90

At-blocks: (at label) block;

(instead of ':', there may be ‘end;', 'end at;', 'end at
label;'). The label to which this at-block refers must
be in the routine which contains the at-block and it is

enabled as target for the block by enclosing it in two sets
of square brackets.

Iteration headers:

(while cond) block;

(while cond doing blocka) block;

(wvhile condl when cond2) block; (esuivalent to: (while condl)

if n cond2 then continue; blocks)

(while condl when cond2 doing blockl) block?2;
(Vxleal,xzeaz(xl),...,xnean(xl,...,xn_l)l
c(x ,...,xn)) block:
in this last, the range restrictions may have such alternate

numerical forms as
ming x § max, max » x ymin, min § x <max,

which control the iteration order, ang V,xielal may have the

etc.,

form min< Vx<max, etc.

Scoges:

The scope of an iteration or of an else or then hlock
may be indicated either with a semicolon, with parentheses,
or in one of the following forms:

end ¥V; end while; end else; end if; etc.;
or: end V¥x; end while x; end if x; etc,
or: (Vxea) til done; block done:...

(while cond) til done; block done:... etc.

Loop control:
quits: guit ¥x; cult while; ouit while x:

and

continue; conthnqux; continue while: continue while x:

Subroutines and functions (are always recursive)

To call subroutine:

sub(paraml,...,paramn);
subf[a]; is ecuivalent to .(Vx€a) sub(x):;

generalized forms
sub(paraml, [paramz,paramz],...,paramk)
are also provided.

To define subroutines and functions:

subroutine:
define sub(a,b,c); text; end sub;
return; - used for subhroutine return
function:
definef fun(a,b,c); text; end fun;
return val; - used for function return

A function which performs a retrieval operation may contain
storage blocks and load blocks (see also left-hand-side
assignment statementsg).

(1oad) block , % normal return statement (i.e.,
(load) block end; return vals)

(store name) block; return statement asgs in
(store name) block end; subroutine (i.e., return:)
(

store name) block end name;

infix and prefix forms:

define a infsub b; text:; end infgub;

definef a infin b; text; end infin;

define prefsub a; text; end prefsub;

definef prefun a; text; end Qrefun:
inverted form:

[; subroutine body; define subname (a,b,...):]

[; subroutine body; define subname(a,b...) ;-]

produces an immediate call subname(a,b...):

This also applies to function definition and makes them
usable in expressions. For function, the degenerate
form:[{; function body;] (ecuivalent to [;function body:
definef fname:;-])
is available,

Name scopes:
Normally internal to main routine or subroutine,

unless declared external.
Initial statements:
initial block;
Ixternal declarations:
external a,b,c,...3 - refers to main routine

suba external a,b,c,...; - refers to subroutine suba
external (a,aa), (b,bb),...: - chances name
suba external (a,aa), (h,bb),...: - changes name

Local subroutines:

o

subname local; (occurring in subroutine or function &,
makes all varlahles having same name in S and
subname common).

subname local name,, ...,name, 1 (used in S makes name,, . ..
name, local to S and all other names are identified
with those appearing in subname’.

local; (1f S is directly embedded vithin
subroutine subname then these htvo
declarastions are abbreviations of
those two above.)

local namel,...,namek:

Macro blocks:

To define a block:

hlock mac(a,b,...); text; end mac;

inverted form:

{1 bodys block mac{a,b,...):]

[y bodys block mac(a,b,...):-] (enuivalent ‘o:
[+ bodys »lock mac(a,b,...):]Imac(a,b,...):
To use:

mac(c,d,...);

Dvnamic compilation:

comgi]e X3

EX&IT][!-‘_Q: X= ‘defi,ner m (a\,, :
y=conmpile xj ~=y("; will give - the valne 7.

retnm (g a)ls end ftms':

Input-output:

Unformatted character string:

er 1s end record character; input, output are standard

1/0 media; record (n,s); - reads till er character, from

character n.

Standard format i/o:

read a; reads a set from input, in standard format

print expn; prints a set on output, in standard format

