SETL Newsletter Number 46 July 21, 1971
Generalized nodal span parse routineg J. Schwartz
preliminary draft,.

The following newsletter gives a nodal span parse routine
incorporating Earley's startat improvement, but substantially
generalized from that given in the SETL notes. The main gen-
eralizations are as follows:

i. An arbitrary context-free grammar, not required to be
in Chomsky normal form, is treated. In particular, "erasing"
or "null" productions o —> are allowed.
i1. A system of calculated node attributes which can be
tested is provided. This gives a parser with some of the power
of the Sager "restriction language". The attribute value assigned
to a node V is calculated from the attributes of the descendants
of V, the function employed in this calculation depending on the
syntactic type of V.
The arguments of the routine are as follows:
input - a string of pairs, representing the input. The
first component of each pair is a terminal syntactic
type name; the second component is an associated
attribute. Each input token is assumed to have some
particular set of possible attributes, obtained from
the token by some process of "dictionary lookup".
An attribute may be composite, perhaps highly compo-
site; each particular syntactic-type attribute pair
in the set of attributes corresponds to some particular
"reading" of the token.
igram - the grammar, i.e., a set of "productions"fJ; see the
algorithm below for the form assumed for these pro-
ductions;

root - the root syntactic type;

terms - the set of terminal syntactic types;

testfn - a mapping sending each production to the attribute-
testing routine used to vallidate well-formedness of
its collection of descendants;

atfn - a mapping sending each production to the routine which
’calculates the attribute of a node from the attributes
of all 1ts descendants;

spans-a collection of spans present in the input(output argument):

divlis - subdivision information for spans (output argument)

amb - ambiguity flag (output argument):

The algorithm given below begins by calculating the set
of all erasable syntactic types, and, for each production
XyseeesXy the maximum length (less than n) of an erasable
string Xyseeer Xy The "ultbegins" relationship, which tells us
when can generate a string whose first element is *, 18 also
calculated.
Spans are maintained in two forms. The basic "undigested"
form is

(1) <p,T,d,a);

here p<q, T is a productioncx——ﬁkxl,...,xn, and j<n., We say that
this span is present in an input string if the p-th through
(q-1)-st symbols of the input string can be derived from xl,...,xj
by the application of successive productions of gram. The span
(1) is called complete if j=n, incomplete otherwise. A complete
span (1) is only valid if it can be divided into subspans (corres-
ponding to the descendants of the tree-node corresponding to the
span (1)) having attributes which pass the test testfn(f. If
this is the case, an attribute can be assigned to the span using

the associated function atfn(f}); once this test-and-calculation
process has been applied, the span will be maintained in the
"digested" form

(2) <p,T,a,atr),

where atr is one of the possible attributes of the complete span
specified by <p,T;q).

Digested complete spans are held in a set compspans; incom-
plete spans are held in a set'incsgans.

The algorithm begins by initializing startat(l) to the set of
all syntactic symbols which can begin a sentential string of the
language under consideration; following which a main scan loop
begins.

The "division 1list" function divlis maps each span (1) into a
set S each of whose elements corresponds to one of the ways in
which the element xJ of the production T:cK*—)xl,...,xn can be
realized.

(a) If Jc(j can be realized by the erasure of an erasable
intermediate element, the atom El will be present in S;

(b) 1If xj is a terminal symbol representing some particular
terminal type, and this is matched by an input symbol which can
be read as an item of this terminal type, then a pair consisting
of the terminal symbol and its attribute will occur in S;

(e) 1If Xy is an intermediate symbol which can be realized
by some digested complete span y, then y will be present in S.

Note that the elements of divlis(sp) are therefore always
elther markers nl; pairs {c, atr) corresponding to terminal syn-
tactic types, or digested complete spans.

The rules for span formation are as follows: If the first
J symbols xl,...,xj of T:o(——}xl,...,xn are all erasable, and
x3+1 is a terminal symbol which is a possible reading of the n-th
input token, then the span.(n;ﬂ33+1,n+l> is present, provided

however that X ¢ startat(n); if <p,7,j,n> is present and incomplete,
and xj+l is a terminal symbol which is a possible reading of the
n-th input token, then the span (p,7; j+l,n+l) is present. If
{p,T>3,n) is present and incomplete, and X341 is an erasable
intermediate symbol, then <{p,7,j+1l,n) is present. Note however
that spans of this form, tentatively admitted, must be rejected
unless they are built up in some way from subspans whose attributes
satisfy the validity test associated with the production).

If ¢(ps¥7,J,n) is present and incomplete, while the complete
digested span <{r,J',q,atr > is present, and if 7" has the form
A — Zy...s2, while X 41= A , then <p,7,j+l,a>is present., Finally,
if the complete digested span {p,7",q,atr) is present, if 7" has
the form ﬂ‘f>z1...zm, and if the first j symbols of 7/ are erasable
while X541= 4 and 7'c startat(n), then{p,7,a,J> 1is present.

The attributes of the possible decompositions of an undigested
complete span sp are tested for validity when sp is taken up for
processing (cf. routine buildok below); one digested complete
span will be formed from g8p for each attribute which sp might have,
This 18 achleved as follows:

Any element of divlis(sp) represents some possible "last
subpart" of sp; using this last subpart, we may calculate a
corresponding first part. Iterating this division process, we
obtain a complete division of sp into subparts, Each such sequence
of subparts corresponds to a sequence of attributes. If these
attributes satisfy the test condition assocliated with the production
“I around which the span sp is built, the division is acceptable,
and a digested span is built by attaching a calculated attribute
to sp. This attribute 1is calculated by applying the attribute
calculation function associated with 7 to the sequence of subpart
attributes. The routine buildok (see below) which accomplishes
all this makes use of a generation-and-extension mechanism which
generates all the possible divisions of sp in turn.

The SETL algorithm is as follows:

define genodparse(input,igram,root,terms,testfn,atfn,spans,divlis,
amb) ;
/% generalized nodal span parse allowing arbitrary grammar,
null productions, attributes and attribute testing x/
/# first calculate the fixed relationships needed. grammar assumed
given as set of (n+l)-tuples <x1,...,x » X cc»rresponding
to productions X — x;...x %/
newerase = fhd X, X €igram l @Fx) ea 1} gram =<(x6 igram /fo) gt 1}
erase = nl; (while newerase ne nl) erase = erase u newerase;
newerase = { g(#g),g€gram | (1lsVi<#g | g(1)€ erase)
a g(4#8g) ne erasel;
end while newerase; eraselast=nl;
(Vg € gram) J3=0; (1lg¥i<fe-1)
1f g(1) € erase then j=1 else quit;; end V/i; eraselast(g)=
end Yeg;
begins= {{g(#’g),g(ﬁd)},ge gram, lgjgeraselast(g)?;
symbs= £g(J),g€ gram, 1< #2533
ultbegins=closef (begins, symbs);
/% the above need not be repeated unless the grammar is changed #/
/% now initialize preparatory to main loop of parse %/
divlis=nl;compspans=nl;incspans=nl;
startat=nl;startat(1l)=ultbegin froot } ;
makenewith(input(l));

/% digested complete span is <p,7,q,atr) %/

/f¥ other spans are quadruples < p,7 Jj,a> »

block spst; sp(l); end spst; block prod; sp(2): end prod;
block inx; sp(3); end inx; block spnd; sp(4); end spnd;
/% main loop of parse %/

(1<¥nsfinput)

/¥ first calculate startat »x/

startat(n)=ultbegin [f prod(inx+1),sp€ incspans¢];
makenewith(input(n));end ¥ n;
/% check on grammaticalness %/
if {spanecompspans lsp(l) eqla
sp(3) eq#input+l) a (sp(2)) (#(sp(2)))
ea rootj is totspans eq nl
then {sp‘ans,divlis,amb >= <_r£._,_n_l,f > sreturn;;
/¥ else clean up set of spans and determine ambiguity s/
spans=nl;
/¥ 'getspans' subroutine will also prepare cleaned division list ¥/
if (ftotspans) gt 1 then t else f; compdiv=nl; newdiv=nl; wdkind=nl;
/% compdiv gives initial split-off of digested complete spans;
newdiv the validated divisions of its incomplete initial parts;
wdkind the validated reading of particular tokens. #/
getspans [totspans]; divlis=newdiv u compdiv; return;
/% main block containing new-span formation ¥

" block makenewith(c);

todo=nl;
(Vg ¢gram, reading €c , g(#Qestartat(n) a g(lasterase(g)+1)
eq hd reading)
spn=<n, g, lasterase(g)+1,n+1> ;spn in todo;
divlis(spn)=if divlis(spn) is divl ne ~Lthen divl else nl
with reading; end ¥g;
(Vspg incspans, reading € c| spnd eq n a
prod(inx+l) eaq hd reading)
spn= {spst,prod, inx+1,n+1 > ;spn in todo;
divlis(spn)=1f divlis(spn) is divl ne./ then divl else nl

with readingsendV sp;
(while todo ne nl) sp from todo; '
iff iscomp?
(buildok(sp)), haveit?

- (continue;) ininc+
erasenext?
extend, (continue;);

iscomp:=inx eq Hprod-1);
havelt:=s8pg incspans;
ininec: sp in incspans;
erasenext:=prod(inx+1l) € erase;
extend:sp= < spst,prod, inx+1, spnd >;
diviis(sp)=1if divlis(sp) is divl ne .~ then divl else nl
with nl;
end iff; end while todo;
end makenewlth;

define buildok(sp):
genodparse external testfn,atfn,compspans, todo,gram, lasterase,
startat,divlis, n;

/¥ note use of previously defined macros prod, etc. x/

/% this routine forms digested complete spans in all
possible ways from an undigested complete span, and
builds on the new spans in all possible ways %/

spseq=nl; setseq=nl; ixseq=nl; atseq=nl;

spseq(1l)=sp;setseq(l)=gseqof (lastparts(spseq(l)));:

ixseq(1l)=1; atseq(l)=atrib(spseq(l);setseq(l)(1));

extend (spseq, setseq, ixseq,atseq);

atset=nl; test=testfn(prod); atfnc=atfn(prod);nparts=ﬁtprod-l;

attrue={{j,atseq(nparts+l-j) > ,1<j<nparts 3;

1f test(attrue) then (atfnc(attrue)) in atset;;

(while advance(spseq, setseq, ixseq,atseq))

attrue= {<j,atseq(nparts+l-j) > ,1l<jsnpartsy;

if test(attrue) then (atfnc(attrue)) in atset;;

end while advance;;

/% now one forms complete spans and tests to see if they
are new x/ ‘

newcomp= é{spst,prod, gpnd,atr) ,atr¢ atset}

- compspans;

/¥ and builds all elements on these new spans X%/
(Vspnew € newcomp) (spstl,prodl, spndl,~ > =spnew;
(Vg 6gram,0§j§1asterase(g)l g €startat(spstl) a g(J+1)
eq prodl(#fprodl))
spn= { spstl, g, j+1,n+1>;spn in todo;
divlis(spn)=if divlis(spn) is divl ne. then divl else nl
v:_}_i:_t_} spnew; end Vg;
(¥ spinc € incspans | spinc(4) eq spstla
(spinc(2)(spinc(3)+1)) eq prodl(# prodl))
spn=< spinc (1), spinc(2), spinc(3)+1,n+1 > ;spn in todo;
divlis(spn)=if divlis(spn) is divl ne.n then divl else nl
with spnew;
end Y spinc; compspans=compspans y newcomp;
return;
end buildok;
define extend(spseq, setseq,ixseq,atseq);
genodparse external divlis, term;

/¥ this takes the last element of spseq; chops off
the division 1list element referenced by the last element
of 1ixseq, making this the next element of spseq,
using its division 1list to calculate setseq, setting
the next element of ixseq to 1; and calculating
one more element of atseq %/
n=4 1xseq; ixn=ixseq(n); spn=spseq(n);
seqn=setseq(n); divlelt=seqgn(ixn); nmax=#(spn(2))-1;
(n<ymsnmax) 1ixseq(m)=1;

iff diveltnl?
nuloff, spnelterm?
oneoff, eltoff;

diveltnli=divlelt eq nl;
nuloff:spn= {spn(l),spn(2),spn(3)-1,spn(4#)> ;

atseq(m)=nl; /4 nl attribute belongs to nl subpart %/
spnelterm:=(spn(2)(m)) € term;

oneoff :spn=<spn(1), spn(2), spn(3)-1,spn(l)-1>;
atseq(m)=divlelt;

eltoff: <divst,-,-,atr> =divlelt;
spn=Cspn(1), spn(2), spn(3)-1,divst);
atseq(m)=atr;

end iff;
spnseq(m)=spn;
setseq(m)=seqof (lastparts(spn));
end ¥ msreturn;
end extend;

definef advance(spseq, setseq,ixseq,atseq);

/% this advances the last element of spseq; if extension is impos-
sible, it cuts one or more elements off the sequence, then
advances and extends. The process ends if the sequence
becomes null, in which case f is returned as the function
value; otherwise t %/

n=F ixseq;ixn=1ixseq(n); seqn=setseq(n);

ixn=1ixn+1;

iff ismore?
newelt+ canback?
diveltnl? backup+ fail,
nulat, spnelterm? moreis?
oneat, eltat, ext, (to canback;);

ismore:=seqn(ixn) is divelt ne . ;

newelt: ixseq(n)=ixn;

diveltnl:=divelt eq nl;

nulat: atseq(n)=nl;

spnelterm: spn—spseq(n),prd—spn(z)°=prd(n) € terms;
oneat: atseq(n)=divelt;

eltat: atseq(n)=divelt(l);

canback:=(# ixseq)gt 1;

- 10 -

backup: spseq(n)=r1 jsetseq(n)=_L;ixseq(n)=/L;
atseq(n)=_L jn=n-1;ixn=1ixseq(n)+1;
segn=gsetseq(n);
moreis:=seqn(ixn) is divelt ne_n ;
ext: ixseq(n)=ixn; atseq(n)=1if divelt eq nl then nl
else 1f (spseq(n)(2)) & term then divelt else divelt(l4);

fail: return f;

end iff; extend (spseq, setseq,1xseq,atseq); return t;

end advance;

definef lastparts(span);

genodparse external divlis;

/¥ this returns the set of last parts associated with a given
span; which is divlis(span) unless the span covers a null
string of symbols, in which case it is a set consisting
of the single element nl %/

{st,-,-,nd> =span;

return if st eg nd then Z_t_l_l_} else divlis(span);

end lastparts;

definef getspans(topspan);

genodparse external testfn,atfn,compdiv,newdiv,amb;

/% this is routine which flags all the spans which enter
into a given span, and also cleans the division 1list,
but not completely, since this might require an elaborate
expansion %/ /¥ note use of macros prod, etc., defined
above ¥/

todo:{topspan};

/% compdiv gives initial split-off of digested complete span;
newdiv the validated divisions of its incomplete initial parts %/

(while todo ne nl) next from todo; next in spans;

{st,prd, endd,att) =next;

sp={st,prd, # prd-1, endd);

/% now we use a process like buildok which calls cut
the divisions which pass all tests and give the specified
attributes; these are also counted, for ambiguityx/

- 11 -~

ndivs=0;spseqg=nl;setseq=nl;ixseq=nljatseq=nl;
spseq(1l)=sp;setseq(l)=seqof (lastparts(spseq(l)));
ixseq(1l)=1;atseq(l)=atrib(spseq(l),setseq(l) (1)) ;putifterm(l);
extend (spseq, setseq,exseq,atseq);
test=testfn(prod);atfnc=atfn(prod);nparts:jﬁprod-l;
attrue= {(j,atseq(nparts+l-J),1fj§pparts§;
if test(attrue)then if atfnc(attrue) eg att then
ndivs=ndivs+ljcompdiv(next)=compdiv(next) with setseq(l);
(1<Vjsnparts) newdiv(spseq(j))=1f newdiv(spseq(j)) is newd né ./
then newd else nl with setseq(ixseq(j));putifterm(j);;send if test
(while advance (spseq,setseq,ixseq,atseq))
attrue= §{j,atseq(nparts+l-j)>, 1gjznparts};
if test(attrue) then if atfnc(attrue) eq att then
ndivs=ndivs+l;
compdiv(next)=compdiv(next) with setseq(ixseq(1));
(1<Vj<nparts) newdiv(spseq(j))= if newdiv(spseq(]j)) is newd
ne /. then newd else nl with seqseq(ixseq(j));putifterm(J);;;
end 1f test; end while advance;
/% the above can easily be put into a more efficient form x/
if ndivs gt 1 then amb=t;; end while todo;
return;
block putifterm(j); /% auxiliary block to collect token-type
information X%/
if prod(nparts+l-j) € term then
termat= { (spseq(Jj)(4))-1,nl,nl >
{termat(2), termat(3)>=setseq(ixseq(j));
/% which makes up
{token number,terminal type,attributes”> %/
termat in wdkind; end if prod;
end putifterm;
end getspans;
definef atrib(span,divelt); genodparse external term;
y auxiliary routine to calculate attribute %/
iff diveltnl?
nulat, spnelterm?
termat, compat;

- 12 -

diveltnl:=divelt eq nl;

nulat: return nlj;

spnelterm:=span(2) ¢ term;

termat: return divelt;

comput: return divelt(4);

end atrib;

/# seqof mefely sequences an unordered set of

elements %/

