
SETL NEWSLETTER No. 47

OUTLINE FOR A PARSING SCHEME FOR SETL

July 27, 1971
Kurt Maly

The block structure or SETL makes it advisable to parse a pro­
gram in two phases. In the first phase all simple statements -
statements not containing statement blocks (e.g. assignment state­
ments, goto statements, etc.) - and expressions are condensed by
preparser 1 and verified by postparser 1. The output of this
phase will be a token stream used by the second phase e.s a lexical
token stream (called lex2).

The tokens will be either of the form

a) (type treetop) where 'treetop' is the root of some tree
representing either a simple statement or an
expression and 'type' indicates which of those
two it is.

b) (type token) where 'token' is either a delimiter, s, keyword, or
any single object which preparser 1 directly
emitted to lex2 and 'type' indicateE1 what it
actually is.

The second phase takes these tokens as input to preparser 2

and produces a program tree where the leaves, in most c:ases, are
roots of already verified trees. This program tree is then verified
in postparser 2.

It might be pointed out that this general scheme has two big
advantages, namely

a) a clarity of structure in the program tree and in the grammars,
b) easiness in genera ting code and it alleviates Eiome implemen­

tation problems (such as storage requirements).

Naturally, those two parsers need two different SE!ts of tables.
For parser 1 we need:

a) the lexical specification of SETL (used in 'nextokem').
b) the precedence tables to condense simple statementE1 and

expressions (used in 'preparser 1').
c) a postparse grammar for those (used in 1postparse f~•).

SETL NEWSLETTER No. 47
PAGE 2

For parser 2 we need:

a) no need for routine 'nextoken' since tokens are produced by
parser 1.

b) the precedence tables to condense statements and composite
statements to a program tree (used in preparser 2).

c) A postparse grammar for those used in postparser 2. Remember
simple statements and expressions are now names of lexical
typ~ 'statement' or 'expression'.)

A control program continuously ~nvokes p~eparser 1, postparser 1,
and constructs lex2 till a E-0-F is encountered. Whereafter
preparser 2, which uses lex2, and postparser 2 is invoked to execute
phase two.

The following modifications in the existing parsing programs
are deemed necessary in order to ensure efficient and 1~orrect parsing:

For parser 1:

lexical phase:

1) '; ', certain keywords (such as 'if', 'then', 'while', 'doing',

etc.) and certain delimiters (such as ' (' in ' (while .•. ',

' [' in ' [. ' , . . . , etc.) are immediately sent to l•!!x2.

2) some of them produce more than one token
e.g. then ~ then (

else ->) else (
. . ~ .) end .
' ' '

,
(-> indicates what actually is put into lex2.)

3) the scope controllers (e.g. ' end if x') will be eillli tted as 'end'
with (if x) as corresponding datum.

4) 'til name;' causes ' (' to be emitted to lex2, skipping 1 t in
preparser 1 and when the label 'name' is encounter)end ; are
emitted to lex2.

5) upon encountering a function definition with a corresponding
call in an expression, scan along till end of it and save

definition, call and an associated newly generated variable

name in a set (fundefset). Return to preparser thi.s variable name.

SETL NEWSLETTER No. 47
PAGE 3

6) after 1 iff' emit to lex2 name tokens preceded by tc,kens indicating

whether name is the name of a test-node or action-cir label-node.
If nodes are parenthesized emitting name tokens to lex2 is

replaced by returning a series of tokens to preparser 1.

preparser 1: no changes.

postparser 1: no changes.

For the control progr8f1:
1) before anything is inserted in lex2 it has to be checked whether

it is the beginning of a parenthesized header (e.g. '(while ••. ',
'(at .•• ', '(Vx ••• ' etc.); if so it should be preceided in lex2
by a token stating the type of the header (e.g. 'whi.liter (whil. .• ~

2) all inverted statements (such as: then .•• if .•• but; [; ••• define •.•];
etc.) have to be reverted to normal form.

3) the saved function definitions have to be parsed by parser 1 and
placed in lex2; function call trees have to be prodluced and
together with their associated variable names savecl for code
generation.

4) construct binary trees for all iff headers and replace all
corresponding tokens in lex2 with trees.

For parser 2:

lexical phase: not existing.

preparser 2: accept lexical tokens from lex2 instead c,f from 'nextoken'.

postparser 2: none.

