
SETL Newsletter Number 53
SETL to LITTLE Translation:
A First Look

Introduction

September 17, 1971
H. s. Warren

This newsletter discusses the possibility of compiling
11' SETL programs into LITTLE code, without using the _SETL

machine" approach. The motivation for this is run-time effi
ciency on conventional (non-microprogrammable) machines, while
maintaining portability.

A primary goal is to produce, by early 1972, the first
version of a SETL compiler capable of compiling a preliminary_
SETL language, but probably without optimizations. The imple

mentation in early 1972 should be able to handle mcist SETL
features, such as recursive procedures, ar't?_itrarily large
integers, the compile statement, SETL name-scoping rules, and
SETL rules for matching arguments to formal parameters.

Bootstrapping

An executable SETL-to-LITTLE compiler can be produced
as follows:

1. Code the SETL-to-LITTLE compiler in BALM-SETL.
2. Code an equivalent version of (1) in pure ~ETL.
3. By compiling (2) with (1), generate a SETL-to-LITTLE

compiler coded in LITTLE.
At this point, we h~ve a self-compiling SETL compiler which

can be executed in a non-interpretative manner. BALM is no
longer needed.

The LITTLE code which is generated from SETL source pro
grams will have a high density of calls to SETL "library"
functions, e.g., PLUS. A sufficient number of these to execute
the compiler itself must initially be coded in LITTLE. Functions
not used by the compiler (e.g., "pow", "npow", possibly the

- 2 -

equality test for sets, etc.) could be coded in SE'I'L, but doing

so might only be practical if SETL allows separately compiled
modules. After the compiler is first running, all of the library
functions could be coded in SETL if desired.

The resulting compiler may be transported to new machines by
transporting LITI'LE.

Data encoding

In this implementation, space for almost all data is allo
cated from a single storage pool. Two forms of storage allo
cation from this pool are provided. In oqe form, storage is
allocated and explicitly freed in a stack-like manner. In tl?_e
other form, storage is not explicitly freed. Instead, a com
pacting garbage collector is invoked when necessary.

The two kinds of storage allocation cause blocks (of
arbitrary length) to be obtained from opposite ends of the pool.
These
area.
would

ends are referred to as the "stack" area
The garbage collector is invoked when a

cause the stack and the heap to overlap.

and the "heap"
storage request
The garbage

collector compacts only the heap area, but it uses the stack
area to determine which words in the heap are in use.

For compaction, all data in the heap 1s assumed to be
relocatable without the aid of an explicit relocation directory.
The handling of the compile statement has not yet been addressed.

All data items have a "root" which would generally occupy
a single computer word, and which contains the data item's type
and either its value or a pointer to its value. [Note: the
"copy problem" of SETL has not been considered. The formats
being described will probably be expanded to include information
such as a reference count.]

Thus, all items can be classified as either "short" or
"long". The long form is arbitrarily long, being l:Lmited only
by available main storage. The long form is used for large

- 3 -

integers, reals, long strings, all tuples, the sub-•structures

of sets, and procedures created by compile.

Figure 1 depicts an encoding of SETL data items. The item
roots are assumed to be 60 bits long for the CDC 6600, and 32
bits long for the IBM System/360. Five bits suffic:e for the
"type" field, but it is suggested that six be used on the 6600,
and eight be used on the System/360, with the high order one
or three bits always zero. The·"value" field (54/24 bits) holds
the 1 tern's value if it will fit,_ and otherwise it c:ontains an

integer which is used as a word-index into the storage pool.
For efficiency, it is suggested _that the impleimentation

be "locked in" to a particular value-encoding of the type field.

The encoding shown permits the implementation routi.nes to do
an indexed branch on the type field, it pennits a test of a
single bit to determine whether or not the "value" field is a
pointer, and items of similar types are grouped together.

A type code of zero is used for short integers in the hope

that the optimizing compiler may in some cases be a.ble to generate
in-line code without field extractions (e.g., for loop control
in (1~ V1~10), and when the SETL data strategy elaborations are
used).

Type codes from 20 on up are intended for use by the various
representations of sets which may be implemented in the future.

It is possible to represent the hashed set in a way that
closely resembles a tuple. This point should be addressed when
the garbage collector is designed.

On the 6600, the short form of an integer would probably _
be used only if the integer requires 48 bits or less (47 magni
tude plus a sign). The short form is then compatible with exist

' lng software and penni ts stmple multiply and divide operations.
~ix bits in the word are never used. On the System/360, the
•hort fonn would probably be used for up to 24 bits.

Short integer I o I value

Long integer I 1 I t ~ln(words) I value c=~= I value I
Real I 3 I t 1~1
Short Boolean string 14 I nl value!

Long Boolean string! ~5__,_j_~t _ __.l ~jn(bits)

Short character string! 6 I nl value)

long character string I 11 t I ~!n(char)

Blank I a I value

Label jig address!

Subroutine I 121 address!

Function I 141 address!

Undefined I 161 0

Tuple I 191 t 1~1 n

Set (hashed) I 211 t ,~ n

f
t
t

Figure 1. Encoding of SETL Data Items

value 7

number of members
hash table size
loading

- 5 -

The long form of an integer permits the representation of

any integer that will fit in main storage. (It is assumed
that the computer's word length exceeds the number of bits
required f'or addressing, by five. Otherwise, multi.ple words
must be used for some of the items being discussed.) On the
6600, both the length of the long integer and its s:tarting
location could be packed into the root word, but this is not
recommended because it would cause difficulties in transferring

SETL to a variety of machines.
It is suggested that long integers be stored 1.n the "forw9:rd"

direction (most significant word first) because thi.s is concep
tually the simplest and it is compatible with the way strings
would probably be stored (consider "integer~ bstring"). It
is probably debatable whether forwards or backward1:: leads to

the simplest and fastest SETL programs (forwards 18 best for
comparison and division, and backwards is best for addition,
subtraction, multiplication, and reducing the size of the integer
when possible).

For short Boolean strings, six bits are required for "n"
(the length of the string) on the 6600, leaving 48 bits for
the string itself. On the System060, it is convenient to use

eight bits for '~n", leaving 16 bits for the string. The string
should be right-justified in its field, to facilitate left
padding with zeros for and and_£!: operations on different length
strings (this applies to both short and long BooleEm strings) .

For uniformity, it is suggested that the short character
string also have six (6600) or eight (System~60) bits for the
length field. This leaves room for six.seven-bit characters

on the 6600, and for two eight-bit characters on the System060.
It is suggested that the characters be left justified for both
short and long character strings, as this is preferable on

- 6 -

computers with variable field length instructions.
Long strings (and all tuples) have an extra le!Vel of

indirection involved. This is to permit subpart e,i:tr~ction

without copying when the context allows it. The word-pair
<n,pointer> may be expanded to include a reference count,

word count of "value", etc.
It is probably not necessary to have a long form of the

blank atom. On the System/360, 16,777,216 (224) va,lues of
newat can be generated. Although an algorithm could be written
that would exhaust these values in a minute or so, it does seem
reasonably safe.

The value of a label, subroutine, or function variable is

simply the machine address of the machine code corresponding to
the lab~l, subroutine, or function name. (SETL doeis not alter
the run-time stack as a result o-r a "go to".)

A tuple is stored in contiguous words as shown. Ea.eh
component of the tuple is in the form of a root word. Thus, the
components of a tuple can be directly addressed through indexing

(even though the components may be rather complex data structures).

The representation of a hashed set closely follows that
described in f!ewsletter 49. The members o-r a set a,re stored
as simple one-way lists, in no particular order. E~ch item in
the list has the :format of' a root word. The manner o:f storing
tuples in sets (for fast functional evaluation) is not yet
addressed, but it may differ from that of newslette!r 49.

In this implementation, it is suggested that hash codes
be computed on demand, rather than always computed and saved.
This saves space and also the overhead of computing hash codes
when they are never qsed. This, incidentally, will be more
significant when non-hashed sets are introduced.

- ., -

Fixed and dynamic storage

In this implementation, the SE'TL compiler assigns constants
and certain external variables to fixed storag~. T'he root words
of these items are referred to by the compiler-generated names
FO, Fl, F2, ••••

Variables other than certain external variables are stored

in "dynamic" storage (stack or heap), and are referenced by a

term of the form D(p+k). Here "p" is an integer variable desig
nating a block of storage which has been allocated from array D,
and k is a constant giving the offset of the variable. For
example, if a SETL routine has a local variable x and a variable
y with the declaration "sub external y", then x might be refer

enced as D(P+5) and y as D(Pl+6). Here it is assumed that P
points to the currently active block (top of the stack), and Pl
points to the block associated with the most recent invocation
of routine "sub".

For a constant such as the SETL lOlb, the compiler might
generate the LITTLE statement DATA FO=B04030 ••• 05 for the 6600.
The generation of LITTLE code for long constants is more compli

cated because of the "pointer" field. One would like to be able
to supply the pointer field without using executable code (for
compactness or the object program)~

For example, a string of 50 1-bits should be compiled into
fixed storage as shown below (for the 6600):

59 O

Fl: ~5 ~t_---1\
50 ~
t

0 ••• 01 ••••••.••. 1

Root word
-Number of bits

Pointer to value
Value (50 l' s).

- 8 -

To specify this in LITTLE would require a significa,nt increase
in the capabilities of the DATA statement, so that the compiled

code could be something like:
SIZE F1(60).,
DIMS Fl(4).,
DATA Fl=5x255 + ~(Fl(l))-A(D(1))+2,50,

A(Fl(l))-A(D(l))+4,B000377 ••• 7.,
where A(x) denotes the word address of x. Then, when Fl(l)
bits 17-0 are used as an index into the "D" array, the item

actually located is F1(2) (i.e., the 1150 11 above). This problem
is not yet resolved.

Variables declared as "blank external" are ass:igned to fixed
storage. If the statement "proc external x,y, ••• " occurs in
procedure "proc", then x,y, ••• are also assigned to fixed storage.
Otherwise, procedure "proc" must be examined by thei compiler to

determine the storage class for x,y, ••••

Overall program structure

This implementation assumes an overall program structure
that is slightly different from that in the notes {p.72). We
take the view that all SETL procedures must begin with either
a "define" or a 11 de:f1nef 11 statement. The total program 1-:_s assumed

to be contained in a procedure that is entir:ely compiler-supplied.
This outermost procedure is known to be non-recursive. A variable
declared as "blank external" is taken to refer to the compiler
supplied main procedure, and hence it may be placed in fixed
storage. _ Such a variable also takes on _the name scope of the
compiler-supplied main procedure.

It is believed that this approach leads to somewhat simpler
procedure prologues and epilogues. For example, the "return"
statement always compiles in the same way. It also seems to
slightly increase the power of the "external" statement, and

permits particularly efficient references to 11blank external"

- 9 -

variables.
If the first statement is not "define", then the compiler

may of course supply a statement such as "define noname". In
case the corresponding "end" statement is also missing, it is
suggested that one be supplied at the very end of the total
program, rather than before the first supplied "define" state

ment. (Name scoping is affected by the choice. The reason
for suggesting that it be supplied at the end is that the
compiler cannot know that an "end" statement is missing until
it has read the entire program, so it may be simplest to put
it at the end.)

External statement; stacking of variables

In this newsletter, no particular name-scoping rules fo~
SETL are assumed. However, to seriously contemplate the com
pilation of SETL programs, it does seem to be necessary to have
detailed knowledge of the relation between the "external"
statement and the stacking of variables.

The effect of the "local" statement (see newsletter 34,
page 7) is identical to an appropriate "external" stat_ement.
For example, the statement "sub local a,b,c, ••• " is equivalent
to '~sub external z,y,x, ••• ", where z,y,x .•. is a list of' all
non-external variables in the procedure containing the "local"
statement. Thus, the "local" statement will not be discussed
further.

The details given here on the meaning of the "external"
statement are intended to be an elaboration of the material
in the notes. The gaps are filled in with an implementation
in mind, but no changes are intended.

The basic requirement is that the statement "suba external
x,y, z" defines x,y, !: "as having references which ar1e the same
as those which identical names occurring in the subroutine suba
would have" (notes, p. 71).

- 10 -

Thus, x,y,z have the same name scope as the x,y,z in
"suba 11

, and, at any point in time, have the same values.
If 11 suba 11 is entered recursively, then x,y, and z are

stacked and new instances are created, having the value _f1._

(assume that x, y, and z are local to "suba 11
). The names x,y, and

z in the procedure containing the 11 external 11 statemi:!nt should then
refer to the new instances.

If "suba" is not active at all, then the x, y, and z are
taken to refer to a "base level" of the variables in. "suba",
which will be used when "suba" is entered. This po:lnt is uncon
ventional (or at any rate has no counterpart in Algol or PLII),
and is somewhat anomalous, but nevertheless it does allow a very
natural a._nd entirely flexible use of the "external" statement
in a non-recursive environment. It is also easily implemented.

With this interpretation of the "external" statement, the

stacking of local variables may be implemented as follows.
Before beginning execution of a SETL program, a compiler

supplied main routine creates a storage block for the local
variables for each procedure, and initializes a set of pointers
to point to these blocks. There is one block, and one pointer,
for each SETL procedure. "Local variable" here means all variables

mentioned in the SETL procedure except those that are declared
"external", regardless of the procedure name (if any) on the
"external" statements. It is assumed that the "local" statement,
if any, has been converted into an appropriate "external"
statement.

Associa~ed with each procedure is an "invocation count".
The compiler-supplied main routine initfalizes all invocation
counts to zero.

The prologue of each procedure includes a test of its invo
cation count. If' zero, the procedure uses the pre-:_allocated,
or "base" instance of its local variables. If non-zero (recursive
entry), the procedure stacks the current instance of its local
variables, and allocates a new instance. In any event, the
invocation count is then incremented.

- 11 -

The epilogue (return) of each procedure decrements the
procedure's invocation count. If the result is_zero, the
procedure simply returns. If the result is non-zero, the
procedure pops up the older instance of its local variables,

and then retui;:ns.
In a non-recursive environment, no storage allocation

and freeing is necessary. This speed advantage is attained,
however, at the expense that space for all local ve~riables
is allocated all_of the time.

The compile-time rules for resolving the references in
the statement "sub external x" are summarized below.

1. If this statement occurs in subroutine "sub", then
assign "x" to fixed storage. Use normal name-scoptng rules for
"x".

2. _If' "sub" is omitted, then assign "x" to ftxed storage.
For name-scoping pu~oses, regard "x" as being inte!rnal to the
outermost (compiler-supplied) subroutine.

3. In all other cases ("sub" is the name of amother

subroutine) consider this "x" to be the same as the "x" in
subroutine "sub".

a. If "sub" contains no occurrence of "x", then
treat it as if "sub" contained the staLtement
"x=x" (i.e., use (c) below).

b. If "sub" contains a statement such as "sub external
x", "external x", or "further external x" then
apply (1), (2), or (3) respectively (''x" has
acquired the scope of the "x" in "sub").

c. In other cases ("x" is internal to "sub"; possibly
a formal parameter) then assign "x" to the dynamic
storage location of the "x" in "sub".

- 12 -

Example:

A: C external x

l'
C: D external x

r= r=

Assume that the name scoping rule is that a va.riable is

known in its own procedure and all contained procedures. Then
an "x" in A, C, D, and E are all the same, but an "x" in B is
different, because the "x" in A took on the scope of the "x"
in D.

The compiler must detect the following errors:

1. Formal parameters declared to be external.
2. Contradictions, such as "A external x" and 11 B external

x" occurring in the same procedure.

3. Circular derinitions, such as "B external x" in A,
and "A external x" in B.

Note that with this treatment, the statement "sub external
x" occurring in "sub" causes "x" to be in fixed storage, but the
normal name scope of x is retained. This is equivalent to the
Algol "own" and the PL/I "STATIC" attribute (that is, "x" retains
its value across recursive calls to "sub").

It is not necessary to restrict the range of procedure calls.

In the above diagram, for example, procedures A and E may directly

invoke each other. This type of call is not permitted in Algol
and PL/I.

- 13 -

Compiled code for a simple SETL procedure

The appendix shows a simple nonsens.tcal program coded in
SETL, as an example of what sort of LITTLE eompiled eode might
be possible.

The program ~onsists of a procedure "illustrate", which has an
internal function-procedure "f". As there are two procedures,
the compiler generates two integer variables Il and I2 to refer
to their invocation counts, and two integer variables Pl and P2

to refer to the top of their "environment" stacks. The variable
P is used to refer to the currently executing procedure's environ
ment.

If a variable x is local to a procedure Pi, then the compiled
code for Procedure Pi could reference x by either D(Pi+k) or
D(P+k). Though the variable P may seem unnecessary, it is needed
for garbage collection, is convenient to use in connection with

procedure linkage, and will probably be found useful as a debug
ging aid.

The LITTLE code shown in the appendix is based on the format
of an "environment" block shown below.

Also used for
compiler temporaries

0

1

2

3

4

5

14'-<--l word--~>!
Size of this block

Save area for p

Save area for Pi

Return point

Sinister flag_

Ar~ument 1

Argument n
Local variables!

I

Figure 2. Layout of an Environment Block

Stored by STACK
routine

Stored by prologue
code

Stored by procedure
call code

- 14 -

The first block of ~ode generated by the compiler is a

copy of the complete run-time library (PLUS routine, etc.).

In essence, this is supplied in source (LITTLE) form. It
includes declarations of variables such as P and ~rray D
that are used both in the library and in compiler-generated

code. Thus these "common" variables need not be passed
II II explicitly ~s arguments. If a library routine inadvertently

uses a non-shared na~e such Il, however, then no harm is done
because these are ~e-declared in the compiled code.

Since the run-time library may eventually involve some
10,000 LITTLE statements, it will actually be inserted in
some sort of compressed form. This might be simply a matter

of eliminating comments and redundant blanks, or some partially
compiled form might be used, or possibly only its symbol table
need be inserted.

The entire SETL source program is compiled into a single
LITTLE s~broutine called CMPCODE (compiled code). Thus all
compiler-generated names (such as Pl, P2, etc.) are known every

where.

The statement DATA Il=OII2=0 initializes the invocation
counts of the two compiled procedures "illustrate" and "f".

The next statement, CALL DINIT, effects any initialization
thAt might be required for dynamic storage allocation. This
routine might allocate a portion of the dynamic storage array
D for the garbage collector's bit table(s), initialize pointers

to the first words of the stack and the heap, etc.
Incidentally, the exact manner of setting the size of array

D has not been worked out. It is assumed that a value is passe4
as a parameter to th~ compiler, and the compiler somehow commun
icates it to the run-time library block of' code (which contains
the DIMS D statement).

The next three statements obtain and initialize a five
word bloG_k which serves as the "environment" block for the
compiler-supplied main routine. Only the first three words are

- 15 -

initialized at this point. Note that the statement "P=STACK(5_) 11

is used to request five contiguous words from the "stack" por~
tion of dynamic storage. The value of the STACK library func
tion is an integer which points to the block allocated.

The STACK routine initializes all words in the allocated
area to .fL • This is done so that a procedure's local variables
will all be equal to J"L when the procedure is entered for

the first time or is entered recursively.
The next four statements allocate the base level blocks for

the two SETL procedures. The 11 Pi save areas" are initialized
to zero. The size of an environment block is 5+t+v words,
where t is the maximum number of "compiler temporaries" needed
at any point in time, and vis the number of local variables
in the procedure. Arguments are passed in the compiler temporary

area, sot must be at least as large as the largest number of
arguments passed to any called procedure.

The next statement sets PD to point to the first available
word in the dynamic stack area (i.e., the stack area above the
base allocations). This pointer is used to control allocation
and freeing of environment blocks when recursion occurs. It is
initialized by DINIT, is increased by STACK, and is decreased

as part of the compiled code for the "return" statement.
The next four LITTLE statements provide information needed

by the garbage collector. The garbage collector receives an
input from the vector GLIST, and to explain how it is used it
is necessary to look ahead and consider the compileid code for
procedure prologues.

When the i'th SETL procedure is invoked recursively, it

allocates a new environment block and stores the old value of Pi
in the "Pi save location" of the new block. It thein sets Pi
to point to the new block. The procedure also stores the old
value of Pin the "p save location" of the new block, and sets
P to point to the new block. _This has the eff'ect of making the
new block the head of two one-way chains. If one views the blocks

- 16 -

as being chained by the P save location, then the chain acts

as a stack that reflects the dynamic nesting of procedure calls.

If one views the blocks as being chained by the Pi save location,
then the blocks form a set of stacks, with each sta.ck refleq_ting

the depth of recl!rsion of a corresponding procedure. The P
stack and the Pi-stacks end with zero pointers.

The garbage collector is invoked from STACK. It "knows"
the current value of P. By starting with the block'. pointed to
by P, and tracing through the blocks using the P save location,
the garbage collector can locate the environment blocks of all
active procedures (an "active" procedure is one that has ~een
invoked more times than it has returned). In addition, the
garbage collector has the values of pointers to all the base level
environment blocks. These values were given to it by the vector
GLIST and its dimension GLISTSZ. By scanning through all these
environment blocks, the garbage collector can locate all currently

used words in the heap.
It is assumed that the garbage collector "knows" the formats

of the environment blocks and all SETL data items. Note that
the size of each environment block is stored in the block.

The garbage collection algorithm will not be trivial and
its design has not yet been studied to any depth. A ma,j or
point is that to move an item {for compaction), the garbage
collector must be able to locate all pointers to the item, hope
fully in an efficient manner. Thus garbage collection might be
related to the copying problem.

Getting back to the LITTLE code, the next thre·e statements
cause a transfer to the main SETL routine, "illustrate". This
is compiled as a normal procedure call to a subroutine that has
no arguments. The form of the compiled code for a procedure
call is:

- 17 -

D(P+3) = i (i refers to Li below)
D(P+4) = O or 1 (sinister flag)
code to evaluate argument 1

D(P+5) = root word of argument 1

code to evaluate argument n
D(P+4+n) = root word of argument n

GO TO label constant

Li CONTINUE
D(P+k) = RESULT (for dexter function calls only)

The first statement above stores the return point, in
effect. The next statement stores a dexter/sinister indication
(the compilation of sinister calls has not yet been studied
to any extent). The next n statements evaluate and store the
arguments. This is followed by a GO TO referring to the procedure.
The GO TO would be replaced by something more complicated in the
case of a variable procedure name. The CONTINUE statement serves
only as a place to attach the compiler-generated label Li.

The call to the main SETL routine is followed by a RETURN

which terminates execution. This is :followed by a "switch"
which is used to accomplish a transf'er to a label variable.
In an unoptimized compiler, this switch includes a list of _all
the statement labels t_n the compiled code, both programmer
supplied and compiler-generated. The effect of "va.riable=label
constant; ••• ;GO TO variable" is accomplished by "va.riable=label
number; ••• ; S=variable;GO TO SWITCH".

Next the compiled code ror program "illustrate" begins.
The prologue includes a test of the procedure's invocation count
and the stacking of the procedure's environment if it is entered

recursively, as has been explained.

- 18 -

The remainder of the compiled code can probably be followed

without further comment, but a few remarks will be made about the
passing of arguments to procedures.

It has been assumed that the library routines (PLUS, LESS,
etc.) always return with a unique copy of the result. The value
of these routines and of a compiled function is a "root word",
which may point to a structure in the storage heap. The point
is that the structure in the heap is not shared by other root

words.

For a procedure call such as f(l,s,x+l), the arguments
are always regarded as expressions to be evaluated in the calling
routine. Thus, in the absence of optimization, what is passed
to f in this example is a copy of the constant 1, a. copy of s,
whatever s may be, and a uniaue copy of the result of the
calculation "x+l". This is why the compiled code f'or "a=f(l);"

pasf!eS 111" by means of the statement D(P+5)=COPY(FO). The
non-optimizing compiler allows for the possibility that 11 1 11 is
a long integer whose value may be altered by f.

The type of linkage used here, and suggested f'or SETL
subroutines and functions, is call by value with deilayed argu-
ment return (for all data types). This type of linkage is
conceptually simple and it allows the compiled codei for referencing
formal parameters in the body of a procedure to be identical to
the compiled code for referencing other local variables. This,
in turn, will probably enhance certain optimization opportunities
for SETL. For example, common expressions involving formal
parameters and external variables can be factored. ThAt they _
cannot always be factored for other type·s of linkages is illus
trated below, where the common expression is "y+l".

Case 1. Shows "call by

value" is required.

sub(a,a);

define sub(x,y);
X=y+l;
g=y+l;

• . .

Concluding remarks

- 19 -

Case 2. Shows "delayed
argument return" is also

required.
define main;

.
•

sub(y);
• . .

define sub(x);
main external y;

x=y+l;
g=y+l;

Based on this look at LITTLE as a target language for
SEI'L, it appears that the target language should compile sub
scripting references as efficiently as possible. A reference
to D(P+i), where i is a constant, should compile without an
explicit addition for the "+1". It would also be helpful if
a ref~rence to P(i) were just as efficient as a ref,erence to
a non-subscripted variable. Then the variables Pl, P2, .•• would
instead be P(l), P(2), ••. , which form is more convenient for
the garbage collector.

The addition of an EQUIVALENCE statement might accomplish

this, as the compiler could generate the statement:

EQUIVALENCE (Dl,D(l)), (D2,D(2)), (D3,D(3)), ••• , and then
reference D(P+l), D(P+2), etc., as D2(P), D3(P), etc.

It will also help if LITTLE is capable of assigning a
ubiquitous variable such as P to a register, particularly since
it is most often used as a subscript. For our purposes, it would
be adequate if it were possible to explicitly instruct LITTLE
to keep a variable in a register, by supplying a statement such as
REGISTER P. This type of problem is compounded on the System/360,

- 20 -

as on that machine one really wants to keep 4*P in a register.
A better approach than indexing for referencir~ dynamic

storage would be to add to LITTLE a capability simi.lar to the
STRUCTURE statement of the IBM S;ystem/360 FORTRAN IV (H)
compiler (reference IPM form Y28-6642 Appendix J: F'acili ties
Used by the Compiler). This feature is similar to the PLII
BASED attribute, but simpler. It is not necessary to introduce
the "address" as a data type. Integers suffice, and this in
turn means that arithmetic can be done on the addreiss values,
which is often desirable. It is a simple matter to generate
efficient code for referencing structured variables. There is
no addition as indexing normally implies, and therei is no
multiplication by four on the System/360.

_ It will be helpful if LITTLE eventually can compile

in-line code for simple operations on floating point numbers
and variable length strings.

Another feature that would be of value is the ability to
handle procedure calls with a variable number of arguments
(with no predetermined limit). This would be used for
[a, b, c, •• •J and <a, b, c, ••• >, for example.

It may be more reasonable to use FORTRAN as a target language,

rather than LITTLE. Some of the pros and cons are listed below.
Advantages of FORTRAN over LITTLE:
1. FORTRAN is already running and debugged on the machines

likely to be of interest to SETL.
2. FORTRAN is more familiar than LITTLE, whic:h simplifies

local SETL installation and maintenance.

_3. It would probably be easier to ·transport SETL, as
hand-coding a few field extraction routines may be easier than
defining a complete "machine block".

4. Most FORTRAN compilers will probably be quite fast in
compiling and will probably generate good code (particularly
of value for subscripting).

- 21 -

5. Miscellaneous features such as the assigned GO TO,

EQUIVALENCE, and ENTRY (of FORTRAN IV, which w0uld be heavily
used in library routines) will no doubt be found helpful.

6. Some FORTRAN compilers already hRve a fair amount of
global optimization. If we could rely on this, thein we would
be free to concentrate on the optimization problems that are
more or less uniaue to SETL, such as the copying ~roblem and
the various representations of sets.

Advantages of LITTLE over FORTRAN:

1. In~reased machine independence.
2. In-line field extractions.
3. Local control of the design of the language (of course,

this is also a burden, but it's nice to know that we can add the
STRUCTURE statement if we really need it).

4. Probable gain iq efficiency in subroutine linking
(due largely to the name-scoping of LITTLE).

define illustrate;
a= f(l);
return;

definer f(x);

external e;

e = x+l;
a= 2;

y = f(3);

return 4;
end f;

end illustrate;

- 22 -

APPENDIX

Illustrative SETL Program

Fixed
Storage

0 1

1 e

2 2

3 3

4 4

5

6

7

8

Main
Routine

5

0

0

l(Ll)

0

- 23 -

Subroutine
"Illustrate"

7

arg(1)

a

Function
"f II

9

arg(3)

X

a

y

Data Storage (fixed and stack) for

Illustrative SETL Program

size

P save

Pi save

return point

sinister flag

- 24 -

LITTLE Code Resulting from Compilation of the

Illustrative SETL Program

COMM SETL LIBRARY. CMND. ,

COMM

The complete library (PLUS, LESS, etc.) i.s inserted here.

SUBR CMPCODE .• ,
Size declarations for non-"common" variables.
COMPILER-SUPPLIED MAIN ROUTINE. CMND.,
DATA Il=O/I2=0.,

CALL DINIT.,

P=STACK(5).,
D(P+l)•O.,
D(P+2)=0.,

Pl=STACK(7).,
D(Pl+2)=0.,
P2=STACK(9).,

D(P2+2)=0.,
PD=P2+9.,
DIMS GLIST(2).,
GLIST(l)=Pl.,
G LI ST (2) = P2 • ,

DATA GLISTSZ=2.,

Preset invocation counts.

Initialize dynamic storage.

Allocate 5-word environment block.
Clear "p save" locati.on.
Clear "Pi save" location.

&t~e level allocation.

Clear Pi save location.
Base level allocation.

Clear Pi save location.
Set pointer to dynamic stack area.
Garbage collection 11st.
Tell garbage collector where

base level allocations are.

COMM CALL MAIN SETL PROCEDURE. CMND.,

/Ll/

D(P+3)=1., Store return point (Ll).
D(P+4)=0., Turn off sinister flag.

GO TO L2.,
CONTINUE.,

Go to main SETL routine.

RETURN., To operating system.
/SWITCH/ GOBY S(Ll,I2,L3,L4,L5,L6,L7,L8,L9).,

- 25 -

COMM define illustrate; CMND.,
COMM PROLOGUE FOR "illustrate". CMND.,

/L2/ IF (Il .EQ. 0) GO TO L3., Branch if not a recursive entry.

/L3/

TEMP=STACK(7)., Allocate an environment block.
D(TEMP+2)=Pl.,

Pl=TEMP.,

Save Pl.

Set new value of Pl.

Il=Il+l., Increment invocation count.

D(Pl+l)=P., Save P.

P=Pl., Set new value of P.
COMM BODY

COMMa
OF MAIN SETL ROUTINE. CMND.,

a=f(l); CMND.,

D(P+3)=4.,

D(P+4)=0.,

D(P+5)=COPY(FO).,

/L4/

COMM

GO TO 'I.E.,
CONTINUE.,
D (P+6) =RESULT. ,
return_; CMND.,

Store return point (r,4).

Turn off sinister fla.g.

Set argument for f.

Go to f.

Move result to "a".

P=D(P-t:l)., Pop up caller's environment.

Il=Il-1., Decrement invocation count.

IF (Il .EQ. 0) GO TO L5., Branch if non--recursive entry.

Pl=D(P1+2).,
PD=PD-7.,
S=D(P+3).,
GO TO SWITCH. ,

Restore Pl.
Free environment block.

Get return point index.

Return.

COMM definef f{x); CMND.,

COMM

IT.El
Prologue for routine

IF (I2.EQ.O) GO
TEMP=STACK(9).,
D(TEMP+2)=P2.,
P2=TEMP.,

f. CMND.,

TO L7., Branch if not a recursive entry.
Allocate an environmemt block.
Save P2.
Set new value of P2.

- 26 -

/L7/ I2=I2+1., Increment invocation count.
D(P2+6)=COPY(D(P+5))., Get argument x.
D(P2+l)=P., Save P.
P=P2., Set new value of P.

COMM Body of procedure "r". CMND.,

COMM external e; CMND.,

COMM e=x+l; CMND.,

Fl=PLUS(D(P+6),FO).,
COMM

COMM

COMM

a=2; CMND.,
D(P+7)=COPY(F2).,
y=f (3) ; CMND.,
D(P+3)=8.,
D(P+4)=0.,
D(P+5)=COPY(F3).,
GO TO L6.,
CONTINUE.,
D (P+8) =RESULT. ,
return 4; CMND.,
RESULT=COPY(F4).,
P=D(P+l).,
D(P+5)=D(P2+6).,

or "D(P1+6)=COPY(F2)"

Store return point (LB).
Turn off sinister flag.
Store argument (3).
Go to procedure "r".

Move result to "y".

Set value of function.
Restore caller's environment.
Pass back parameter x.

I2=I2-l., Decrement invocation_count.
IF (I2 .EQ. 0) GO TO L9., Branch if non-recursive entry.

IL91

P2=D(~2+2).,
PD=PD-9.,

S=D(P+3).,
GO TO SWITCH. ,

COMM end f ; CMND. ,

Restore P2.
Free environment block.
Get return point index.
Return.

COMM end illustrate; CMND.,
END.,

