
SETL Newsletter Number 55
SETL suggestions and nuestions

September 29, 1971
S. Finkelstein

1. Initialization can be useful for the compound operator.

Possible format:

[_2E_: x Cs, initexpr]e(x)®

which is initexpr .2E. e(x1) _£E. ••• £E_ e(xn) where s is [x1, ... ,xnf •

The code eouivalent of y=[~:x s,initexpr]e(x) is

y=initexpr; (Vx E set)y=y .2E. f(x); end \/x;
The original option should, in any case, be retainE,d.

Besides being useful in situations where obvtous helpful
initializations exist {e.g., [+:x E set,O]e{x) for summation~,
[*, x € set, l] e{x) for products) this form is some~rhat advan­
tageous where

i ~~is not commutative;
11 - e{x) is not precisely the same sort of object as the

result of the op.
For example, if a is a set and sis a set of sets

a. - [+:x €:: s]x

is better rendered as

[-:x €, s,a]x.

A better example is the use of the SHARP function (pages 5, 9 and 11
of my "minimization of boolean functions" paper), which is greatly
simplified by the revised compound operator described above.

2. The V header should have the same "doing" clause option
as -the -while-head-er. - Pos-si-bl-e-format: - - - - - - - -

~f m:r: ;e:e~a~l; ~o;,:l ~-e:,:2 -€-e:(:
1

~, ~. ~ ,:n ~-e:/:1~ • ~ • ~x:_-l)

c(x 1 , ... , xn), ini te!xpr]

- 2 -

(\/x1 G sl'x2 £ s2 (x1), ••• ,xj € s_j(x1, ... ,x.~1: 1)do1ng block,

••• , xn C sn(x1,···,xn:1))

where block would be performed after each time the value of xj
is changed (but not after it first receives a valuE~ from sj).

A doing clause may be included for each of the x j 'El in the same

header.

3. Wherever one can speak of x E' s, x restricted to variable
names (e.g., V headers, set formers, compound operELtors, r,uan­
tified boolean expressions) ;x should be permitted to be any

legitimate expression that can appear on the left side of an

assignment statement. The effect would be to take whatever x
is and set it eaual to the member of s that ordinary would simply

be put in the variable. Thus

(V <left, right>€,, set)

is the same as

(Vx € set) <left,right>=x;

4. The "when" clause in the "doing" clause is objectionable
because:

a. - The word "when" is misleading: "unless" would be better.
b - The "when" clause itself is exceedingly superfluous

since (while c1 when c2) cE!_n be replaced by (while c1 and ~ c2)

or, more simply (while c1 - c2)
Caveat: A little extra shuffling.is renuirecl under cir­

cumstances which indicate that c2 may be undefined if c1 is
not true.

5. Suggestion for a possible 3 header

(J x € set) block end 3 x;

- 3 -

meaning the same as

copy= set; (while copy~ nl) x from copy;
block@ end while copy;

where by bloci®we mean block with every reference to set

replaced by a reference to copy.
Generalizations would exist as with (\ix €..set); the

two could even be in the same header.

6. If x is not a variable name and f is a 1-a.rgument programmer­
defined or built-in function then if f changes its argument the
statement

y = f(x)

will, at present, cause an error condition to be raised. If

x is a legitimate expression for the left side of an assignment

statement there is an obvious (subject to an exceptional c~se
discussed below) possible legal meaning to that st1:3.tement -
namely x is set eoual to whatever f puts in its argument a.s if
an assignment statement were involved. Similarly, of course,

subroutines can be altered.

This would legitimi?e such statements as:

<A, B> IN P(K):

A[x} FROM S;

Y = <A, B> IS F(X);

(where P is a set of tupl,es)
('\A,here S is a set)
(where F is a set of tupl,es)

}gcceptional case: What should Y=F(A,P(A)); mean if F changes
its arguments (i.e., which A should be used when a value is
assigned (upon F's return) to P(A), the original A or the
value F returns to its first argument)? The answer to this
auestion should probably depend on how the compiler will gen­
erate code to send F the values of A and P(A).

- 4 -

Question: Right now how is the comparable problem of the

assignment statement

<A, P (A) > = B ~

handled?

7. The same notations

t(i:j), t(n:)

(but not t 1+t2, which has another meaning) should be available

for seauences as well as for tuples. Also, it seems more rea­
sonable for j in t(i:j) to be the last index desired rath~r
than the number of indices desired starting from i.

8. Is the statement

X = <[A),B>;

now legal? It would mean

Similarly x = <[A], [B]>; would mean

x = [<P, Q.>, PE A, Q6 B};

What about the legality of

<[A],B> = x; meaning
A = HD [X] ; B = TL X:

If not, just what are the limitations of the snuare brackets?
If so, should this be explicitly mentioned? This may be rel~ted
to 6 - how about

x IN [A]: meaning the same as

A= [A)+ x;

- 5 -

9. What about allowing the statements

B = TL[x]; (x a set of tuples)

to be generalized so that we can obtain (say) the set of
5th components of the tuples in x, or the set of tuples
containing the 4th through 9th components of the tuples
in x. (HD gives all the 1st components~ TL gives the 2nd'

through the tuple' s length.) For instance, x [i: ,i] could mean

[t(i:j),t € xJ
and similarly for x[i:]. Of course to get 5th components (say)
x[5] is unsatisfactory, as is x[5:5].

10. If it were possible to get them without putting SETL into
convulsions, pointers of some kind would be good t<> have.

