
SETL NEWSLETTER 56 September 29, 1971

Additional Comments on Some Basic SETL Operations Jay Earley

Infinite Sets and the Set Formers

The basic point of this note is to argue against the idea

of ruling out syntactically a whole class of constructs because

some of them are unrealizable. The classes of constructs of

this sort which are currently ruled out in SETL are infinite sets,

and a more general form of the set former.

In the case of an infinite set, the only operation which

cannot be performed to completion on it is the iterator, and even

this can be allowed if there is a branch out of the loop at

some point.

intersection

Of course, many operations such as union and

may be little used on finite sets and difficult

to implement (because one will not be able to keep around a

data structure representing the entire set). But some operations

such as testing for set membership will often be easy to

implement and will be used frequently enough. These will come

up especially in what is sometimes called type checking.

In a set theoretic language, very often the declared domain

of a variable or tuple will not be a type, but rather a more

complicated set such as

(1) all square arrays of reals

(2) all binary one-to--one relations on blank atoms of type X

(3) all integers or sequences

One would like to be able to express these domain restrictions

in exactly the same language that one uses for computation.

In order to allow infinite sets we need two things:

(1) We should al low types to specify sets. That is, "INTEGER 11

is a set, and therefore II INTEGER 1.. 1 SEQUENCE" is a set, ctc.

(2) We need a more general form of the set former, that is

SETL 56-2

This, however, would have an even more important advantage.

Not only would one be able to use infinite sets, but he would

in some cases be able to use more natural forms for specifyinq

finite sets. I have frequently written set formers in the

following (currently illegal) form:

slexpression containing xi =
and/or x. c f{y} i

l

f. (y)
l

= 1, ... , n}.

This is straightforward to implement and produces a finite set

if Sis finite. It can be rewritten

g (E 1 (x 1) , ... , En (xn))

where E.(x.) is either "f.[S]" or "[f.{[S)}]"
l l l l

However, some of these forms I have written are incredibly

distorted when written under the current syntax.

Now, of course, the question arises, how do we handle this

case of allowing syntactically constructions which we can't

implement. I propose the following: The most general forms

should be allowed. If they are used only in ways (such as

membership testing) which can be implemented, then everything

is fine. If one of them is used in a way which cannot be

handled an appropriate message is given and the user can

rewrite it. The manual for the language should specify these

forms which are guaranteed to work in all situations, so that

the user may stick to these if he likes. This makes him.no

worse off than now. In addition the manual should specify as

closely as possible which additional forms the compiler currently

accepts under which situations.

There are two additional advantages to this scheme:

(1) A user who is using SETL as a specification language only

(that is, he is not intending to execute program) can

specify certain things which are useful and finite but which

no current compiler will hope to implement. For instance he can

define a context free grammar and what strings are in the

language defined by the grammar using a few set formers.

Of course, he can't hope to execute a membership test: and have

SETL 56-3

the compiler produce a parser for him, but he has at least

the ability to specify (in a well defined programming language)

the set he wants.

(2) New horizons are opened up for doing further work

toward implementing (and optimizing) some of these more

difficult set formers. The meaning is well-defined

and it is a matter of devising an implementation.

Ruling them out of the syntax entirely cuts off this

possibility.

The following is an example SETL program which uses the

general form of the set former which I propose. The forms

I have used in fact fit the one specific form which I

mentioned above. The program is for a context-free parser

which is described in my paper [1). This program performs

the function of the recognizer in the paper without including

the look-ahead feature. The data structures I have used,

and the notation mirror those in the paper very closely,

so I shall not describe them here. Warning: this is a

somewhat different representation than that used by J. Schwartz

in his description of nodal span parsing, so a familiarity

with my paper is probably necessary to understanding the algorithm.

DEFINEF REC(INPUT,N),

EXTERNAL ROOT PROD, G;

DEFINEF ALT(N), RETURN {pc PROD(G) /DEF(P)=N}; END ALT;

SS= NL

SS(0) = {<ROOT PROD,0,0>};

(0 < VI < N)

SS(I) = SS(I) \ . .'* {<Q,0,I> / ~<P,J,-> c SS(I)

Q c ALT(P(J+l))}

u* {<Q,L+l,G> I 3 <P,#P,F> E:: ss(Il

3 <Q,L,G> c SS(F) / Pc ALT(Q(L+l) l l:

SS (I+ 1) = { < P , J + 1 , F > l] < P , J , F > c SS (I) / P (J + l) = INPUT (I) J ;

IF SS (I+l) = NL THEN RETURN FALSE;;

IF SS(I+l) = {<ROOT PROD,2, 0>} THEN RETURN TRUE;;

END VI;
END REC;

SETL 56-4

I have taken two liberties with SETL in addition to

using the more general set former. These are partly

to make the algorithm clearer, and partly because I believe

they should be included in SETL.

(1) One may write "{<a,-,b> E: S I P(X) }" where the "-" means

that we don't care what the second element is, or that we mean

all second elements. This is also allowed in the "3" and "\J"
forms.

(2) There is a new operator v*, which is essentially the tran

sitive closure of union. In the expression "A u* B" , we

first take the union of A and B. If this is larger than A,

we take its union with B again, and repeat the process until

the new union is the same as the old. Normally, of course,

B will be a set former which includes A in its definition.

Note that the above is a definition of u *, and not necessarily

the way it must be implemented. Notice also that this program

for the algorithm is actually more concise and contains fewer

loops than that in the paper. This is because of the u* operator

and the set former.

[1) J. Earley, "An efficient context-free parsing algorithm,"

Comm. ACM Jan. 19 7 0.

