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Additional Comments on Some Basic SETL Operations Jay Earley 

Infinite Sets and the Set Formers 

The basic point of this note is to argue against the idea 

of ruling out syntactically a whole class of constructs because 

some of them are unrealizable. The classes of constructs of 

this sort which are currently ruled out in SETL are infinite sets, 

and a more general form of the set former. 

In the case of an infinite set, the only operation which 

cannot be performed to completion on it is the iterator, and even 

this can be allowed if there is a branch out of the loop at 

some point. 

intersection 

Of course, many operations such as union and 

may be little used on finite sets and difficult 

to implement (because one will not be able to keep around a 

data structure representing the entire set). But some operations 

such as testing for set membership will often be easy to 

implement and will be used frequently enough. These will come 

up especially in what is sometimes called type checking. 

In a set theoretic language, very often the declared domain 

of a variable or tuple will not be a type, but rather a more 

complicated set such as 

(1) all square arrays of reals 

(2) all binary one-to--one relations on blank atoms of type X 

(3) all integers or sequences 

One would like to be able to express these domain restrictions 

in exactly the same language that one uses for computation. 

In order to allow infinite sets we need two things: 

( 1) We should al low types to specify sets. That is, "INTEGER 11 

is a set, and therefore II INTEGER 1.. 1 SEQUENCE" is a set, ctc. 

(2) We need a more general form of the set former, that is 
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This, however, would have an even more important advantage. 

Not only would one be able to use infinite sets, but he would 

in some cases be able to use more natural forms for specifyinq 

finite sets. I have frequently written set formers in the 

following (currently illegal) form: 

slexpression containing xi = 
and/or x. c f{y} i 

l 

f. (y) 
l 

= 1, ... , n}. 

This is straightforward to implement and produces a finite set 

if Sis finite. It can be rewritten 

g ( E 1 ( x 1) , ... , En ( xn) ) 

where E.(x.) is either "f.[S]" or "[f.{[S)}]" 
l l l l 

However, some of these forms I have written are incredibly 

distorted when written under the current syntax. 

Now, of course, the question arises, how do we handle this 

case of allowing syntactically constructions which we can't 

implement. I propose the following: The most general forms 

should be allowed. If they are used only in ways (such as 

membership testing) which can be implemented, then everything 

is fine. If one of them is used in a way which cannot be 

handled an appropriate message is given and the user can 

rewrite it. The manual for the language should specify these 

forms which are guaranteed to work in all situations, so that 

the user may stick to these if he likes. This makes him.no 

worse off than now. In addition the manual should specify as 

closely as possible which additional forms the compiler currently 

accepts under which situations. 

There are two additional advantages to this scheme: 

(1) A user who is using SETL as a specification language only 

(that is, he is not intending to execute program) can 

specify certain things which are useful and finite but which 

no current compiler will hope to implement. For instance he can 

define a context free grammar and what strings are in the 

language defined by the grammar using a few set formers. 

Of course, he can't hope to execute a membership test: and have 
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the compiler produce a parser for him, but he has at least 

the ability to specify (in a well defined programming language) 

the set he wants. 

(2) New horizons are opened up for doing further work 

toward implementing (and optimizing) some of these more 

difficult set formers. The meaning is well-defined 

and it is a matter of devising an implementation. 

Ruling them out of the syntax entirely cuts off this 

possibility. 

The following is an example SETL program which uses the 

general form of the set former which I propose. The forms 

I have used in fact fit the one specific form which I 

mentioned above. The program is for a context-free parser 

which is described in my paper [1). This program performs 

the function of the recognizer in the paper without including 

the look-ahead feature. The data structures I have used, 

and the notation mirror those in the paper very closely, 

so I shall not describe them here. Warning: this is a 

somewhat different representation than that used by J. Schwartz 

in his description of nodal span parsing, so a familiarity 

with my paper is probably necessary to understanding the algorithm. 

DEFINEF REC(INPUT,N), 

EXTERNAL ROOT PROD, G; 

DEFINEF ALT(N), RETURN {pc PROD(G) /DEF(P)=N}; END ALT; 

SS= NL 

SS(0) = {<ROOT PROD,0,0>}; 

(0 < VI < N) 

SS(I) = SS(I) \ . .'* {<Q,0,I> / ~<P,J,-> c SS(I) 

Q c ALT(P(J+l))} 

u* {<Q,L+l,G> I 3 <P,#P,F> E:: ss(Il 

3 <Q,L,G> c SS(F) / Pc ALT(Q(L+l) l l: 

SS ( I+ 1) = { < P , J + 1 , F > l ] < P , J , F > c SS ( I ) / P ( J + l ) = INPUT ( I ) J ; 

IF SS (I+l) = NL THEN RETURN FALSE;; 

IF SS(I+l) = {<ROOT PROD,2, 0>} THEN RETURN TRUE;; 

END VI; 
END REC; 
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I have taken two liberties with SETL in addition to 

using the more general set former. These are partly 

to make the algorithm clearer, and partly because I believe 

they should be included in SETL. 

(1) One may write "{<a,-,b> E: S I P(X) }" where the "-" means 

that we don't care what the second element is, or that we mean 

all second elements. This is also allowed in the "3" and "\J" 
forms. 

(2) There is a new operator v*, which is essentially the tran

sitive closure of union. In the expression "A u* B" , we 

first take the union of A and B. If this is larger than A, 

we take its union with B again, and repeat the process until 

the new union is the same as the old. Normally, of course, 

B will be a set former which includes A in its definition. 

Note that the above is a definition of u *, and not necessarily 

the way it must be implemented. Notice also that this program 

for the algorithm is actually more concise and contains fewer 

loops than that in the paper. This is because of the u* operator 

and the set former. 

[1) J. Earley, "An efficient context-free parsing algorithm," 

Comm. ACM Jan. 19 7 0. 


