
SETL Newsletter 56A

More Comments on SETL

Types

October 6, 1971

Jay Earley

In a set-theoretic language much of the work currently done

by types can be handled by the set mechanisms already in the

language. For instance, what is generally known as "type

checking" could really better be called "domain checking".

It is checking to make sure that the values of variables,

parameters and outputs of subroutines, and values in data

structures fall within certain declared classes of objects.

These classes do not have to be types; they can simply be sets,

if infinite sets are allowed in the language. This allows

much greater latitude and requires fewer special type construc­

tions. An object has only one type, but it may be a member of

many sets. This kind of construction will allow us to check

that the domain of a particular variable is any of the

following:

(1) an integer > 0

(2) an integer I, 1 < I < N

(3) an integer or a string

(4) a particular set Sin the program.

Now, if sets can be used in place of types for type checking,

what role do types play? Each object in the system has one type

associated with it. The typing serves to divide the value

space of the language into disjoint subsets which can then be

used for a number of valuable functions:

(1) They are a starting point for the domain checking which

is mentioned above because each type is also a set.

(2) They provide the compiler with information to hE~lp

in implementation.

(3) They give the programmer the ability.to add declarative

information concerning

(a} debugging and error conditions -- see "Conditions

on sets" in Newsletter 52 and proposal below.

(b) what access paths are available on a given type of

data structure -- see Section II.Din [l], and

SETL 56A-2

proposal below.

(c) representation of data structures -- see the

implementation facility description in [2].

(4) The same operator or programmer defined routine may be

used for different purposes on different types.

The following is a proposal for the type mechanism in a

language similar to SETL. One declares the type of a tuple

by specifying the number of its elements and the domain

of each, for example:

COMPLEX IS <REAL, REAL>

In addition, the programmer may want to specify names of

functions which access the components of the tuple, for

example:

COMPLEX IS <REAL_PART c REAL, IMAG_PART c REAL>

Then he can use these names conveniently to refer the parts

of the tuple in an unordered way, see "Tuples" in Newsletter 52.

One declares the type of a set by giving its domain, for example:

LOOK AHEAD IS {TERMINAL v LOOK AHEAD}

MATRIX IS {<INTEGER, INTEGER, REAL>}

In addition, following the proposal "Conditions on sets"

in Newsletter 52, one can attach a predicate to a set type

declaration which specifies a condition which the set must

satisfy. For instance, we can specify the set of all square

matrices using a set-former-like notation as follows:

SQ MATRIX IS {M = {<INTEGER, INTEGER, REAL>}!

::I LIMIT c INTEGER I 1 < VI _.:. LIMIT I 1 < VJ < LIMIT I
#{<I,J,-> c M} = l}

One may also parameterize such declarations as follows:

SQ MATRIX(L) IS {M = {<INTEGER,INTEGER,REAL>}I

1 ..:5 \I I < L I 1 ..:5 VJ ..2 L j # { <I , J, Rl > c M} = 1}

SETL 56A-3

We can then declare specific square matrices, such as

Ac SQ MATRIX(l0)

or create them at run time,

F(A) = SQ MATRIX(I)

Perhaps the best way to handle the parametrized types is to

make them simply functions which return a type as a value.

This means, of course, that there should be objects of type

"type" and type expressions allowed in the language. I do not

present specific details here.

As a more complete example, we present here the type

declarations for the algorithm given in Newsletter 56. First

we declare a general form of sequence:

SEQ(T) IS {s = {<INTEGER,T>} I 3 LIMIT c INTEGER I
0 2 v'I -2 LIMIT J # {<I,-> c S} = 1}

The type declarations are then

PROD IS SEQ(STRING)

DEF IS {<PROD,STRING>}

STATE IS <PROD,INTEGER,INTEGER>

STATESET IS, {STATE}

We could have provided more information about STATE's as follows:

STATE IS {<pc PROD, NEXT c INTEGER, ORIG c INTEGER>J

NEXT < #P AND ORIG < N}

Notice that this declaration gives us the ability to refer to

the elements of a state by name (we didn't use this in the

algorithm); i.e., if Sis a STATE, we can talk in terms of

P(S) NEXT(S) ORIG(S)

The declarations for variables and parameters are then

INPUT c SEQ(STRING)

N c INTEGER

SS€ SEQ(STATESET)

ROOT PROD c PROD

SETL 56A-4

Replace the reference to "PROD(G)" in Newsletter 56 to

"PROD'' and delete the declaration of Gin order to make it work

with these declarations. That was a mistake which I didn't

detect until I wrote the declarations. This illustrates another

one of their values.

There is an additional feature which is useful in connection

with types. That is the ability to have a particular function

perform different ways depending on the domains of its arguments.

For example, when we define a function, we can specify domains

for its arguments as follows:

DEFINEF F(A c INTEGER, B c STRING); bodyl;;

This normally means that if Fis called with actual parameters

of the wrong kind, it is an error. However, we can provide a

second definition of F, i.e.

DEFINEF F(A c INTEGER, I c INTEGER); body2;;

This then means that if the parameters of Fare both INTEGER's

we use body2 instead of bodyl.

This has a number of uses. Let's return to an earlier

example. We have a type

LOOK AHEAD IS {TERMINAL U LOOK AHEAD}

We might want to define what it means for two members of such

a set to "match" as follows:

DEFINEF MATCH(A C TERMINAL, B C TERMINAL); RETURN A = B; ;

DEFINEF MATCH (A E; TERMINAL, B c LOOK AHEAD) ; RETURN A C B;;

DEFINEF MATCH(A c LOOK_AHEAD, B c TERMINAL) ; RETURN B e A;;

DEFINEF MATCH(A c LOOK_AHEAD, B € LOOK AHEAD) ; RETURN A f\ B =

This would be quite cumbersome to write using IF statements.

Another important use of this feature .is in what I cal 1 an

"implementation facility". This would essentially allow the

programmer to specify how certain types of sets or tuples are

to be implemented by rewriting the primitives on these types

as programmer defined functions written in terms of lower-level

sets and tuples. In order to do this one needs to be able

NL;;

SETL 56A-5

to add new function definitions for existing primitives in

the language which apply only when those primitives are called

with certain types as operands. See [2] for examples and

details in the context of VERS.

[1] Earley, J. and Caizergues, P.

VERS Manual, Computer Science Dept.,

University of California, Berkeley, 1971

[2] Earley, J. Towards an Understanding of Data

Structures. Comm. ACM Oct. 1971.

