
SETL Newsletter Number 60
SETL Compiled Code:
Calls to SETL Procedures

General

November 4, 1971
H. S. WarrEm

This newsletter presents a proposed linkage mechanism
to be used to invoke a SETL subroutine or function. Newsletter
53 is followed in a very general way, but much of the detail
is changed.

The type of linkage proposed is call by valuE! with delayed
argument return. Although this type of linkage is logically one

of the simplest, there are two points that should be brought to
light. Both have to do with the altering of formal parameters
by the called procedure: (1) what value is an argument (i. e.,
actual parameter) to receive if it occurs more than once in an
argument list, and (2) what is to be the effect if the called
procedure changes a variable that occurs in an argument expression?

Both cases are illustrated by:

sub (i, i, a (i)) :

The calling s~ou~nce to
assignments in left-to-right
i=2 and a(2)=3.

define sub(x,y,z):
x=l:y=2:z=3: return~
end sub:

be described performi::t the
order. Thus after the above call,

_ It is suggested that any expression that is valid as the
left-hand side of an assignment statement be a val:Ld value
receiver in an argument list, e. g, sub (~[a}, <b, c>) ,, The following
expressions would then not be valid value recei ver:s: 1, x+y,
x+O, (x), +x. Expressions such as these would be valid as argu.
ments that normally receive values, but· the value of the formal
parameter upon return would be ignored.

- 2 -

The calling seauence to be described is, however, indepen
dent of what kinds of expressions are valid value receivers.

As many as possible of the procedure linkage steps are
usually placed in the prologue of the called procedure, because
this minimizes the total program size (under the assumption that
the procedure may be called from several points), and because
steps that are dependent upon the characteristics of the called
procedure then tend to be in the called procedure, which facili

tates independent compilations.

The approach taken here, however, is oriented toward enhan
cing the execution speed gains that can be achieved with an opti.
mising compiler. The type of optimiser in mind is one that can
detect and eliminate 11 dead" expressions, can remove constant
expressions from loops, etc. It is assumed that the optimiser

cannot trace flow paths across procedure boundaries, but it does

know which items are global, and it may also have a rough idea
of how the global items are used in a called procedure (e.g., live
on entry, dead on entry, or not used at all).

In the design described here, almost all link.age steps
are placed at the point of the call. This is to allow the execution
speed optimisation of calls that occur within loop_s, or "implied

loops", such as the call to f in "S=[X [A/ f(x) ea yf'. The
resulting calling seauence is rather large (23 + 3n. LITTLE
statements for a dexter recursive function call, where n is the
number of arguments), but it ca.n be trimmed down to, some extent
by various optimisation techniaues.

Befo~e discussing the calling seouence in detail, the format
of the run-time stack will be reviewed •.

. 3 -

Environment Blocks

Certain features of the run-time stack and its partitions,
or "environment blocks", have been changed from what is described
in newsletter 53. The environment blocks are not a.lways chained
together. The garbage collector's marking phase consists of a
linear scan over the stack, without regard to block boundaries.

- i
Any non-SETL objects stored in the stack are coded in such a
way that they look to the garbage collector like 11 :short" i terns
(i.e., data items that do not point to data in the heap).

Li

Di

The format of an environment block is shown below.

Local variables that i These variables must be
may be used before ~ initialized to..rLwhen the

·•·-·•· ·-~

set (live on entry)
1

environment bl1:>ck is allocated.

r.., ,....__

Local variables
are set before
used (dead on
entry)

Formal Parameter
··---- ·- ----·-

•
• .

·--··--- .. --~-
Formal Parameter

n

1
--···----····-·······--

0 Bi save location

0 TRES save location

0 B save location

SI Return index

SK Di

These items need not be
initialized torL when the
environment block is allocated.

Sinister flag (0 or 16),return
point.
Skip flag (0 or 17), Di.

- 4 -

The first word of the environment block will be explained
later.

The second word _contains a dexter/sinister flag and the
return point. These au anti ties are planted in a ca.lled procedure's
block by the calling procedure. This word looks to the garbage
collector like either a short integer or an undefined atom.

The third word contains the value that B had just before
the call. As will _be seen later, code optimisation may eliminate
its use. It is reouired, however, in the case of a. procedure
that calls itself.

The next two words are save areas for a "reserved" pointer,
which will be explained later, and the pointer to the environment

block of the called procedure that was active just before the call.

The next n words contain the root words of the arguments.
Like the return point, these are planted in the called orocedure's
block by the calling procedure.

The remainder of the environment block contains the proce
dure's local variables, separated into two classes Land D.

Class L consists of those local variables tht:Lt are 11 11 ve
on entry" to the procedure~ that is, there exists EL path (appar.

ently) fr-om the procedure's entry to a use of the variable that
does not contain an intervening "set" or "definition" of the
variable. These variables:

(1) must be initialized to .fL when the environment block
is allocated, and

(2) must be retained in the base level environment block
even when the procedure is inactive.

Point (2) refers to the fact that the garbage collE,ctor will
make a linear pass over the stack, and will encounter the base
level environment blocks of all procedures, whether· they are

active or not. In the marking phase, the garbage eollector must
trace through the heap for all items in class L, so that the

space will not be collected.

- 5 -

Class D consists of those local variables tha.t are "dead
on entry" to the procedure: that is, every path frc1m the procedure
entry results in a set before a use. These variables:

(1) need not be initialized when the enviror.~ent block
is allocated, and

(2) need not be retained in the base level emvironment
block when the procedure is inactive.

The first word of the environment block will be referred
to as the "garbage collector skip word". This word contains a
"skip flag" and a count of the number of D-variableis, plus th~
number of formal parameters, plus 5. It is used only in base
level environment blocks. The skip flag is set to zero when
the procedure is active, and to 17 (an unused type code value)
when the procedure is inactive. To the garbage collector, the

skip word looks like a short integer when the flag is zero,

and the word is then ignored. The garbage collector interprets
a code of 17, however, as a signal to skip ahead in the stack
by the number of words given. Thus when the p:r:oc~clure is inac
tive, the heap locations corresponding to dead-on-eixit variables
and the formal parameters are not marked, and they will be
reclaimed.

The initial SETL compiler, which will not have any live
dead analysis, might put compiler temporaries in the D area, .
and all other local variables in the L area. Then, when live
dead analysis is added, it will probably be found that the great
majority of the local variables can be assigned to the D area.

To review, the advantages of being able to aE;sign a variable
to the D area are that (1) procedure calls are faster because
there is less initializing to../1., (2) garbage collE~ction is faster
because fewer words in the stack are examined, and (3) garbage
collection is more effective because the space occupied by more

dead variables is reclaimed.

- u -

Reserving Stack Space

When a procedure is called
allocated on top of the run-time
variables, etc. Normally (or at

recursively, space must be
stack for its arguments, local
least in PL/I), a procedure

allocates its own space using code contained in its prologu~.
In the calling seauence to be described, however, the space
reserving step is moved back to the point of the call. This is
necessary so that arguments and the return point may be planted
by the calling procedure.

Fur~herm?re, the amount of space reserved is enual to the
amount reouired for the largest environment _block of all ca.lled
procedures. This is done so that the space-reserving step, which
might be something like "CALL RESERVE(l08).," in a typical
procedure, will be exactly the same for all occurrences in the
same procedure.

Finally, the space-reserving step is done before the run-time
test to see if the call is recursive.

Now if the optimising compiler is informed that the RESERVE

library routine has the property that in two succee:sive calls,
the second is a no-operation, then the compiler may move the
RESERVE steps to more nearly optimum nodes in the program.

For example, consider the following program:

Entry

1

6 l

h I

8

Return Return

- 7 -

The unoptimised code would have calls to the RESERVE
routine in the calling sequences to f, g, and h. ~~he optimiser
can then delete the RESERVE for the call to g, as :1. t always
follows the one f'or -r. Then the RESERVE's can be moved from
node 3 to node 2, and from node 7 to node 6. It we>uld probably
be best not to move the RESERVE's back to node 1, c:ombining them
(to save space), becaus~ then the program would be worsened

i

for the path Entry-1-5-Return, which might very well be the
most common path.

It should be pointed out that the above treatment does
worsen some programs, because the RESERVE step was placed ahead
of the run-time test for a recursive call. This wtll cause a
RESERVE action in a procedure even when all calls turn out to
be non-recursive.

A complication exists because it is not posstble to arrive
at an 'optimum' set of nodes in which to place the RESERVE steps,
because this question boils down to a space-time tradeoff, in
general. However, such points need not concern us here. The
main point is that the RESERVE is defined in such a way that the
optimiser has a great deal of freedom in dealing w:Lth it.

The RESERVE action consists of incrementing a. globally
known pointer TRES, if necessary, so that it is equal to T+M,
where T is the pointer to the top of the stack (+l), and Mis the
number of words to be reserved. Then, if TRES exct~eds H (the
lower limit of the heap area), the garbage collectc,r is called.
That is, it consists of the steps:

temp=T+M.,
IF {temp.LE.TRES) GO TO ZZZA.,
TRES-temp.,
IF (TRES.LE.H) GO TO ZZZA.,
CALL GARBCOL.,

/ZZZA/ CONTINUE. ,

-8 -

Compiled Code

Pages 12 to 13 show the code for a calling sequence, a
procedure prologue, and a procedure epilogue.

It 1s assumed that the compiler numbers the procedures
it compiles 1, 2, 3, ••• , in an arbitrary order. The compiler
generates several globally known parameters assosiated with
each procedure. These are:

Ii Variable

Bi Variable

Ni Macro

Di Macro

Li Macro

Ei Macro

Mi Macro

Invocation count (only required for
recursive procedures).

Pointer to the 1-th procedure's currently
active environment block, or to its
"base level" environm,nt block when the
procedure is inactive (this parameter
was called Pi in newsletter 53).

Number of formal parameters.

Number of local variables that are dead
on entry to the procedure, +Ni+5.

Number of local variables that are live on
entry to the procedure.

Environment block size of i-th procedure
(Di+Li).

Maximum size environment block of all
called procedures.

The items above labeled "macros" are constants that the
compiler could generate as absolute numbers or as LITTLE macros,

such as + ,K-- N3=4 ~*·
The calling sequence given includes all the steps required

for function or subroutine calls, for dexter or sinister calls,
and for recursive and non-recursive calls. The columns on the

- 9 -

right indicate which lines of code to use in four important
special cases. These are the four combinations of (1) the
"general" and non-recursive cases, and (2) the dexter and
sinister cases. By "general" it is meant that the compiler

does not know if the call is recursive or not. By "non
recursive", it is meant that the particular call ia known to
~e non-recursive. If, in addition, the compiler knows that
the called procedure is never invoked recursively, then the
two statements indicated by (X) may be deleted.

The first line of the calling sequence is RESERVE(Ml),
which has already been discussed. It is shown as a macro call,
to defer the decision as to whether it compiles in--line or as
a library routine call.

The next lines evaluate the arguments and place their root
words in compiler temporary locations of the calliJ~ procedure.
Subsequently, these words will be moved to the for111al parameter
locations of the called procedure. The reason the arguments
cannot in general be planted directly in the called procedure's
environment block is that to do so without more ex"tensive stack
housekeeping would cause wasteful use of stack spaee for calls
of the type "sub(f(x),g(h(x)))." It is hoped that the optimiser
can eliminate many of the uses of temporaries through standard
techniques, but this may be difficult because of the subscripting
involved.

Next the right-hand side is evaluated for sinister calls.
The value of the right-hand side is placed in the globally known
location RESULT, which is also used for function va.lue returning.
Note that the order of expression evaluation in a statement such
as f(el'e2)=e3 is el'e2,e3 • This follows PL/I arra.y assignments,
and will be easy to remember if, in SETL, we consi::!tently use
left-to-right order when an arbitrary ordering is :Lmposed.

- 10 -

The next step saves the pointer to the top of the reserved
area, as the called procedure may alter it.

Then the called procedure's invocation count is tested.
If it is zero, the call is not recursive, and the next four steps
are skipped.

If the call is recursive (I2>0), the called procedure's
environment block will be located. at the top of th1! run-.t1me

I
stack. This is set up by saving the current value of B2 and
then setting B2 equal to the current top of the sta.ck, T. T
is then incremented by the size of the called procedure's envir
onment block (E2), and the first word of the new environment block
is initialized.

· If the call is not recursive (I2=0), the exi::3ting value of
B2 is used. This points to the procedure I s base l•!vel environment
block.

The statement at label ZZZA resets the "garb1!l.ge collector
skip flag" to signify that the procedure is active., and the next
D2 words may ,!!2l be bypassed during the garbage collector's marking
phase.

Next the sinister flag is set, the index of the return point
is stored, B is saved in the new environment block., and the
arguments are moved to the new environment block. The called
procedure's invocation count is incremented, its environment block
is made the currently active one (B=B2), and contr,::,1 is given to
the called procedure.

When the called procedure returns, the calling procedure
restores its own environment. First its environme1t1t block is
made the currently active one (B=STACK(B+2)), and ·the called
procedure's invocation count is decremented.

Next, all arguments that are valid value receivers are
updated by moving the called procedure's formal parameter root
words to the appropriate places. This would usually be the calling
procedure's environment block, but it might be another block if
an argument appeared in an external statement.

- 11 -

Similarly, the RESULT is moved to the appropriate place,
in the case of a dexter function call.

If the call was recursive, the top-of-stack pointer T is
restored, as is the called procedure's most recently active
environment block pointer, B2. If the call was not recursive,
T and B2 are not altered, but the garbage collector skip flag
is set to indicate that the "dead on entry" variables may be
skipped over during the marking phase.

Finally, the reserved area pointer TRES is restored. This
step does not restore TRES to the value it had on eintry to
procedure 1; that restoration is done by the caller of procedure
1.

LITTLE code for the standard procedure prolo~;ue and epilogue
is shown on page 13.

In the prologue, a test is made for recursi VE! entry. If
recursive, the "live on entry" local variables are initialised
to ...iL • The steps to do this are indicated by a macro call,
which might expand to a library routine call or to an in-line
loop. Note that a non-recursive procedure needs no prologue
code at all.

In the epilogue, the sinister flag is tested. If not set
(dexter call), the globally known location RESULT is set to the
value of the return expression. If the call was stnister, the
value of RESULT is used as an input to the "corresponding code"
of the return expression (see SETL newsletter 30, pages 15-17).

Procedure exit is accomplished by a branch tc, a globally
known location /RETVECT/. The GOBY statement which the compiler
places here branches to the return point indicated by the return
index that was stored in the called procedure I s emrironment
block.

The figure on page 14 depicts the run-time atack during
a recursive procedure call. The initial configura1;ion shows the
environment block of Plat the top of the stack, which need not

always be the case. TRES has an initial value that was set by
the caller of Pl.

- 12 -

STANDARD CALLING SEQUENCE
For Procedure 1 Calling Procedure 2

RESERVE(Ml)
code to evaluate argument i 1, Repeat
STACK(B+k1)=root word for arg. 1JN2 times.
code to evaluate r.h.s.
RESULT=root word of r.h.s.
STACK(B+3)=TRES.,
IF (I2.EQ.O)GO TO ZZZA.,
STACK (B+4) =B2.,
B2=T.,
T=T+E2 .,
EVAL STACK(B2)=D2.,

/ZZZA/ ESKIPF STACK(B2)=0.,
ESINISTR STACK(B2+1)=0.,
ESINISTR STACK(B2+1)=16.,

ERETPT STACK(B2+l)=j.,
STACK(B2+2)=B.,
STACK(B2+i+4)=STACK(B+k1).,} Repeat N2 times.
I2=I2+1.,
B=B2.,
GO TO P2 .,

/RLABj/ B=STACK(B2+2).,
!2=!2-1.,
STACK(B+vi)=STACK(B2+1+4). '} As
STACK(B+v)=RESULT., required
IF (I2.EQ.O) GO TO ZZZB.,
T=T-E2.,
B2=STACK(B+4).,
GO TO ZZZC.,

/ZZZB/ ESKIPF STACK(B2)=17 .,
/ZZZC/ TRES-STACK(B+3).,

I GENERAL NON-REC.
i DEX SIN DEX SIN

i X X ._,_
1 X){ X X !

- ----·-----
X X X X

. __ 4 _______ ,._ ·-· ---·· ··-···
; X ! X
+---+-----
; X _j _______ X

X 1 X ! X X
,-..------~-------+------------ ·-·--- --- .

• I

I-! -~-'-~---·-+i_ -+
, __ _....__--1---,ti-----···
! X X I

X X 1
----f-~---x X • X X

X X

X l , X
'--x--x-"T x 1 x ·
.. ------ _..., ___ - -t ------·+---·----~
... ! ___ X_-4 ... __ !_J __ ~---
i x x 1 x r x :
···-----, ... -- . ·-r---- ·---' _____ __]
: X ' X ' (X): (X) ·

. X X , X , X . -----t--·-------1--- -i -- ;
; X X : X I X
i. - -- ·-----------·-------- : ______ -

X X : X '., X · x : x·-~ · (x)- (x)

X X X X
-~------

X X

X ' X

- 13 -

STANDARD PROLOGUE
For Procedure 2

/P2/ IF (I2.EQ.l) GO TO ZZZA.,
SETUNDF(B+D2,L2)

/ZZZA/ CONTINUE.,

STANDARD EPILOGUE
For Procedure 2

IF (ESINISTR STACK(B).EQ.O) GO TO ZZZA.,
corresponding code of return expression

(RESULT)
GO TO RETVECT. ,

/ZZZA/ code to evaluate return expression
RESULT=root word of return expression.,
GO TO RETVECT. ,

GEN.

X

X

X

X

RETURN VECTOR (GLOBAL)

/RETVECT/ GOBY ERETPT STACK(B) (RLABl, .•• ,RLABm).,

NON-REC.:'

X

X

TRES:

T:

B,Bl:

---,

Environment

Block of

Pl

Before Pl

Calls. P2

- .l'+ -

TRES: ,- - --,
I

T:

?

-- -,
i Arguments ;
~ -i
: !

lo ! 01a B(Bl~
-~ ' .
!O ; Return
I

0 D2

lo Old B2
I
;

IO TRES

I
I

l

\
--- ,.- --, Bl: X

Just Before

Transfer

TRES~-----
1

I
T:

Bl:

I
:
;

i i
i ? i

I
I I t :

-i
' Arguments I

I

i i_ -\
D2

(

t
i

lO Old B(Bl)
' [

10 Return
' I

lo D2

I
!
I

tO Old B2
I

lo TRES

-

After Prologue

of P2

Run-time Stack During a Recursive Procedure Call

APPENDIX

It is instructive to consider a simple case with some
significant optimisation opportunities, to see whai; capabilities
are needed to optimise procedure calls that occur within loops.

The statement

s = [x E,p I f (x, y) !,9_ z}

will be used. We suppose that f is a SETL routine that has already
been compiled and optimised, and the compiler has filed the follow
ing information about f, which is available when cc>mpiling the
above statement:

1. f is a "lowest leveln procedure, i.e., 11; calls no
other SETL procedures.

2. f does not modify either of its parameters.

We also assume that all of the above variables (s, x, p, y, and
z) are local to the caller, or at any rate are not altered by
f by means of an "external" statement.

From (1) above the compiler infers that f is not recursive,
and it therefore generates LITTLE code such as the following
(which is regarded as being unoptimised):

1. STACK(B+s)=NULLSET.,
2. STACK(B+x)=UNDEF.,
3./Ll/STACK(B+x)=NEXTELT(STACK(B+p),STACK(B+x)).,
4. IF (STACK(B+x).EQ.UNDEF)GO TO L2.,

5. STACK(B+k1)=STACK(B+x).,
6. STACK(B+k2)=STACK(B+y).,
7. STACK(B+3)=TRES.,
8. ESKIPF STACK(B2)=0.,
9. ESINISTR STACK(B2+1)=0.,

10. ERETPT S'l'ACK(B2+l)=j.,
11. STACK(B2+2)=B.,
12. STACK(B2+5)=STACK(B+k1).,
13. STACK(B2+6)=STACK(B+k2).,
14. B=B2.,
15 • GO TO P2 • ,
16.~Bj/B=STACK(B2+2).,
17.
18.

19.

STACK(B+k3)=RESULT.,
ESKIPF STACK(B2)=17.,
TRES=STACK(B+3).,

20. STACK(B+k4)=EQUAL(STACK(B+k3),STACK(B+z)).,
21. IF(.NOT.STACK(B+k4)) GO TO Ll.,
22. CALL AUGMENT(STACK(B+s),STACK(B+x)).,
23. GO TO Ll.,
24./I,2/CONTINUE.,

As was pointed out, the compiler has already made use of
the fact that f is not recursive. Furthermore, in the above
code, the compiler made use of the fact that f doei3 not alter
its formal parameters, and has therefore suppressed the generation
of code to update x and y upon return.

The calling sequence occurs in lines 5 through 19. Lines
3 through 24 constitute an interval which will be c,ptimised.

The first observation is that lines 5 and 6, and the
"compiler-temporary" locations denoted by STACK(B+k1) and
STACK(B+k2), may be deleted by changing lines 12 and 13 to:

12 '. STACK(B2+5)=STACK(B+x)., .
13 1 • STACK(B2+6)=STACK(B+y).,

by a process similar to constant propagation and deleting
dead assignments. (To simplify the discussion, it is assumed
that the compiler has generated four compiler tempc:>rary loca
tions. In reality, probably only two would have been used.)

To do the above optimisation and practically anything
else, the optimiser must be able to analyse subscript expressions
in a fairly sophisticated way.

!
The next observation is that lines 7 and 19 may similarly

be combined, resulting in the deletion of both of them. The
fact that they can be combined depends upon the fac:t that nei'ther
STACK(B+3) nor TRES is altered between lines 7 and 19. To see
that STACK(B+3) is not altered, the optimiser must somehow be
informed that in lines 8-13 and 18, Band B2 point to entirely
different areas of the stack (note, however, that within procedure i,
Band Bi refer to the same area of the stack except at certain
points in a calling sequence when the procedure is calling itself).
Furthermore, the optimiser must be informed that procedure 2
(f, in our case) does not alter STACK(B+3) (with the "old 11 value
of B).

The fact that the global variable TRES is not altered by f

may be inferred from the fact that f does not call a SETL proce
dure. Alternatively, TRES might be explicitly listed as "not
set" (and, in :fact, not used) in the packet o:f 1n:f,ormation about
f.

Thus, combining lines 7 and 19 makes lines 7 an assignment
to a dead variable and line 19 the no-operation "TRES==TRES".

Lines 8 and 18 set the garbage collector skip flag. If the
optimiser assumes that this skip flag is used only in procedure
f (it is, of course, used in f via f's use of the garbage collector),
then lines 8 and 18 could be moved out of the loop as illustrated
on the next page.

Original

- A4 -

"s=l7" moved
forward

"s=O" moved
out c>f loop

Here 11 s 11 denotes the skip flag (ESKIPF STACK(B2)). First
"s=l7" is moved forward, and the assignment "s=17" occurring

before "s=O" (not shown) is deleted. This makes s invariant

in the loop, so "s=O" can be moved out.
Although it is tempting to do this optimisat:Lon, it probably

should not be done because it causes the garbage collector to
reclaim less storage (and to take longer to execut,~) if it is
invoked between lines 19 and 23 (in the example, it might be
invoked at line 22). Thus the decision is really 11 space-time
tradeoff.

If the decision is made to suppress significant code
motion involving changes to the skip flag, then rules must be
formulated and the skip flag assignments must be exposed to the
optimiser. The situation is analogous to one in which inter
ruptions can occur at certain points (certain library routine
calls) which result in uses of certain variables (the skip
flags).

Lines 9 and 10 are invariant in the loop and can be
factored out. Note that the optimiser must recognize part-word
insertions, if for no other reason than to prevent line 9 from
looking like an assignment to a dead variable.

The three statements at lines 11, 14, and
formed into two statements occurring outside of
the somewhat involved steps illustrated below.

i

Original

\

11B=Bl"
propagated

~

"S=Bl" and
11 B=Bl"
propagated

"S-Bl"
deleted,
"B=Bl"
moved
forward

16 may be trans
tht~ loop, by

"B=B2 11

removed
from loop

- AU -

On entry to procedure Pl, B has the value Bl. The

optimiser should be informed of this by placing a "dummy
assignment" to this effect at the entry node of Pl. This
is indicated by the first node "B=Bl" in the above graphs.

The first step shows the substitution of Bl :for Bin
the region being optimised., by a process similar t,o constant
propagation. The next step shows a similar propagi!tion of
11 S=Bl 11 and the 11B=Bl 11 that results at node 16. S denotes
the expression "STACK(B2+2)".

In the third graph, S has become a dead variable., so
the assignment to it can be deleted. The assignment 11 B=Bl"
at the bottom of the loop can be moved forward. This places
it outside the loop, and also at the beginning of the loop,
where it is an assignment to a dead variable and h,ence may be
immediately deleted. The fourth graph shows the structure
after these steps.

In the fourth graph., the assignment "B=B2" m.ay be moved
back, making B constant in the loop., so the assig~nent can be
factored out. (This could have been done at any point after
the second graph.) The final configuration is shown in the
fifth graph.

It is possible that this optimisation should not be done,
because there may be a facility added to LITTLE to allow a
single variable (such as B) to be permanently assigned to a
register. In this event, the substitution of Bl for B would be
harmful to execution speed.

The key to the above transformation is the substitution
of Bl for B. This substitution cannot always be done. This is
not evident from the simple case being analysed., but by considering
the case of a procedure calling itself (recursively), one finds

- A7 -

that the assignments "Bl=T" and "Bl=STACK(B+4)" oceur in the
calling sequence. Other optimisations may then be possible,
but they won't be dwelled upon here.

Line 13 of the calling sequence, which has b«!en altered
by the optimiser already, is now invariant and may be removed
from the loop. This corresponds to the fact that yin f(x,y)
is invariant.

The final transformed code is shown on the m,xt page.
The original calling sequence of 15 statements occurring in a
loop has been transformed into five statements in the loop and
five statements outside of it.

1.

2.

3.
4.
5.
6.
7. /Ll/
8.

- .rtU -

STACK(B+s)=NULLSET.,
STACK(B+x)•UNDEF.,
ESINISTR STACK(B2+1)=0.,
ERETPT STACK(B2+l)=j.,
STACK{B2+6)=STACK(Bl+y).,
B-B2.,
STACK(B1+x) =NEXTELT(STACK(Bl+p), STACK(Bl+x).,
IF (STACK(Bl+x).EQ.UNDEF) GO TO L2.,

9. ESKIPF STACK(B2)=0.,
10. STACK(B2+5)=STACK(Bl+x).,
11. GO TO P2 • ,
12./RLABj/ STACK(Bl+k~)=RESULT.,

./

13. ESKIPF STACK(B2)=17.,

14.
15.
16.
17
18./L2/
19.

STACK(Bl+k4)=EQUAL(STACK(Bl+k
3

), STACK(Bl+z)).,
IF(.NOT.STACK(Bl+k4))GO TO Ll.,
CALL AUGMENT(STACK(Bl+s), STACK(Bl+x)). J•

GO TO Ll.,
CONTINUE.,
B=Bl.,

