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The following updates the print call subroutine 
given in SETL Newsletter Number 25. There are some differences 

to be noted: 

1 - A Dewey decimal system is used for abbreviations 
instead of consecutive qumbering. Thus, ifs contains an 
abbreviated item, say l#, the first item in l;t to be abbre
viated will be labelled l~l•. Note that a'•' is used in place 

of the '· '· 
2 - The indentation is continued if an item requires more 

than one line of printing. 
3 - The linelength is initialized to 120 and not 72. 
4 - No provision is made for printing sequences in the 

form [r1,r2, ••• ,rk]. The reason is that sequence is not a data 
type and determining whether a set is a sequence is too time 
consuming. If the run time library had provision for flagging 
sets that are sequences, then it would be worthwhile to print 
sequences in a special format. With the new form for tuples, 
however, it is unlikely that sequences will play such a major 
role in SETL algorithms. 

Print Routine. 

define printcall(obj); 

level=O; 

dep=4; 

num=3; 

/* obj is any SETL object. It will be 
printed using, essentially, the format 
described in the SETL notes, pp. 76-78 ¾/ 

/* level of nesting on the printed page -
used to control the amount of indentatio~ 

/* dep is the maximum depth of nesting 
not requiring abbreviation~ 

/* if, in the course of printing an object, 
more than num-1 lines are required, then 
all tuples and sets remaining in that 

object are abbreviated ;f-/ 



printc(obj,~); 

return; 
end printcall; 

/;l- printc is the routine that does the 
printing - since no label for this 

the second argument is nulc. ~/ 

define printc(s,dotlabel); /~ printc prints an objects labelled 
by the string in dotlabel -)f/ 

printcall external level; 
post external linenumber,+inelength,position; 
depth=O; ~ depth counts the level of 

nesting in s }t;/ 

/* if the level of nesting or the 
number of printlines becomes 
excessive, then the items ins 

are abbreviated and saved in t 

for subsequent printing*/ 
post ( 1 ~ 1 ); /-;t- end the present line j/ 
posi tion=2 t< ( level//( linelength/4)); 

/~ indent 2 spaces for each level H 
post(dotlabel+'b'); 
position=position-tfdotlabel+l; 
lineno=linenumber; /# save the current linenumber so 

char(s); 

level=level+l; 

the char routine can determine when 
to abbreviate items# 

/* char posts the objects with 
abbreviations. The abbreviated 
items are queued in the tuple t. ~ 

(l~'Vkgt) printc(t(k), dotlabel+dec k + ':ik');; 
/;t- Print out each of the abbreviated,.- · 

items ;id 

level=level-1; 
return; 
end printc; 



define post (x); 
; ,: ·-.,:~,,. 1. :.,,-:--

/* the string x is added to output. .' ,;,· :·,. 
Record size is determined by linelength:··-'. ~--' 

"-.!..,.~ •' ~ ,(. 

Each line of print_ is preceded by posi tion~1 
blanks. The variJble linenumber is incre
mented each time a line is written. When 
x is the character string 'er' an end of 
line condition is forced. This condition 
is recognized on the next entry to post 
(for which x/'~'). The value of position 

is used only when a new line is begun.~/ 
initially linelength=l20; linenumber=O; position=l; 

p=O; line=.!!~.!£); ~line is the current line H 

if x g '~' then p=linelength; return;; 
y=x; 
(while y ~ nulc doing p=p+j;y=y(j+l:);) 
if p g linelength then 

output=output+line+'~'; 
p=position-1; 
linenumber=linenumber+l; 
line=p.t-'b 1 ; end if p; 

j=lfy min ( linelength-p); 
line=line+y(l:j); end while; 
return; 
end post; 



- ...,. -

define char(s); /~ This routine posts the representation 
of the objects with appropriate abbre
viations inserted. Abbreviated items 
are queued in t, to be subsequently printed 

by the printc routine k/ 

printcall external dep, num, n; 

princ external depth, t, linno, dotlabel; 
post external linenumber; 

iff atomtest? 
printatom, mtset? 

printmt, abbrtest? 

atomtest:=atom s; 

mtset:= ifs~ O; 

ptupl, 

printmt: post(if s eq nult then --
abbrtest:m=linenumber-lineno; = 

abbreviate:k=#t+l; 

t(k)=s; 

tupltest? abbreviate, 
pset; 

/* test for atom -j-/ 
/1:;- null set and null 

tupl treat separately~ 
1 <> 1 else 1 {f '); 
depth lt dep ~ (m lt num); 

/1;- We replace the item with an 
abbreviation as soon as the 
level of nesting exceeds dep 
or the number of lines already 
used for this item exceeds 

num-1 */ 

post(dotlabel+dec k+•~•); 

/,j;- Check density - if more than 
six abbreviations per line, then 
increase the depth limit by 2 -f/ 

if m ~ O and (k/m ~ 6) then 
dep=dep+2; 
num=num+l;; 

tupltest:sw=.!_;depth=depth+l;=~ s !51. tupl; .. - ,· . ! '.,ff-A.,.~-, 

/* print out tuple;.if-/ 
.,,i -.... 



.,;;_. 
,, ~ ~ ta ' ~ • : . , 

ptupl: ( ~k~ s doing SW=.£;) 
post(if sw then 1 <1 else ', '); 
char(s{k));; 
post ( '>'); 

depth=depth-1; 

/J print out a set - the special 
case of sequence is not 
implemented herein*/ 

pset: (Vx E: s doing sw=f;) 

post(if sw then'[' else ', '); 
char(x);; 

post('}'); 
depth=depth-1; 

printatom: if~ s !:.9. cstring then 
post(''''); 

(Vxts)post(if x eq '''' then'''''' else x); 
post(''''); 

else if~ s ~ bstring then 
if -/ts ~ O then post ( 'OBB'); else 

k=/s//3; 
if k ~ 0 then post(<'O', 11', 110', 111 1 > 

(bitr(s(l,k)+l))); 
post('B');k=k+l; 
(l~Vi~fs/3 doing j=j+3;) 
post(<'O', 'l', '2', '3', ,4,, '5', 16 1 , '7'> 

. (E.!!!:(s(j:3)+1))); 
end f"i; end if I's; 

else post(s ~ cstring);end printatom; 
end iff; 
return; 
end char; 


