
SETL Newsletter Number 63
The SETL Print Routine

January 11, 1972
G. Fisher

The following updates the print call subroutine
given in SETL Newsletter Number 25. There are some differences

to be noted:

1 - A Dewey decimal system is used for abbreviations
instead of consecutive qumbering. Thus, ifs contains an
abbreviated item, say l#, the first item in l;t to be abbre
viated will be labelled l~l•. Note that a'•' is used in place

of the '· '·
2 - The indentation is continued if an item requires more

than one line of printing.
3 - The linelength is initialized to 120 and not 72.
4 - No provision is made for printing sequences in the

form [r1,r2, ••• ,rk]. The reason is that sequence is not a data
type and determining whether a set is a sequence is too time
consuming. If the run time library had provision for flagging
sets that are sequences, then it would be worthwhile to print
sequences in a special format. With the new form for tuples,
however, it is unlikely that sequences will play such a major
role in SETL algorithms.

Print Routine.

define printcall(obj);

level=O;

dep=4;

num=3;

/* obj is any SETL object. It will be
printed using, essentially, the format
described in the SETL notes, pp. 76-78 ¾/

/* level of nesting on the printed page -
used to control the amount of indentatio~

/* dep is the maximum depth of nesting
not requiring abbreviation~

/* if, in the course of printing an object,
more than num-1 lines are required, then
all tuples and sets remaining in that

object are abbreviated ;f-/

printc(obj,~);

return;
end printcall;

/;l- printc is the routine that does the
printing - since no label for this

the second argument is nulc. ~/

define printc(s,dotlabel); /~ printc prints an objects labelled
by the string in dotlabel -)f/

printcall external level;
post external linenumber,+inelength,position;
depth=O; ~ depth counts the level of

nesting in s }t;/

/* if the level of nesting or the
number of printlines becomes
excessive, then the items ins

are abbreviated and saved in t

for subsequent printing*/
post (1 ~ 1); /-;t- end the present line j/
posi tion=2 t< (level//(linelength/4));

/~ indent 2 spaces for each level H
post(dotlabel+'b');
position=position-tfdotlabel+l;
lineno=linenumber; /# save the current linenumber so

char(s);

level=level+l;

the char routine can determine when
to abbreviate items#

/* char posts the objects with
abbreviations. The abbreviated
items are queued in the tuple t. ~

(l~'Vkgt) printc(t(k), dotlabel+dec k + ':ik');;
/;t- Print out each of the abbreviated,.- ·

items ;id

level=level-1;
return;
end printc;

define post (x);
; ,: ·-.,:~,,. 1. :.,,-:--

/* the string x is added to output. .' ,;,· :·,.
Record size is determined by linelength:··-'. ~--'

"-.!..,.~ •' ~ ,(.

Each line of print_ is preceded by posi tion~1
blanks. The variJble linenumber is incre
mented each time a line is written. When
x is the character string 'er' an end of
line condition is forced. This condition
is recognized on the next entry to post
(for which x/'~'). The value of position

is used only when a new line is begun.~/
initially linelength=l20; linenumber=O; position=l;

p=O; line=.!!~.!£); ~line is the current line H

if x g '~' then p=linelength; return;;
y=x;
(while y ~ nulc doing p=p+j;y=y(j+l:);)
if p g linelength then

output=output+line+'~';
p=position-1;
linenumber=linenumber+l;
line=p.t-'b 1 ; end if p;

j=lfy min (linelength-p);
line=line+y(l:j); end while;
return;
end post;

- ...,. -

define char(s); /~ This routine posts the representation
of the objects with appropriate abbre
viations inserted. Abbreviated items
are queued in t, to be subsequently printed

by the printc routine k/

printcall external dep, num, n;

princ external depth, t, linno, dotlabel;
post external linenumber;

iff atomtest?
printatom, mtset?

printmt, abbrtest?

atomtest:=atom s;

mtset:= ifs~ O;

ptupl,

printmt: post(if s eq nult then --
abbrtest:m=linenumber-lineno; =

abbreviate:k=#t+l;

t(k)=s;

tupltest? abbreviate,
pset;

/* test for atom -j-/
/1:;- null set and null

tupl treat separately~
1 <> 1 else 1 {f ');
depth lt dep ~ (m lt num);

/1;- We replace the item with an
abbreviation as soon as the
level of nesting exceeds dep
or the number of lines already
used for this item exceeds

num-1 */

post(dotlabel+dec k+•~•);

/,j;- Check density - if more than
six abbreviations per line, then
increase the depth limit by 2 -f/

if m ~ O and (k/m ~ 6) then
dep=dep+2;
num=num+l;;

tupltest:sw=.!_;depth=depth+l;=~ s !51. tupl; .. - ,· . ! '.,ff-A.,.~-,

/* print out tuple;.if-/
.,,i -....

.,;;_.
,, ~ ~ ta ' ~ • : . ,

ptupl: (~k~ s doing SW=.£;)
post(if sw then 1 <1 else ', ');
char(s{k));;
post ('>');

depth=depth-1;

/J print out a set - the special
case of sequence is not
implemented herein*/

pset: (Vx E: s doing sw=f;)

post(if sw then'[' else ', ');
char(x);;

post('}');
depth=depth-1;

printatom: if~ s !:.9. cstring then
post('''');

(Vxts)post(if x eq '''' then'''''' else x);
post('''');

else if~ s ~ bstring then
if -/ts ~ O then post ('OBB'); else

k=/s//3;
if k ~ 0 then post(<'O', 11', 110', 111 1 >

(bitr(s(l,k)+l)));
post('B');k=k+l;
(l~Vi~fs/3 doing j=j+3;)
post(<'O', 'l', '2', '3', ,4,, '5', 16 1 , '7'>

. (E.!!!:(s(j:3)+1)));
end f"i; end if I's;

else post(s ~ cstring);end printatom;
end iff;
return;
end char;

