
SETL NEWSLETTER No. 68

Some Thoughts on Efficient Programming

in SETLB.

S. Brown

October 26, 1972

The following suggestions apply to the current BALM imple­

mentation of SETLB and may not be applicable to future imple­

mentations.

It has been noted that some seemingly simple SETLB operations

require large amounts of core. Specific examples can be brought

to room 324 for analysis. However most programs can probably

be made smaller by following the suggestions and by under­

standing the internal representation of SETL objects.

To compile and execute a SETLB program actually requires

running two programs. The first is the SETLB preprocessor.

It reads the SETLB program and translates it into BALMSETL.

The second program is BALM. BALM reads the BALMSETL and produces

6600 code which is then executed. It is important for the SETLB

user to udnerstand the use of COMPUTE;. Compute; actually has

no meaning in SETLB but it is important to BALM. Each DO;

COMPUTE; marks off a section of program which BALM will trans­

late into 6600 code before reading the next line of input.

Naturally the larger the section of code the more core space

BALM will need in order to produce.6600 code. Once BALM

has finished all extra space is released and can be used again

for the next section of code. To minimize the amount of space

BALM needs at one time the SETLB user should follow the

practice of placing a DO; COMPUTE; around each SETLB procedure

so that his program contains as many sections as possible.

Although unused core is reclaimed by the BALM garbage

collector it is a good idea to avoid creating unnecessary

copies of SETL items. For example:

S = X WITH. S; and X IN. S;

have equivalent results but in the first case a copy is made

of s so that before the operation is complete enough core

for two sets is required. The same is true of:

SETL 68-2

S = S LESS. X: and X OUT. S;

The internal representation of SETL items is very similar

to the description in SETL Newsletter 49. Perhaps a knowledge

of internal representation will be helpful in determining how

to structure data and selecting operations.

The· internal representation for a tuple is as follow.s:

TUPLE INWERNAL REPRESENTATION

3
TYPE

HASH CODE

NELTS

1st
lement

2

2nd
lement

The+ operator produces a copy of each tuple whereas the

component operation acts on the tuple itself. To add an element

to a tuple the following are equivalent:

T = T + <NEW>; and

T((f T) + 1) = NEW;

But the second does not require a copy of T to be made during

the operation.

Internal representation of sets is as follows.

SETL 68 -3

SET INTERNAL REPRESENTATION

3
TYPE
HASHCODE

-

l
4

NELTS
HTSIZE
HTLOAD

~

,..
HTSIZE

- ;,ELEMENT! ' I
HASH TABLE ◄ ~

I ELEMENT 1--....... I
-..

Each hashtable entry contains a pointer to the list of elements

whose hashcode is that entry.

There is more overhead in the construction of a set than a tuple.

Hashtable sizes are 8, 16, 32, 64, 128 and 256. This means that

a set of only 1 element has a hashtable with 8 entries. Small

sets take up a disproportionate amount of space. The hashtable

size is determined by the number of elements in the set. If the

number of elements increases or decreases beyond the next higher

or lower hashtable size then a new hashtable is created and

the elements are rehashed. Therefore sets which vary in size

greatly throughout a program require extra amounts of space

from time to time.

The internal representation of a set whose elements are

tuples is as follows.

SETL 68 -4

INTERNAL REPRESENTATION OF A SET WHOSE ELEMENTS ARE TUPLES

3
TYPE
HASHCODE

I ,
3

TYPE
HASHCODE

2
NELTS < 3

'

.
NELTS

ELEMENT 1
ELEMENT 2

NELTS
HTSIZE
HTLOAD

' I

4
NELTS
HTSIZE
HTLOAD

.
HTSIZE

---, ______ r
. ..__

r--._

'
3

.

...,

2
NELTS 2 3

2
ELEMENT 1

3 -
' -

TYPE
HASHCODE

4
~_.

- ...
r HTSIZE

.. , ..
'•

I

SETL 68 -5

Note that a tuple is represented differently when it is a

member of a set than when it is simply an item. This means

that operations which test for membership or examine members

of a set must convert a tuple from one representation to the

other. These conversions require extra space during the

operation.

The representation of tuples of more than 2 element$ is
I

detailerlin SETL Newsletter No. 49. It should be noted that

it is space consuming for sets of tuples whose first elements

are different.

