
SETL Newsletter No. 93 

A Note on Optimization and Programming Style in SETL: 

Kent Curtis 
January 5, 1973 

A brief set of experiments described in SETL Newsletter 92 
indicates that auxiliary variables and auxiliary objects formed 
during execution cause SETL program to expand 
and are costly in terms of both memory and execution time. 
There are two effects which spring from this same source. 

a) Auxiliary variables or objects (e.g. tuples, sets, or 
strings) use memory and are only removed by garbage collection. 
Each garbage collection in a simple program required approximately 

1.1 seconds and it was found necessary to do 20 - 25 garbage 
collections in 70 seconds execution time on the programs used 
in those experiments. 

b) Auxiliary variables or objects which are live at any 
point in the program occupy memory space which is inaccessible 

for garbage collection and increase the field length required for 

successful completion of a program. 

These observations point toward a type of optimization in 
SETL programs which is less accessible and less useful for other 
programming languages and they also suggest some guidelines on 
programming style in SETL which may help reduce the field length 
and execution time required for applications written in SETL. 
They originate from the fact that memory space is time in SETL 
programming. 

Optimization 

By reducing the span of a program during which variables 

are live and by burying dead variables as soon as they die (e.g. 
by promptly redefining them to be null) the minimum field length 
required may be reduced and space may be released for garbage 
collection. 



The first process, live span reduction, can be accomplished 
sometimes by simple rearrangement of code. This is susceptible 
to automatic analysis using data from live-dead tracing. 

The same data can show where funeral rites could be held at 
the earliest moment for dead variables and an optimizer could 
provide suitable services. 

2 

A third type of useful optimization is to eliminate au~iliary 
variables by replacing them with equivalent SETL dictions. The 
analysis of this is a complex semantics and memory space-execution 
time trade-off problem which is probably outside the range of 
practical automatic optimization but is an appropriate consideration 
for programming style. 

Programming Style in SETL 

These considerations suggest the following guidelines for 
programming style in SETL: 

1. Always postpone expression evaluation until the value 
is needed. 

2. Use the SETLB dictions (functional application, compound 
operator, etc.) instead of defining auxiliary variables. 

3. Kill variables as soon as possible. (Early output of 
generated results which will not be used again is 
desirable.) 

4. If a variable is dead, bury it promptly. 

These rules favor full line coding in SETL but the careful 
optimization of the SETL primitives through the use of hashing 
makes this advantageous. 


