SETL Newsletter No. QU January ?3,1673
G. Jennings

An Algorithm to Represent
a Collection of Sets as Intervals

We congider a collection of finite sets Tl’ To, cee Tn

and approach the problem of determining an ordering of
the elements of S = L’Tj 80 that each set Tj is an interval,

o
i.e, a set of the form {:x,21-5 X % bj} « Not every

J
collection of sets admits to a simultaneous representation
of ite members as intervals. An example is the collection
who se members are {a,b}- ’ 6'b,c} ’ and{‘a,g} . If an
ordering of the elements of S exists so that each set Tj is
an interval, the algorithm we give will produce such an

ordering.7+t will terminate when the discovery is made that

such an ordering does not exist. We give an example to illustrate

the strategy of the algorithm.

tet 7 =P a,o,a} v = fv,e,0f, and 7, = &bu,e ,

We seek to produce an ordering of the letters {a b,c,d, e} = g

g0 that each of Tl, T9, and T3 is an interval in that ordering.

We =tart with the ovservation that if each of T1 and T? is

to be an interval then T, (\ T, j= an interval and separates

the elements of T1 - T7 from the elements of T?'Tl .

We write these conditions symbolically as

&a}<gb,d}<gc} (%)
That is, in any ordering a precedes each of b and d and
each of these precedes c. Conversely, each of T1 and T?
is an interval in any ordering of g a,b,c,dl} which respects
these conditions. If T, is also to be an interval in an

3

ordering in which each of T, and T, is an interval, then

1
as d is not a member of TB’ d cannot separate t and ¢ which

are in TB' Hence, we have the conditions

faf< §af < fof < fof < fef

We have tacked g_e} onto the right end because T3 covers
the set gc} on the right in the ordering (*) . At this
point the ordering of S ={a,b,c,d,e}is completely determined
by these relations. Reversal of the \<J gign produces another
but equivalent ordering. An additional set which contains
elements of S must contain a single interval in this ordering,
if that set is to admit a simultaneous representation with
Tl’T7’ and T3 as intervals.

This strategy can be extended to any number of sets
Tl’ Tos e+ »Tp. As in the above example, the algorithm

maintains a list

”

B

Sl< S LI B 3 <Sk
of subsets of S = U Tj which contains implicitly all orderings
J

in which a finite number of sets TyoTos v »T) are intervals

3
in the following precise sense. An arrangement of the elements
of () Sj is an ordering in which each of the sets Tl,T?, eoe 2Ty
is gn interval if and only if each element of S;_; precedes
every element of S;. The list Sl,S?, eer 58y is constructed
in the following manner. First, it is initialized as Tl'
Then each set Tj jes considered ir turn. The conditions
imposed by the j+lst set are included in the list in the
following manner. Note that if Ti41 cOntains 9 S; then it
is not possible to make a choice of the location
of the elements of T, -‘—?Si s0 that the relation of the
list to the orderings of the elements of %jiTi in which
each set is an interval is preserved. Ini%ﬁis case Ti+1
is declared éo be exceptional and is put aside until the
remaining sets have been considered.

Now suppose that Tj+1 does not contain one of the
elements of S;« The elements in Tj+1_ SL[S;» 1f this set
is nonempty, are attached as a single set to the left of
Sq» Af Tj+1:) S, or to the right of §,, if Tj+f3 S;. 1If
both of these conditions are satisfied, then the next step
in the process will determine that no order of S exists
and the algorithm will terminate no matter what choice is
made. If neither condition is satisfied, the additional

elements are attached to an end which Tj+1 intersects

nontrivially. If T i41 intersects nontrivially both or

neither end , then an arbitrary choice is made and the
next step detects that no order is possible. The next
step depends on the observation that if Tj+1 is to be an
interval, then the indices of the sets Sy which Tj+1 inter-
sects nontrivially must form an interval and Tj+1 must
contain each of these sets Sj except possibly the sets
on either extreme of the interval.

If this condition is satisfied, we consider first
the case that Tj+1 is a proper subset of some set S
In this case, there is no way to alter the list S],S?, eee 55y
so that the list maintains it relationship to all orderings
of the setsTj which have been considered prior to this
step and were not exceptional. We declare ’I‘j+1 to Dbe
exceptional and put it aside until the remaining sets
have been considered. It is possible that one of the
succeeding sets will separate the elements of S.l in such
a way that Tj+1 is no longer a subset of any set S;. On the
other hand, if the minimum and maximum indices of the sets
Si which Tj+1 intersects nontrivially are different, then
changes are made in the list Sl’S?""’ Sk.' Let min and
max denotes these indices respectively. If Tj+1(\Smin is
a proper subset of S . , then Spijp - Tj4q and Tj+1n Smin

replace S in the 1list in this order. Similarly, if Tjﬂ.[)smax

min
is a proper sunset of S.,,,then Tj+1ﬂ Spax a@nd S .- Tj+1
replace S ., in the 1list in this order. The relationship

of the list to all orderings of the elements of the first

5

j+1 sets which are not exceptional is preserved. After all

of thie sets Tj are considered on the first pass, each of the

exceptional sets is reconsidered. The process which we
have described above is repeated. If any exceptional sets
remain after this pass, another complete iteration of the
procedure is performed. Itefations of the exceptional
sets are made until either no exceptional sets remain,
a complete pass results in no exceptional sets ’I‘j being
successfully processeqd, or until an error condition occurs.
If the latter occurs, the algorithm terminates.

If the iterative process terminates without an
error being detected and with exceptional sets remaining,

then recursive invocations of the algorithm are made to

order the elements contained in the exceptional sets.

More precisely, the set union =lJ S; is ordered by ordering d,‘dg~»

the elements of each of the sets Sj. If S, contains
: dJ

. the algorithm

K3

we have described above is used recursively to

any exceptional sets T3, Tg, see 5 T

sequence the elements of the wunion of these sets,

The elements of the set Sj - U Tf are sequenced arbitrarily.
i '

The sequences of the sets Sj are then concatenated in the

order of their indices. The exceptional sets which contain

union T%,Tg, cee T% are used to produce an ordering of
g

the remaining elements by applying the algorithm to the

N
e

sets T%- union, T%-gg;gp, vee s T% ~ union. This order
‘s concatenated to the order of ggigp produced above,
1f any of these recursive invocations of the ordering
algorithm discovers that an order does not exist, then

an error flag is set which is propagated to the initial

invocation of the algorithm and the process terminates.

We do not explore the calculation of all partial orderings f
of S although a straightforward modification of the code |
we give below will produce all such orderings.

We now give code in SETL for this process. The
decisions which may be vaguely described above are precisely

specified in this code. For the convenience of the reader,

we detail the function of the principal routine and its ~

prominent data structures

arrangelts(.)--argument is a collec?ion of sets
result is a tuple which contains an orderine
of T., if one exists, the null tuple otherwise

failflag - global failure flag which is set upon
discovering that no order exists

listsets - tuple of sets which contains the sequence
sl,S?’ “c e » Sk

/% set failflag to f prior to first invocation %/

definef arrangelts(tset);

/* failflag is global; tset contains the sets to De
made into intervals */

s1 from +tset; listset={e1);: union = nl;
exceptsets=nl; insert= 1%;

/% exceptsets contains exceptional sets found on
current pass

*/

(while insert doing tset = exceptsets; exceptsets = nl;

(Vx € tset)
flow
exceptg?
inexcept extraelts?
ongmallend? calcints+
onsmall+ onbig+
calcints calcints
nexcepts?
conflict? inexcept
(failflag=t; makinsert

return nult)

exceptg:= X ge union or x*union eg nl ;
inexcept: x in exceptsets; continue ¥ x;
extraelts:= x - union is xtraelts ne nl;

onsmallend:= x*listsets(1) ne nl and
n x¥listsete(#listsets) eq listsets(#listsets);

onsmall: listsets =C{xtraelts> + listsets; union = unjoniktraelts;
onbig: listsets = listsets +<xtraelts> ;union = union + xtraelts;
calcint: indicescov =§-lset,lseti‘listsetst lset*x eqg lset}

indicessub =§ lset,lset ¢ listsets | 1set*x ne nl }

N minml =([miniy ¢ indicescov]y])-1; -
maxpl = ([_rr_}_a_)_(_z ygindicessulﬂg.)

nexcepts:= indicescov eg nl and #indicessub eq 1;

/¥ X is a subset of some member of listsets
and is therefore exceptional if above is % %/

conflict:= n (interval (indicescov) and
indicessub 1t zlndlcescov +{ minml maxp{n

/* if true then raise the error flag as no
order exists %/

makinsert:
if (minmil € indicessub)
then listsets = listsets(l:minml-1) +
<listsets(minml)-x, listsets(minml)*x> +
listsets(minml+1:);
end if;

if (maxpl € indicessub)
then listsets = listsets(l:maxpl-1) +
{listsets(maxpl)*x, listsets(maxpl)-x) +
listsets(maxpl+ls);
end if;
end flow;
end Vx;
end while;
/% factor the exceptional sets which are larger than union */
grossets ==&x~union, x&.exceptsetsl x gt union} ;
order = arrangelts(grosselts);
if (failflag) then return nult ;3
(Vx elistmets)
exceptx =% Yo yé,exceptsetsl y 1t X} ;
order = order + maktup(x-exceptx) + arrangelts(exceptx);
if (failflag) then return nult ;;
end V x;
/% if fall out, have successfully ordered the sets */
return order;

end arrangelts;

definef maktup(set);

/* makes tuples out of elements of set %/
if (set eqg nl) then return nult ;;

return [_+: X £ set] <x >3

end maktup;

definef interval(setofintegers);

/¥ determines if input set is an interval #*/

if (#setofintegers le 1) then return t ;;

minset = [r_nig, ie setofintegerﬂ i

maxset = [ggg, i€ setofintegers] i ;
return(fetofintegers eq Szi, minset < i:-maxsat});

end interval;

