
SETL Newsletter No. 96 

Pointers and "Very High Level Languages" 

by N. Minsky 
January 1973 

The subject of this note is the question: should pointers (or "reference 

variable") be included as primitives of "very high level languages". By 

the phrase "very high level language" (VHLL) I mean, following Schwartz, a 

language which is designed to free the programmer from any consideration of 

efficiency and data structures. To be specific I will discuss the problem 

in the context of Schwartz' SETL. 

As far as I understand, the main argument against the inclusion of 

pointer primitives in a VHLL is the following: essentially, one may argue, 

a pointer carries in it the physical address of an information item. And 

since a program written in a VHLL should be free from data structures, there 

is no need for pointer primitives. 

This argument, however, is an oversimplification of the pointer concept. 

There is in fact much more to it than just "address of an item". To see 

that, consider the following sequence of instructions written in informal 

SETL: 
1) A = {1,2} 

2) B = {A,{3,4}} 

3) A = {O} 

4) Print B 

If these instructions are interpreted by SETL, instruction (4) will 

print the set {{l 2} {3 4}} 

But suppose that what the programmer means by instruction (2) is: "Let 

the set B contain the set {3,4} and the set A whatever the set A will 

be (in future)". In that case instruction (4) should print thP set {{0}{3,4}}. 

In set theory, such a statement is meaningless, becaui:;E::: set theory does 

not contain the time as one of its primitive concepts. (l) On the other hand, the 

" • 
11 <2> f d 1 . . (I time , as a sort of meta-concept, is very un amenta in programming. n 

fact, the central position of time in programming may well be the most subtle 

difference between programming and mathematics.) 

1 The concept "time" is used here in a 
rigorous definition. But its meaning 

such definition. 

very special sense, which requires 
here should be obvious without 

2 
That, of course, does not mean that one can not describe time dependent 

structures in set theory, it only means that the set theoretical formulation 
itself does not contain the time concept. 



2 

The simplest way of expressing, in progrannning, the statement "the set 

A is a member of the set B whatever A may be" is by saying: "B contains 

a pointer (or, a reference) to the set A". So that quite apart from any 

consideration of storage, or implementation, the pointer primitive is 

conceptually essential in progrannning. Moreover, pragmatically the second 

interpretation of statement (2) above, and with it the pointer concept, is 

very useful if not indispensable in a number of problem areas. Notably, in 

simulation and data bases, but not only in them. 

SETL, which is heavily based upon set theory does not support any natural 

way for expressing statements such as (2), according to its second interpreta-

tion. That is not to say that this 

of SETL can be used as pointers
1
but 

to yield the second interpretation, 

written as following: 

1) 

2) 

3) 

4) 

5) 

A = 
p = 
F = 
B = 
f(P) 

{1,2} 

newat 

{<P,A>} 

{P,{3,4}} 

= {O} 

is impossible. In fact, the blank atoms 

not always very conveniently. For example, 

our progrannning example could have been 

6) The printing statement is more complex because, for each 
item of B we have to check if it is a blank atom, and 
then we should print f(p), or it is non-blank. 

The main disadvantage of this approach is that if we wish to refer to 

a set by means of a pointer, we have to include it in another set, a function, 

associated with this pointer. And we can not address this set by name. 

Apart from the direct inconvenience involved with that, it introduces a 

requirement for specific decision by the programmer, as to how he is going 

to use his information, contrary to the stated objective of the language. 

I would like therefore to suggest the following extension to SETL (which 

should not be viewed literally, as I am not familiar enough with the language 

to discuss its extension in a rigorous way). 

There should be a primitive "universal" function, say U 

can contain only pairs of the following type. 

<q,N> 

Here q is a blank atom, and N is a name of some set. 

which 

So that, if we have a set named A, and if we execute the instruction 



U = U with <q,A> 

for a blank atom q, then we can refer to the set A both by its name 

and by "U(q)". 

There are several issues involved with such a construct; I will mention 

only one of them: 

Suppose that the set B is created by 

B = {q,{3,4}} 

while q is a pointer to a set A. Consider the instructions 

A= {1,2} 

C = B 

The second assignment statement may have two different effects; it may 

copy to C either the set {q,{3,4}} , or {{l,2}{3,4}} 

We may resolve this problem by generalizing the assignment statement 

as follows: 
i We attach an index to the equal sign such as: C B 

(This, of course, is not the proposed syntax). 

If i equals zero (or blank) then B is copied into C , literally. In 

the example above 

C = B 

will copy {q,{3,4}} into C . 

If, however, i I O then the pointers will be evaluated up to the i-th 

depth. For example: 

If Al= {1} 

A2 = {ql,2} (where ql points to Al) 

B = {q2,3} (where q2 points to A2) 

Then C = B copies {q2,3} to C 

C 1 B copies {{ql,2},3} to C 

C i B copies { { {l} ,2} ,3} to C 

One should also have a notation for indefinite evaluation of pointers, such 
00 

3 

as C = B. In this case, however, one has to decide what to do with cycles. 


