SETL Newsletter 104 An Algorithm to Represent a Collection of Sets as a Direct Product of Intervals

on the Line

In SETL Newsletter 94 we gave an algorithm to represent each member of a collection of finite sets T_1, T_2, \ldots, T_n as an interval on the line, i.e., a set of the form $\{x, a_j \le x \le b_j\}$. That algorithm determines, if possible, an ordering of the elements of the union $T = \bigcup_{j=1}^{n} T_j$ so that each set T_j , i=1,...,n, is an interval.

In this newsletter we give an algorithm which determines the minimal number of disjoint sets S_1, \ldots, S_k so that for each index s, all of the sets

can be represented as an interval when the elements of ${\rm S}_{\rm r}$ are arranged in some order. We require that

$$s_1 + s_2 + \dots + s_k = \bigcup_j T_j$$

and thus each set T_j can be represented as the direct product of disjoint intervals.

$$T_{j} = \underset{j=1}{\overset{k}{+}} (T_{j} \cap S_{k})$$

If each interval is located physically on a row of the lattice of points in the plane with integer coordinates, some partitions may allow the representation of each set T_j as a rectangle in the two dimensional lattice.

The algorithm we give first determines all maximal subsets S of \mathcal{T} such that the sets

can be represented as intervals in the points of S. A modification of the algorithm in Newsletter 94 is given for this part. The next step is to pick the minimal number of disjoint sets, each of which is a subset of a maximal set whose union is all of T. We do not specify an algorithm for this part. We invite the reader to choose one from the literature.

We now indicate how to modify the algorithm in Newsletter 94. Suppose that k-l sets have been considered, by the process specified in Newsletter 94, without determining that simultaneous representation of these k-l sets as interval is impossible. At this stage, we have calculated a sequence of sets

 $R_1, R_2, ..., R_{l}$

so that each of T_1 , T_2 , ..., T_{k-1} is an interval in any ordering of the elements of $\bigcup_i R_i$ in which each element of R_j precedes each element of R_{j+1} . We consider the remaining sets T_k , T_{k+1} , ..., T_n , the class of exceptional sets, and the union $T = UT_j$ as the "state variables" of the calculation. If UR_i is a proper subset of T_k or T_k is a proper subset of some R_i , then T_k is added to the collection of exceptional sets and T_{k+1} is then considered. If T_k is not exceptional, T_k is used to refine R_1, R_2, \ldots, R_k in a unique way so that all orderings of the elements of T_1, \ldots, T_k are contained in the sequence

$$R_1', R_2', \ldots, R_{\ell}'$$

Such a refinement exists if the indices of the sets R_i , which T_k intersects nontrivially, form an interval. That is, T_k intersects all R_i when i ε [min,max] and T_k covers all R_i for i ε (min,max). Then R_{min} is replaced by $R_{min}-T_k$, $R_{min} \cap T_k$, and R_{max} is replaced by $R_{max} \cap T_k$, $R_{max} - T_k$. The algorithm in the case that T_k contains elements not in $\bigcup_i R_i$ is explained in Newsletter 94.

If T_k is not exceptional and the sequence cannot be refined, each set R_{\min} , $R_{\min+1}$, \ldots , R_{\max} is split by T_k into at most two sets, $R_i \cap T_k$ and $T_k - R_i$. For at least one i, $T_k - R_i$ is not empty. We construct a family of maximal sets, T_1 , T_2 , \ldots , T_k so that the restrictions to T_i , $i=1,\ldots,\ell$, of T_1 , T_2 , \ldots , T_k can be represented as intervals. We then constitute ℓ separate problems. A problem is determined by the state variables, T_i , the former exceptional sets restricted to T_i , the restrictions to T_i of the sets T_1 , T_2 , \ldots , T_k , and a portion R_1^i , R_2^i , \ldots , R_k^i which is calculated from the restriction of R_1, R_2, \ldots, R_k to T_i . The algorithm is then used separately on each of these smaller problems. It is possible that each problem will be split again by the repeated applications of the algorithm.

The algorithm produces a finite collection of sets S_1, S_2, \ldots, S_r together with a sequence for each which contains implicitly all orderings for which each of

T₁ ∪ S_j, T₂ ∪ S_j, ..., T_m ∩ S_j

is an interval. A single set UT_j is produced, if an ordering of UT_j exists, so that each of T_1 , T_2 , ..., T_k is an interval.

We now describe the process for determining the sets $T_1, T_2, \ldots, T_{\ell}$, when a single refinement of $R_1, R_2, \ldots, R_{\ell}$ does not exist. If there are members $R^* = T_k - \bigcup R_i$ then the process is performed first on the partition $R^*, R_1, \ldots, R_{\ell}$ and then on the partition $R_1, R_2, \ldots, R_{\ell}, R^*$. T_k divides each R_i into $R_i \cap T_k = R_i^{in}$ and $T_k - R_i = R_i^{out}$. We let min and max denote the minimum and maximum indices for which $R_i^{out} \neq \emptyset$. Then the sequence R_i is refined to

$$R_1^{out}, R_2^{out}, \ldots, (R_{\min}^{in}, R_{\min}^{out}), \ldots, (R_i^{in}, R_i^{out}), \ldots, R_\ell^{out}$$

If a single refinement were possible there would be at most two sets R_{min} and R_{max} for which each of $R_{.}^{in}$ and $R_{.}^{out}$ were not empty.

For each pair of indices i < j, for which R_i^{out} and R_j^{out} are not empty, a set $T_{i,j}$ is formed from the union of

$$R_1^{out}$$
, ..., R_i^{out} , R_i^{in} , R_{i+1}^{in} , ..., R_j^{in} , R_j^{out} , R_{j+1}^{out} , ..., R_{ℓ}^{out}

The partition $R_1^{i,j}$, $R_2^{i,j}$, ..., $R_\ell^{i,j}$ can be calculated from R_1 , R_2 , ..., R_ℓ by forming the intersection of each R_i with $T_{i,j}$. When an intersection is empty, the neighbors are replaced by a single set consisting of the union of these two sets.

We detail the functions of the principal routines and data structures:

```
workpile: set contains tuples of state variables of
    the form
    <partition, universalset, remainset, exceptsets>
```

partition: the sequence R_1, R_2, \ldots, R_k represented as a tuple

universalset: UR_i

remainset: $\{T_k, T_{k+1}, \ldots, T_n\}$, sets not yet considered

exceptsets: the exceptional sets

addset: argument is an element of *workpile* an element of *remainset* is applied to *partition*

```
We start with T<sub>1</sub>, T<sub>2</sub>, ..., T<sub>n</sub> in tset.
workpile = <u>nl</u>; maxsets = <u>nl</u>;
set from tset;
<<set>, set, tset, <u>nl> in</u> workpile;
(while workpile <u>ne nl</u>)
```

```
tuple from workpile;
if tuple(3) eq n1 /* remainset eq n1 */
then /* add exceptional sets */
if tuple(4) is tuple(3) eq n1
then tuple(1:2) in maxsets;
continue while;
else tuple(4) = n1;
endif;
endif;
```

```
addset (tuple);
```

end while;

```
/* maxsets contains < partition, univset > such that T_1, T_2, \ldots, T_n relativized to univsets are intervals - use any algorithm for extracting a minimal collection of univsets */
```

```
define addset (tuple);
<listsets, union, remainset, exceptsets> = tuple;
x from remainset;
savelistsets = listsets;
```

flow

exceptg?

inexcept+ extraelts? inworkpile onsmallend? calcints+ onsmall+ onbig+ calcints calcints

nexcepts?

conflict? inexcept+ inworkpile makinsert+ manysets inworkpile exceptg:= x ge union or x*union eq n1; inexcept:= x in exceptsets; continue \V x; extraelts:= x - union is xtraelts ne nl; onsmallend:= x*listsets(1) ne nl and n x*listsets(#listsets) eq listsets(#listsets); onsmall:= listsets=<xtraelts>+ listsets; union = union+ xtraelts ; onbig:= listsets = listsets +<xtraelts>; union = union + xtraelts; calcint:= indicescov = {lset,lset ε listsets | lset*x eq lset}; indicessub = {lset,lset ε listsets | lset*x ne nl}; $minml = ([min:y \in indicescov]y]) - 1;$ $maxpl = ([max:y \ \varepsilon \ indicessub]y) + 1;$ nexcepts:= indicescov eq nl and #indicessub eq l; /* x is a subset of some member of listsets and is therefore exceptional if above is t */ conflict:= n (interval (indicescov) and indicessub lt (indicescov + {minml, maxpl})); /* if true then create more maximal sets */

-7-

```
makinsert:
  if (minml \varepsilon indicessub)
    then listsets = listsets(l:minml-l) +
         <listsets(minml)=x,listsets(minml)*x> +
          listsets(minml+1:);
  endif:
  if (maxpl \varepsilon indicessub)
    then listsets = listsets(l:maxpl-l) +
         <listsets(maxpl)*x, listsets(maxpl)-x> +
          listsets(maxpl+1:);
  endif;
inworkpile:
<listsets, union, remainset, exceptsets> in workpile; return;
manysets:
  if (xtraelts ne nl)
    then makstatevar(x, <xtraelts> + savelistsets);
       savelistsets = savelistsets + <xtraelts>;
  endif;
  makstatevar(x,savelistsets);
  return;
  endflow;
end addset;
definef makstatevar(x,listsets);
intuple = [+ : l < j < #listsets] <listsets * x> ;
outtuple = [+ : 1 < j < #listsets] <x-listsets> ;
(min < ∀i < max)
  (i < ∀j < max | jlt max imp (outtuple(j) <u>ne nl</u>)
newstatevar(i,j) in workpile
  end ¥j;
end ∀i;
return;
```

```
We now give code for the function
definef newstatevar(i,j);
/* intuple, outtuple, exceptsets, remainsets are global */
partition = outtuple(1:i) + intuple(i:j) + outtuple(j:);
  univset = [+ : l<j<#partition] partition (j);</pre>
/* the new maximal set */
/* suppresses nl in partition */
  first = if (1 \le j \le \# \text{ partition} \mid \text{ partition}(j) = \underline{nl})
           then \overline{j} else \Omega;
  newseq = partition(first) ;
  j = first + 1;
(while j le \# partition doing j = j + 1;)
  if partition(j) eq nl
    then newseq(#newseq) = newseq(#newseq) + partition(j+1);
      j = j + 1;
    else newseg = newseg + <partition(j)>;
  endif;
endwhile;
```

```
newremain = {x * univset, x ε remainset};
newexcept = {x * univset, x ε exceptset};
return <newseq, univset, newremain, newexcept>;
end newstatevar;
```

```
definef interval(setofintegers);
/* determines if input set is an interval */
if (#setofintegers <u>le</u> l) then return <u>t;;</u>
minset = [<u>min</u>, i & setofintegers] i;
maxset = [<u>max</u>, i & setofintegers] i;
return (setofintegers <u>eq</u> {i, minset<i<maxset});
end interval;</pre>
```