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1. Introduction 

We describe an extension of SETL, APL-SETL which 

contains primitives similar to, 1those of Iverson' s APL. 

We use the mechanisms in SETL Newsletter 76 for the 

specification of the semantics of subroutine and function invo­

cation as a function of the types of the arguments. APL-SETL 

differs from Iverson's APL language in minor ways. The from 

and kind declarations defined and discussed in SETL NL 76 

are our vehicles for defining APL-SETL. 

APL provides four classes of primitive operators 

monadic and dyadic functions on scalars and arrays, reduction, 

inner and outer product, and primitive mixed functions. We 

will treat each of these classes of operators in turn giving 

for each a block of declarations, i.e. kind and from state­

ments. We will also give code in SETL for effecting the 

semantics of some of the primitives in each group. We put 

aside the issue of right-to-left (execution order which 

we feel to be of relatively small consequence. The left to 

right parse of SETL will be assumed. 

APL provides scalars and arrays as data types. The 

scalars may take on as values either real numbers or one of 

the boolean primitives,! and f. The components of an array 

must be either real numbers, boolean primitives,or characters. 

In addition, the components of an array must be of a single 

type. We remark at this point that the real number '3.14' is 

not implemented in the same way as is the array whose only 

component is '3.14', although in many APL primitives the 

latter may be used instead of a scalar. 

Real numbers will be the usual SETL objects as will be 

the boolean primitives t and f. These objects will be said 

to be of kind real and bool. Arrays will be either of kind 

aplarray, boolarray, and chararray if their components are 

real numbers, boolean primitives or characters respectively. 

Variables belonging to one of these classes will be generically 

termed arrays, whereas scalars whether of kind real or bool 

will be said to be scalars. The arrays with no components 
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will be called empvector. We do not specify that empvector 

belongs to any of the classes aplarray, boolarray, or 

chararray. 

An array of kind aplarray, boolarray and chararray is 

indexed by a finite number of indices which may vary dynami­

cally throughout the execution of a program. Hence the 

number of indices and the range of each must be retained 

throughout the execution of a program. We choose to repre­

sent an object of kind array as a SETL pair. The first 

component of each pair is a tuple which determines the number 

of indices and the range of each index. The second component 

of an object of kind aplarray is a tuple whose components 

are the elements of the array. For example, the array 

( 

where s .. is the component in the l-th row and j-th column 
1. J 

would be implemented as 

<< 2 , 3>, <sll'sl2'sl3's2l's22's23>> 

The tuple <2,3> indicates that the first index takes on the 

values 1 or 2 and that the second index varies from 1 to 3. 

In the following we will asswne that 1 is the origin of all 

indices. That is, the least value of each index is one, not 

zero. This restriction simplifies the exposition. Note that 

the components of each array are ordered in row major order, 

i.e. the last index varies most rapidly. 

Similarly, objects of kind boolarray are implemented as 

a pair of the form 

<dimvector,bstring> 

where dimvector is a tuple of the form of the first component 

of an object of kind aplarray. bstring is a SETL bit string, 

i.e. a string of boolean !'sand f's, and is said to be 

of kind bitstring. Items of kind chararray are implemented 

similarly. However the second component is a character string, 

which is of kind charstring. 
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We first give a block of declarations which contains this 

structural information. 

from ti aplarray get tuplescal; 

from tuplescal(integer) get real; 

from tt boolarray get bitstring; 

from bitstring(integer) get bool; 

from tt chararray get charstring; 

from hd array get dimvector; 

from dimvector(integer) get integer; 

2. Monadic and Dyadic Arithmetic Primitives 

We begin by discussing our implementation of the monadic 

and dyadic arithmetic operations. APL allows expressions 

of the form 

numberpassed +- numberpassed (-+: (grade > 70) 

The boolean valued expression (grade> 70) is treated as the 

real number 1 if the value of the boolean expression is true 

and zero, otherwise. Our choice for the representation of 

objects of kind bool and boolarray as pairs containing SETL 

bit strings is an efficient representation of bit strings. 

This representation forces conversion of objects of kind bool 

to objects of kind real prior to evaluation of an expression 

of the form above. This conversion could be avoided if objects 

of kind bool and boolarray were implemented alternatively as 

a restricted class of objects of kind real and aplarray 

respectively. That is, the real number 1 would represent t 

and the real nwnber O would represent!_. We choose the 

economical representation of objects of kind boolarray and 

pay the expense of making conversions as required. 

In APL source text an expression of the form 

... a+b 

may occur at a time when each of a and bis either a scalar 

or an array. If one argument is a scalar, that scalar is 
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treated as an array each of whose components is that scalar 

of the same dimensions as the other argument and the 

calculation is performed by adding the components pairwise. 

An array which contains a single element is treated as a 

scalar for the purposes of these conformability considera­

tions. 

The APL primitive reduction will produce a scalar 

result, if the operands are vectors, i.e. indexed by a single 

index, or an array if the operand has more than one index. 

Other primitive mixed functions produce a result 

the number of whose indices is different from that of the 

argument. In particular, compression prod~ces an array, 

the number of whose dimensions depends on one of the arguments. 

Rather than require the user of APL-SETL to correctly 

distinguish between scalars and arrays,we dynamically 

determine whether an argument is q~ array or a scalar. 

For example, prior to evaluating 

. . . a+b ... 

a and b must be examined to determine if the number and range 

of the indices of each array are compatible. 

On the other hand, it is not difficult for the reader 

to specify if a variable is of kind real, bool, or char, 

because each APL primitive produces unambiquously a result 

of one of these three classes. Namescopes may be used as logical 

parentheses which will allow the type of the value of a token 

to change from real to bool. 

for expressions of the form 

Hence, we require it to be possible 

real+ bool 

to be distinguised in the source code from expressions of the form 

bool + real 

or bool + bool 

We outline declarations with all of these combinations of kinds 

of arguments. The compilation process will include code for 

making conversions where required. 
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We now give a complete set of declarations which provide 

the semantics of the monadic and dyadic infix operators 

applied to two scalars each of which is of kind real. 

We have used symbols ~and? as infix operators. To 

realize APL-SETL in an environm=nt which does not recognize 

these as infix operators, the reader should substitute 

tokens like star and question. 

from+ real get real using scalplus; 
II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

X 

r 
L 
* 

? 

II II 

II II 

II II 

II II 

II II 

II II 

II II 

II II 

II II 

II II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

II 

scalnegative; 

scalsignum; 

scalreciprocal; 

scalceiling; 

scalfloor; 

scalexponential; 
'( 

scalnatlog; 

scalmagnitude; 

scalfactorial; 

scalroll; 
11 0 11 11 11 11 scalpi times; 

from~ bool get bool using scalnot; 

from real+ real get real using scaladd; 
II II 

II II 

II II 

II II 

II II 

II II 

II II 

II II 

* 
I 

r 
L 
* 

II 

II 

II 

II 

II 

II 

II 

II 

II II 

II II 

II II 

II II 

II II 

II II 

II II 

II II 

II 

II 

II 

II 

II 

II 

II 

II 

scalminus; 

scaltimes; 

scaldivide; 

scalmaximum; 

scalminimum; 

scalpower; 

scallogarithm; 

scalresidue; 
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from real real get aplscalar using scalbinomial; 
II II 0 H II II II scalcircular; 
II II < II II bool II scallt; 

" II < II II II II scalle; 
II II II II II II scaleq; = 
II If > II II II " scalge; 
If II > II II II II scalgt; 
II II -I II II II II scalne; 
If bool A bool II II II scaland; 
If " V II II If II scalor; 
II II * II II II II scalnand; 
II II ~ II II II II scalnor; 

Most of the routines required by the declarations 

made above are available by modification of FORTRAN library 

routines. 

These operations on scalars are extended in APL to 

operations on arrays. An expression of the form 

a+b ... 

is admissible when a and bare arrays or scalars only if 

a and bare conformable. If a and bare both arrays, the 

number of indices and the range of each index must be the 

same for each of a and b. The exception to this is the case 

that one of the arguments is an array which contains a single 

component. In this case, this argument is treated as though 

it were a scalar. One of the arguments, for example a, can 

be a scalar in which case, this argument is handled as though 

it were an array bf the same shape as b each of whose compon-

ents is equal to the scalar. It is possible that each of 

a and bis a scalar. Testing for conformability is done 

dynamically in each of the routines mentioned below. 
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For the cases that one or more arguments is of type bool 

additional declarations are required. These can be produced 

mechanically from the statements we gave above. 

examples of these.,declarations. 

from real + bool get real using scaladdfarg; 
II bool + real " II II scaladdsarg; 
II bool + bool II bool II scaladdboth; 

and 

from boolarray + aplarray get aplarray using 
II aplarray + boolarray II boolarray II 

II boolarray + II II II II 

We now give 

addfarg; 

addsarg; 

addboth; 

We now indicate the code required to implement the dyadic 

arithmetic primitives in arrays. :~he arguments of each 

primitive must be conformable arrays. 

conformable if their dimension 

Two arrays are 

vectors are 

identically the same, both are scalars, or one of the 

arguments is a scalar or an array with a single component. 

In the latter case, the argument is treated as if it were 

an array of the same shape as the argument which is equal 

to a constant in each component. The case of two scalars 

may occur and is handled by an invocation of the primitive 

designed for the scalar case. If the arguments are not 

conformable, empvector, the array with no components, is returned. 

We now give the routine which determines if two arrays 

are conformable. If only one argument is a scalar conformable 

returns implicitly an array of the correct dimensions each 

of whose components is that scalar. 
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definef conformable(argl,arg2); 

/* atype determines if argument is 'scalar' or 'array' */ 

initially where= {<!,!,botharr>, <i,!,fscal>, 

<!,i,secscal>,<f,i,bothscal>};; 

firstargarray = atype(argl) ~'array'; 

secargarray = atype(arg2) ~'array'; 

go to where(<firstargarray,secargarray>) 

botharr: if(hd argl) ~ (hd arg2) 

then return <'both arr' , tt argl, tt arg2, 

end if; 

return if hd argl ~ <l> 

then <'firstargscal', (t.Q, argl) (1), tt arg2, 

else if hd arg2 ~ <l> 

then <'secondargscal', tt argl, (t.Q, argl) (1) , 

else <'notconformable'>; 

hd argl>; 

hd arg2>; 

hd argl>; 

fscal: return <'firstargscal', argl, tt arg2, hd argl>; 

secscal: return <'secscal', tt arg2, arg2, hd arg2>; 

bothscal: return <'bothscal', argl, arg2>; 

end conformable; 

Four functions are required to implement the addition 

of two arrays, that is, add, addfarg, addsarg, and addboth. 

We give a macro for generating all four of these 

functions. 
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macro dextend(arrfn, mod, scalfn, convl, conv2); 

definef arrfn ➔ mod(a,b); 

initially where= {<'notconformable' ,notconfom>, 

<'firstargscal' ,firstscal>,<'secondaryscal' ,secscal>, 

<'bothscal' ,bothscal>,<'botharr' ,botharr>};; 

resconform = conformable(a,b); go to where(hd resconform) 

notconform: return empvector; 

bothscal: <-,a,b> = resconform; 

return scalfn (a,b); 

firstscal: <-,a,b,dimres> = resconform; 

valresult = [+: 1 ~ j < #b]<scalfn (convl(a) ,conv2(b(j) ))>; 

return <dimres,valresult>; 

secscal: <-,a,b,dimres> = resconform; 

valresult = [+: 1 ~ j < #a]<scalfn (convl(a(j)), conv2(b))>; 

return <dimres,valresult>; 

botharr; <-,a,b,dimres> = resconform; 

valresult = [+: l ~ j ~ #a]<scalfn (convl(a(j)), conv2(b(j)))>; 

return <dimres,valresult>; 

end add; 

endm; 

The functions convl and conv2 will perform conversion 

of scalars of type bool to scalars of type real as required 

by the types of the arguments. 

We avoid, in this style, the construction of an array 

whose components are the same scalar and then the subsequent 

extraction of those components. 
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The reader will recognize that expansion of the 

following macro will generate code for add, addfarg, 

addsarg, and addboth. 

{<~,1.0>, <f, 0.0>}. 

Convert is the global set 

macro extendall(scalfn,arrfn); 

endrn; 

dextend(arrfn,,scalfn,,); 

dextend(arrfn, farg, scalfn, convert,); 

dextend(arrfn, sarg, scalfn,, convert); 

dextend(arrfn, both, scalfn, convert, convert); 

We give the expansion for add. 

definef add(a,b); 

initially where= {<'notconformable',notconform>, 

<'firstargscal' ,firstscal>,<'secondaryscal' ,secscal>, 

< 1 bothscal 1 ,bothscal>,<'botharr' ,botharr>};; 

resconform ~ conformable(a,b); go to where(hd resconforrn) 

notconform: return empvector; 

<-,a,b> = resconform; 

bothscal: 

firstscal: 

return scaladd{a,b); 

<-,a,b,dirnres> = resconforrn; 

valresult = [+: 1 ~ j < #b]<scaladd(a,b(j))>; 

return <dirnres,valresult>; 

secscal: <-,a,b,dirnres> = resconforrn; 

valresult = [+: 1 ~ j < #a]<scaladd{a{j) ,b)>; 

return <dirnres,valresult>; 

botharr; <-,a,b,dimres> = resconform; 

valresult = [+: 1 ~ j < #a]<scaladd(a(j) ,b(j))>; 

return <dirnres,valresult>; 

end add; 
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Similarly the remaining functions which we require can be 

obtained by expanding this macro with different values for 

the arguments. We give a partial listing of such 

functions. 

extendall(add,scaladd); 

extendall(minus,scalminus); 

extendall(nequal,scalnequal); 

The remaining lines required should be clear to the 

reader. 

For the algorithms given in SETL NL 76 to interpret 

correctly a construction like 

a + b 

whffire a is a scalar of type real and bis an array of 

type aplarray, we include reversion stipulations 

revert real(aplarray); 

revert bool(boolarray); 
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3. Reduction, inner product, and outer product. 

We now discuss the implementation of the reduction, 

inner product, and outer product primitives, The syntax 

in APL of the reduction primitive is fjv where f is a 

system supplied dyadic function like +, *,or~; and 

vis a vector. The result is the scalar v(l) f f(2) i 
An array indexed by more than one index may be reduced 

along the i-th coordinate by a construction of the form 

f/[i]a. The result is an array of one fewer dimensions. 

If no coordinate is specified, reduction is made along the 

last coordinate. If v or a is a scalar at run time, the 

result is the identity element for the function which is the 

other argument. Our construction will allow a user supplied 

routine to be used in the reduction primitive in addition to 

system supplied primitives. 

We consider only those functibns whose arguments are 

of kind real and whose result is of kind real. The modifica­

tions required to permit objects of kind bool to be arguments 

of real functions and to include functions whose result is of 

kind bool are mechanical in nature and should be clear from 

the remarks above. 

We use 

fn slash v 

as the form of the reduction primitive in APL-SETL which 

replaces the APL syntax 

fn/v 

The function fn must be a dyadic operator. To reduce along 

the i-th coordinate, we use 

fn slash <i,a> 

This replaces the APL construction 

fn/[i]a 
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We now give declarations to support the reduction 

primitive in APL-SETL. 

from <integer, aplarray> get indexaplobj; 

fromf realfn slash aplarray get aplarray using dreduction; 

fromf realfn slash indexaplobj get aplarray using reduction; 

Realfn is a kind which designates the class of functions for 

which the arguments and result are of kind real. 

We suggest at this time a variant of the from declara­

tions discussed in SETL NL 76. The statements 

from a~ b get typec using newop 

from f(a,b) get typed using newfn 

cause the code fragments 

<call, fneval, newop, a, b, t
1

> 

<call, fneval, newfn, a /l PI t2> 

to replace 

<call, fneval, Op I a, b, tl> 

<call, fneval, f, a, b, t2> 

The routine fnevaZ- detennines if for op is a set or a 

coded function as a preliminary to determining the code 

(1) 

sequence to execute to interpret each code fragment. 

We propose a class of declarations of the form 

fromf a~ b get typec using newop 

fromf f(a,b) get typed using newfn 

which cause the code fragments 

<call, newop, op, a, b, t
1

> 

<call, newfn, f, a, b, t
2

> 

to replaQ::! (1). The result of this new class of declarations 

is that the function (op or f) becomes an argument to the 

routine mentioned in the using clause rather than being 

replaced. The modification of the other from 

clauses should be clear as is the requirement to modify 

the algorithms in section 7 of SETL NL 76. 
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_With this vehicle for user specification of the semantics 

of functions and subroutines, we include the inner product 

primitive which appears in APL as 

af.gb 

where f and g ~re system supplied primitives. 

We mime this in APL-SETL as 

a f dot~ b 

where f and g are any dyadic infix operatorsy and dot is a 

distinguished token. In APL-SETL this will be passed as 

(a f dot) g_ b 

To support this we give the declarations 

fromf aplarray realfn det get realpair using makpair; 

fromf realpair realfn aplarray get- aplarray using innerprod; 

will cause a i dot to be evaluated by makpair (f ,a,dot) 

which returns the SETL pair <a,f>. The routine innerprod 

will then have arguments g, <a, f> and b on which the 

algorithm for inner product can be implemented. 

The APL-SETL syntax for outer p.:i::oduct is 

a circle dot f b 

This mimes the APL construction 

The declarations required are 

fromf a circle dot get aplobj using getleftarg; 

fromf aplobj realfn aplarray get aplarray using outerprod; 

Objects of kind aplobj are represented in the same manner as 

objects of kind aplarray but are distinguished so that the 

second declaration will cause the invocation of outerprod. 

We do not give code for innerprod, outerprod, or reduction. 

The semantic effect should be clear. Techniques for encoding 

these routines can be found in the next section on primitive 

mixed functions. 
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4. Primitive Mixed Functions 

a. Declarations 

We now discuss the implementation of the primitive mixed 

functions. page 3.38, IBM publication APL/360-OS 

and APL/360-DOS Users Manual (GH 20-0906-0) contains a complete 

list of these primitives. In the declarations below 

we indicate which arguments are vectors~ which are arrays 

indexed by a single index, by the tokens aplvector and 

boolvector. These tokens are synonyms for aplarray and 

boolarray respectively. We will use the distinction in our 

discussion at the end. 

We give declarations for all of the primitive mixed 

functions with the exception of the index primitive which is 

discussed in the next section on sinister constructs. 

We give declarations when the arguments are of kind 

aplarray and boolarray. The extensions to chararray 

are left to the reader. As above, we use the APL designators 

for these infix operators. Suitable tokens should be substituted 

when the sysmnis used in an environment which does not support 

these designators as infix operators. 

alias aplvector, aplarray; alias boolvector huularray; 

size: from p array get aplvector using size; 

reshape: from aplarray p aplarray get aplarray using reshape; 

from aplarray p boolarray get aplarray using reshape; 

ravel: from, aplarray get aplvector using ravel; 

catenate: from aplarray,aplarray get aplarray using catenate; 

from boolarray,boolarray get boolarray using catenate; 

indexgenerator: from 1 real get aplarray using indexgen; 

indexof: from aplvector 1 aplarray get aplvector using indexof; 

from boolvector 1 boolarray get aplvector using indexof; 

take: from aplvector t aplarray get aplarray using take; 

from aplvector t boolarray get boolarray using take; 
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Name Sign 1 Definition or example 2 

Size pA pP +-+ 4 p E +-+ 3 4 pS +-+ l 0 

Reshape VpA Reshape A to dimension V 3 4p l 12 +-+ E 
12pE +-+ l 12 0pE +-+ l 0 

Ravel ,A ,A +-+ (x/pA)pA ,E +-+t12 p , 5 +-+ 1 

Catenate V,V p, \ 2 +-+ 2 3 5 7 1 2 IT'' I HIS' +-+ I THIS' 
V[ A] - P[2] +-+3 P[4 3 2 1] +-+7 5 3 2 

Index 3 4 M[ A; A] E[1 3 ; 3 2 1 J +-+ 3 2 1 
► 11 10 9 

A [A; . . E[ 1;] +-+ 1 2 3 4 • ABCD 
. , ; A] E[ ; 1] +-+ 1 5 9 'ABCDEFGHIJKL'[E] +-+ EFGH 

. IJKL 
Index tS First S integers t 4 +-+ 1 2 3 4 
generator3 l 0 +-+ an empty vector 

Index of 3 V1A Least index of A Pt3 +-+2 5 1 2 5 
in v, or 1+p V PtE +-+ 3 5 4 5 

4 4 t 4 +-+ 1 5 5 5 5 
Take VtA } Take ( drop I IV[ I] first 2 3tX +-+ ABC 

elements on coordinate EFG 
Drop V+A I. (Last if V[I]<0) - 2tP +-+ 5 7 
Grade up5 iA }The permutation,which !3 5 3 2 +-+ 4 1 3 2 

would order A (ascend-
Grade down5 VA ing or descending) V3 5 3 2 +-+ 2 1 3 4 

1 3 
Compress 5 VIA 1 0 1 0/P +-+ 2 5 1 0 1 0/E +-+ 5 7 

9 11 
1 ,Q 1/[1]E +-+ 1 2 3 4 +-+ 1 0 1/E 

9 10 11 12 

Expand5 A BCD 
V\A 1 0 1 \ 1 2 +-+ 1 0 2 1 0 1 1 1\X +-+ E FGH 

I JKL 
DCBA IJKL 

Reverse 5 q)A <!>X +-+ HGFE q)[l]X +-+ GX +-+ EFGH 
LKJI (j)P +-+ 7 5 3 2 ABCD 

BCDA 
Rotate5 A <PA 3<PP +-+ 7 2 3 5 

-+-+ 1(j)P 1 0 -1<!>X +-+ EFGH 
LIJK 

AEI 
VQA Coordinate I of A 2 1QX +-+ BFJ 

becomes coordinate CGK 
Transpose V[ I] of result 1 1QE +-+ 1 6 11 DHL 

QA Transpose last two coordinates ~E +-+ 2 1 Ci/ E' 
u 1 1 0 

Membership A€ A p WE:Y +-+ pW EE:P +-+ 1 0 1 0 
PE: t 4 +-+ 1 1 0 0 0 0 0 0 

Decode V .L V 1 0 .L 1 7 7 6 +-+ 1776 24 60 6011 2 3 +-+ 3723 

Encode VTS 2 lf 60 60T3723 +-+ 1 2 3 60 60T3723 +-+ 2 3 
Deal 3 S?S {✓ ? y ~--+ Random dea 1 of w elements from l J 

Table 3.8: PRIMITIVF. MIXED FUNCTIONS 
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drop: from aplvector + aplarray get aplarray using drop; 

from aplvector + boolarray get boolarray using drop; 

gradeup: from ~ aplarray get aplvector using gradeup; 

from 4 boolarray get aplvector using gradeup; 

gradedown: from + aplarray get aplvector using gradedown; 

from ~ boolarray get aplvector using gradedown; 

compress: from aplvector I aplarray get aplarray using compressconv; 

from boolvector/ aplarray get aplarray using compress; 

from aplvector / boolarray get boolarray using compressconv; 

from boolvector/ boolarray get boolarray using compress; 

expand: from aplvector I aplarray get aplarray using expandconv; 

from boolvector/ aplarray get aplarray using expand; 

from aplvector / boolarray get boolarray using expandconv; 

from boolvector/ boolarray gE;t boolarray using expand; 

reverse: from qi aplarray get aplarray using reverse; 

from qi boolarray get boolarray using reverse; 

rotate: from aplvector qi aplarray get aplarray using rotate; 

from aplvector qi boolarray get boolarray using rotate; 

trans,eose: from aplarray ~ aplarray get aplarray using transpose; 

from aplarray ~ boolarray get boolarray using transpose; 

from i;6 aplarray get boolarray using transposed; 

from ~ boolarray get boolarray using transposed; 

membership: from aplarray E aplarray get boolarray using memberof; 

decode: from aplarray T aplarray get real using decode; 

encode: from aplarray _J_ aplarray get aplvector using encode; 
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We give code in SETL for all of these primitives but 

for reverse, rotate, transpose, deal, and membership. 

The techniques in the code for the primitives that we 

implement can be used to implement these other primitives. 

b. Implementation 

We first give code for a routine lookup which extracts 

a component of an array, i.e. whidl calculates a(i
1
,i 2 , ... ,ik) 

where k is the rank of a, that is the number of indices of 

the array a. Next, we give the sinister version of this 

routine. In lookup each of i
1
,i2 , ... ,ik must lie between 

1 and the maximum index of a in that component. Violation of 

this constraint in the dexter format results in~ being 

returned. In a sinister construction, a noop results. 

The function linearloc(a,dimv~dtor) calculates the 

position in ti a of the component whose indices are the 

components of dimvector. We provide this as a separate 

routine to isolate this feature which is dependent upon 

the implementation of objects of kind array. We remark 

we have chosen a representation of arrays in which the last 

index varies most rapidly. 
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define£ lookup(a,dimvector); 

(load) 

return if linearloc(a,dimvector) is where~~ 

then~ else (t£ a) (where), 

end load; 

(store t) 

if linearloc(a,dimvector) is where ne ~ 

then (t£ a) (where) = t;; 

return; 
end store; 
end lookup; 

define£ linearloc(a,dimvector); 

dima = hd a; 

/* check that dima and dirnvector are conformable*/ 

if not((#dima ~ #dimvector) and 

[and: 1 < j < #dima] (1 le dimvector(j) and dimvector(j) 

then return~; 

endif; 

le dima ( j) ) ) 

/* calculate location in t£ a of elements with indices 
dimvector */ 

where= dimvector(l) - l; 
(1 < \lj < #dima) 

where= where* dima(j) + dimvector(j)-1; 

end \f j; 

return (where+l); 

end linearloc; 
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In the following discussion, we use the kindtype 

vector to designate an array of kind real, booi, or char 

which is indexed by a single coordinate. Similarly, 

we use the kindtype matrix to designate an array referenced 

by two indices. We now give macros for checking the types 

of arguments of the SETL implementation of APL primitives. 

We give one macro for checking that a variable 

is a vector. The action upon detection of an error is 

to return empvector. 

macro cvector(arg); 

/* check that arg is a vector the action upon the 

detection of an error is to return empvector */ 

if not ( #arg ~ 2 and # (hd arg) ~ 1) 

then return empvector; 

endif; 

We now give a similar macro in which the second 

parameter is a SETL code fragment which specifies the action 

to be taken upon the detection of an error. 

macro cvector2(arg,altaction); 

/* check that arg is a vector - altaction is a SETL code fragment 

which specifies the action to be taken on the detection of an 

if not (#arg ~ 2 and #(hd arg) ~ 1) 

then altaction; 

endif; 

endm; 

error*/ 
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We also give a macro which determines if an argument is a 

scalar of kindj r$aZ.,-.. or is an array with one component. In the 

latter case the scalar is extracted and made available for 

subsequent processing. 

macro cscalar(news,olds); 

/* news is the value of the scalar contained in olds*/ 

news= if #olds ~ 2 and #olds(2) ~ 1 

then (ti olds) (1) else olds; 

if~ news ne real then return empvector;; 

endm; 

We give a macro to determine if a variable is an 

We do not check the type of each component. 

macro carray(arg); 

if #arg ~ 2 and~ arg(l) ~ tuple and 

~ arg(2) ~ tuple then continue; 

else return empvector; 

endm; 

.array. 

Now we give code for the decode primitive which produces 

a single object of kind real from an aplvector whose 

components are the representation of thatscalar in the number 

system designated by the second argument. The second argument 
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may be either a vector or a scalar. In the latter case, 

the number system is powers of that scalar. 

Note that _an array with a single component 

as a scalar. 

define£ decode(vector,radix); 

kind radix(aplarray); kind vector(aplarray); 

cvector(vector); 

is treated 

cvector2(radix,go to scalar); /*if radix not a vector 

then go to scalar*/ 

if #radix(2) ~ 1 then radix= radix(2,1) go to scalar;; 

Valr = radix(2); valv = vector(2); 

if #valr .<J.! (#valv+l) then return empvector;; 

/* conformability error*/ 

result= valr(#valv); 

(#valr > Vj > 1) result= ~esult * valv(j) + valr(j) ;; 

return result; 

/* number system is powers of a scalar*/ 

scalar: if ~ot(~(radix) ~ real)then return empvector;; 

rad= radix; kind rad(real); result(real); 

result= valr(#valr); 
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(#valr > Vj ~ 1) result=result*rad+valr(j) ;; 

return result; 

end decode; 

As rad and result have been declared to be of kind 

real, and valv is of kind aplarray, the multiplication 

and addition in the line 

result= result+ rad* valv(j) 

are compiled into invocations of $qalprod 

and scaladd. We now give code for encode which is an 

inverse to decade. 
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definef encode(v,sarg); 

/* check that sarg designates a scalar and v designates a vector*/ 

cscalar(s,sarg); cvector2(v, go to scalar); 

result= nult; first=l; tlv = ti v; product= tlv(l); 

while (product lt s) first=first+l; product=product*tlv(j) ;; 

result= nult; 

(first> ltj > 1) 

product= product/tlv(j) 

result= result+<floor(s/product) is s>; 

end ltj; 

return <<#result>, result>; 

scalar: cscalar(tlv,v); /* tlv is a scalar*/ 

result= nult; 

while(s ne 0) 

result= <s - floor(s/tlv) *tlv is s> + result;; 

return <<#result, result>>; 
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We now give routines for the size, reshape, ravel, 

and catenate primitives. The semantics of these primitives 

should be clear from the code. 

define£ size(a); 

carray(a); /* check that a is an array*/ 

return <<#(hd a)>, hd a>; 

end size; 

We remark that the object returned is of kind aplarray 

and is a vector. Next we give the reshape function. 

definef reshape(v,a); 

carray(a); cvector(v) 

tla = tl a; 

lengtha = #(t.Q, a); 
/* convert components to integers*/ 
lengthres = convscalint ( [*: 1 ~ j < #tl v] (t.Q, v) (j)) 

nrcopiesa = lengthres/lengtha; 

nrcompfrag = lengthres 

result= nult; 

nrcopiesa * lengtha; 

(1 < ~j < nrcopiesa) result=result+tl a;; 

result= result+ (tl a) (1: nrcompfrag) 
return <t.Q, v, result>; 
end reshape; 
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The ravel primitive is straightforward in the implementa­

tion that we have chosen. The result is always of kind vector. 

define£ ravel(a) 

carray (a); 

return <<#t£ a>, t£ a>; 

end ravel; 

The last of this group is the catenate primitive. 

define£ catenate(vl,v2); 

cvector(vl); cvector(v2) 

return <<hd hd vl + hd hd v2>, vl(2) + v2(2)>; 

end catenate; 

We now code the primitive indexgenerator which generates 

an aplvector whose components are the integers from 1 to 

its argument. 

define£ indexgen(olds); 

cscalar(s,olds); 

i = convscalint(s) 

/* converts scalar to SETL integer*/ 

if i ~ 0 then return empvector;; 

return <<i>, [*: 1 < k < i]<convintscal(k)>>; 

end indexgen; 

/* convintscal(·) changes a SETL integer to SETL real */ 

Now we turn to the indexof function which calculates 

the least index in a vector v of each component of an array a. 

The result is an array of the same shape as a. 
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definef indexof(vector,a); 

carray(a); cvector(vector); 

tlv = tl vector; 

tla = ti a; 

result= nult; 

(1 ~ Vj ~ #tla) 

result= result+ <if(l ~ 3k < #tlvjtlv(k) ~ tla(j)) 

then k else #(tlv)+l>; 

end Vj; 

return <hd a, convintscal[result]>; 

end indexof; 

The next primitive we implement is take which is 

written in APL as V t A. The· primitive take produces 

an array whose components are some of those of A. If V[I] 

is positive the first V[I] components of the Ith index of A are 

chosen. If V[I] is negative the last V[I] cornponets of the I-th 

component of A are chosen. 

definef take(vector,a); 

cvector(vector); carray(a) 

/* components of tlv are of kind 

tlv = convscalint[ti v]; 

minarg = nult, maxarq = nult; 

real - convert to integers*/ 

/* calculate minimum and maximum arguments*/ 

(1 ~ Vj ~ #tlv) 

if (tlv(j) is newi lt 0) 

then minarg = rninarg + <-newi+l>; rnaxarg=maxarg+<hda(j)>; 
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else rninarg = rninarg + <l>; rnaxarg = rnaxarg + <newi>; 

endif; 

end Vj; 

/* calculate dimension vector for result*/ 

dirnres = [+: 1 < j ~ #rninarg]<rnaxarg(j) - rninarg(j)>; 

<hda, tla> = a; 

/* iterate over all coordinates of a*/ 

indicesa = [*: 1 ~ j ~ #hda]<l>; 

k = l; result= nult; 

(while indicesa(l) le hda(l) 

doing indicesa = augrnent(indtcesa, hda); k=k+l;) 

if [and: l < j < #hda] (rninarg(j) le indicesa(j) and 

indicesa(j) le rnaxarg(j)) 

then result= result+ <tla(k)>; 

endif; 

end while; 

return <dimres, result>; 

end take; 
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The function augment increments the components of 

indesca using the dimension information contained in hda. 

Recall that the last index varies most rapidly in our 

implementation. 

definef augrnent(indices,dirnvector) 

j = #dimvector; 

indices(j) = indices(j)+l; 

(while indices(j) _g_!:_ dimvector(j) and j ~ 1 doing j=j-1;) 

indices(j) = l; 

indices(j-l)=indices(j-1)+1; 

end while; 

return indices; 

end augment; 

The drop primitive is implemented in terms of the take 

primitive. The routine negative(~! return the apZarray 

whose components are those of the argument with the sign 

changed. 

definef drop(vector,a ) ; 

return take(negative(vector) ,a 

end drop; 

The gradeup and gradedown primitives stand in the same 

relationship to each other as do the take and drop primitives. 

The code for these primitives follows. 

definef gradeup(vector) 

tlv = t.Q, vector; 

set= {<tlv(j) ,j>, l < j < #tlv}; 

sorttuple = sort(set); 

/* sort is a sorting algorithm which orders the first 

components of elements of set*/ 

return <<#set>, t£[sorttuple]>; 
end gradeup; 
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I* t Q, [ v ] is the tu p le < t Q, v ( l ) , t Q, v ( 2 ) , . . . > * / 

definef gradedown(vector); 

return gradeup(negative(vector)); 

end gradedown; 

We now turn to the compression primitive U/X. U should be 

a vector of kind boolarray or of kind bool in which case ~/X 

equals X and ~/X is empvectoP. Constructions of the form U/[I]A 

and U/A in APL result in compression occurring along the Ith 

coordinate in the former case and along the last coordinate 

in the case that no coordinate is specified. No declarations 

were made for these cases. The compression primitive eliminates 

those components of X or A for-which the corresponding entry U 

is f and retains the remainder. 

define£ compress(u,indexarray) 

<i, a> = indexarray; 

if u ~ t then return a; ; 

if u ~ f then return empvector; ; 

cvector(u); <-,tlu> = u; <hda,tla> = a; 

if i 9-!. #hda or hda(i) ne #tlu 

then return empvector;; 

/* iterate over all components of a*/ 

indicesa = [*: l ~ j ~ #hda]<l>; 

k = l; result= nult; 
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(while indicesa(l) le hda{l) 

doing indicesa = augment(indicesa,hda) 

if tlu(convscalint(hda(i))) 

then result= result+ <tla(k)>; 

endif; 

end while; 

k = k+l;) 

dimres = hda; dimres(i) = [+: 1 < j < #tlu/tlu(j)] l 

return <dimres, result>; 

end compress; 

The expansion primitive is similar, but where in the 

compression primitive components are elided, zeroes, f's, 

or blanks are inserted into the r~sult when the vector 

u contains an f. The appearance of ! in place of V 

in the original array being returned. We now give code 

for this primitive. 

definef expand(u,indexa); 

initially fillchar = {<'bool' ,f>,<'real', aplo>; 

< ' char' , ' ' > } ; ; 

<i,a> = indexa; 

cvector(u); carray{a) 

<hda,tla> = a; <hdu,tlu> = u; 

fill= fillchar(~ tla(l)); 

/* fill is inserted if components of u are f */ 

nrtruth = [+: 1 ~ j < #tlu/tlu(j)] 1 

if nrtruth ne hda{l) 

then return empvector; 

endif; 

esults 
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dimres = hda; dimres(i) = #tlu; 

result= nult; 

/* iterate over allcomponents of result*/ 

indexres = [+: 1 ~ j ~ #dimres]<l>; 

cntra = l; 

(while indexres(l) le dimres(l) 

doing indexres = augment(indexres,dimres) 

if tlu(indexres(i)) 

then result= result+ <tla(cntra)>; 

cntra = cntra + l; 

else result= result+ <fill>; 

endif; 

end while; 

return <dimres,result>; 

end expand; 
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5. Assignment, the index primitive, and sinister constructions. 

We first give a discussion of the index primitive in a 

general dexter format. We then discuss the assignment 

primitive as a restricted inverse to the index primitive. 

Finally, we remark that a class of primitive operations 

make3 sense in a sinister construction. We indicate how to 

include these constructs in APL-SETL. 

The index primitive changes the domain of an array. 

For example, V[A], when Vis a vector and the components 

of A are integers (i.e. of kind real but with values 

in the integers), is an array whose indices are those of A 

and whose range is that of the vector V. V[A] at any tuple 

of indices i
1
,i2 , ... ,ik is calculated as V[A[i

1
;i2 ; ... ;ik]]. 

The index primitive generalizes to an array A
0 

with an 

arbitrary number of indices. For e~ample, A0 [A1 ; ... ;Ak], 

where k is the number of indices in A
0 

is a function from the 

cross product of the domains of A1 ,A2 , ... ,Ak into the range 

of A0 . In APL the omission of an array in any coordinate 

of A0 defaults to the identity vector with a length equal to 

the maximum index of A in that coordinate. In APL-SETL, this 

construction will be mimed by 

where tuple is a SETL tuple whose components are of kind 

aplarray. Elision of an index will be marked by the 

appearance of an asterisk rather than by unseparated 

commas. 

If a component of tuple is an integer, i.e. a scalar 

of kind real, then the number of coordinates of the result 

is reduced by one for each scalar that appears in tuple. 

If all of the components of tuple are integers then the 

result is the scalar at those indices in A
0

. 
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So long as all of the components of tuple are integers 

or arrays which are permutations on a domain which is a 

subset of the range of an index of A
0

, then 

A0 [tuple] = obj; 

is well defined. The components of A
0 

indicated by tuple 

must be changed so that a subsequent evaluation of A0 [tuple] 

will yield obj. We now give declarations to support the 

index primitive in dexter and sinister format. 

from <aplarray,aplarray,-> get apltuple; 

from aplarray[apltuple] get aplarray using index; 

from boolarray[apltuple] get boolarray using index; 

fort aplarray[apltuple] = aplarray use .sindex; 

fort boolarray[apltuple]= boolarray use sindex; 

The routine sindex must include a (dynamic) evaluation 

of the range and number of indices: of the right-hand side 

which must agree with the range and number indicated by the 

left-hand side. In the sinister construction, the components 

of apltuple are restricted to be real scalars or vectors 

of kind aplarray. As we have remarked above, determination 

of this from the source code alone or even with the assistance 

of declarations supplied by the programmer is not possible 

without detailed knowledge of the value of variables as 

different stages of the exectuion of the program. 

We now remark that a natural interpretation may be 

given to the transpose, reverse and rotate primitives in 

a sinister construction. We now give declarations. 

fort 4> aplarray = aplarray use sinreverse; 

fort 4> boolarray= boolarray use sinreverse; 

fort aplvector fz5 aplarray = aplarray use sintranspose; 

fort aplvector f6 boolarray = aplvector use sin transpose; 

fort f6 aplarray = aplarray use sinreverse; 

fort f6 boolarray= boolarray use sinreverse; 

We omit code for sinreverse, sintranspose, and sinreverse. 


