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One of the causes of SETL' s current inefficiency is its 

method of storing all sets in a way which facilitates function 

application. If a set is not used as a function, a more 

suitable storage and retrieval scheme for it would cause 

an increase in efficiency. This consideration leads to the 

desirability of an algorithm to determine at compile time how 

a particular set is being used, which would in turn determine 

the most efficient storage method for that set. Ordinarily, 

this would be a simple matter of use-definition chaining except 

for the following complication. Assume we have code of the form: 

f = f with s; 

t = arb f; 

Since the with operation involves only inserting a pointer to the 

element into the hashtable of the set and the arb operation 

simply involves retrieval of that pointer, the- variables sand t 

might refer to the same run time object. Thus any- operation 

applied tot would be relevant in det~rmining a storage and 
.,[ 

retrieval method for s. The same prob1.'em occurs in the sequence: 

f (n) = s; 

t = f(n); 

The identification of sand tin the above examples will be called 

a first-level identifcation. 

The situation may be even more complex such as in determining 

the identify of x and yin: 

s = s with x; 

f = f with s; 

t = arb f; 

y = arb t; 

Such an identification, depending as it d?es on a previous first­

level identification (in this case, t and s) will be called a 

multi-level identification. 

Our first focus of attention is to compute the function 

contents(b,x) which for each basic block band variable x 

would yield the set of all definitions in the program whose 
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defined variable may be an element of x upon entry to b. The 

method of computing this function follows closely the method 

of computing available computations upon entry to a block in 

the redundant computation detection algorithm. 

We assume given the following functions which can easily be 

computed by analyzing each basic block: 

inserted(b,sb,x) for all basic blocks b, sb a successor of b, 

and variable x, the set of all definitions 

whose defined variable has been inserted into 

the item represented by x along the path 

through b to sb such that x has not been 

redefined along that path after the point 

cZear(b,sb) 

of insertion (except possibly by a with, 

less, les f operation on itself·, or an indexed 

assignment to itself). 

for all basic blocks b, sb a successor of b, 

the set of all va~iables which have not been 
\ : { 

redefined along th~'path through b to sb 

(again, with the above exceptions). 

If we already knew contents(pb,x) for every predecessor block 

pb of b then we could compute contents(b,x) using the equation: 

(1) contents(b,x) = l j (inserted(pb,b,x) u 
pbEpcesor(b) 

if xEclear(pb,b) then contents(pb,x) else~) 

where pcesor is a map from each node to the set of its 

predecessors. Therefore, if we knew contents(int,x) for each 

interval int, we could then process the basic blocks which make 

up the interval in interval order to co~pute their contents 

sets. 

Two extreme assumptions can be mad~ about contents ( in t, x): 

one is that all defined variables are elements of x, and the 

other that none are. We can define two functions on the basic 

blocks which make up the interval under these two assumptions: 
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posc(b,x): 

defc(b,x): 

the contents of x at entry to b under the assumption 

that all defined variables are elements of x at entry 

to the containing interval. 

the contents of x at entry to b under the assumption 

that no defined variable is an element of x at entry 

to the containing interval. 

Once these two functions have been defined, and given 

contents(int,x), the calculation of contents(b,x) is a simple one 

and is given by: 

(2) contents(b,x) = (contents(int,x) n posc(b,x)) u defc(b,x) 

When the graph is reduced to a single interval, int, the 

quantity contents(int,x) is known to be null, so that we can 

proceed backwards in the derivation sequence to calculate 

contents(b,x) until we come down to the level of basic blocks. 

Our only remaining task, therefore, is to compute pose and defc 

for intervals. To do this, we use tli~ranalogs of equation (1), 

substituting pose and defc for contents. However, equation (1) 

necessitates knowing clear and inserted for intervals. Letting 

preds = pcesor(sint(l)) n {int(i), l <= i <= #int} we have that: 

(3) inserted(int,sint,x). = l J (inserted(pb,sint(l) ,x) 
pbEpreds 

if xEclear(pb,sint(l)) then defc(pb,x) else 0) 

To compute clear(int,sint), we have to face the possibility that 

there may be more than one exit from int to sint. Since we want 

to compute all possible contents of each variable, we must assume 

that clear is as large as possible. This leads to the calculation 

of clear along the path terminating at the earliest possible 

exit from int to sint. 

int we have: 

Letting ind(b,intJ be the index of bin 

(4) blnurn = min ind(b,int) 
bEpreds 

clear(int,sint) = ( r-1 clear(int(i),int(i+l))) n 
l<=i< blnum 

clear(int(blnum) ,sint(l)) 
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Thus the entire process involves two passes: the first 

going in the order of the derivation sequence, computing 

cZear and inserted for an interval using equations (3) and (4) 

and their previously computed values for the constituent nodes 

of the interval while simultaneously using the analogs of 

equation (1) to compute defc and pose for those constituent 

nodes; and the second pass proceeding in reverse order of the 

derivation sequence, using equation (2) to compute contents. 

The driving routine follows. 

define contdrv(seqd); 

/* contents and vars are global. vars is the set of all 

variables in the program, seqd is the derivation sequence*/ 

/* proceed along the derivation sequence in the- first pass*/ 

(1 < Vk <= #seqd), intv E hd(seqd(k))) contprl(intv) ;; 

contents= nl; 

/* initialize contents for every variable to nl at the entry 

to the single interval to which:~he graph eventually reduces*/ 
~ : 

(VxEvars) contents(arb hd (seqd(#seqd)) ,x) = nl;; 

/* proceed in reverse derivation sequence for the second pass*/ 

(#seqd >= Vk > 1, intv E hd(seqd(k))) contdef(intv) ;; 

return; 

end contdrv; 

The following routine is called for each interval in the 

first pass to compute pose and defc for the constituent blocks 

of the interval, as well as inserted and cZear for the interval 

itself. 

define contprl(intv); 

/* vars, defs, pose, defc, cZear, pceaor, cesor and inserted 

are global. defs is the set of all definitions in the 

program, cesor is the map from each block to the set of 

all its successors*/ 
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hed = intv(l); defc = nl; pose= nl; 

nodesof = {intv(i), 1 <= i <= #intv}; 

(~xEvars) defc(hed,x) = nl; posc(hed,x) = defs; 

(1 <Vi<= #intv) preds = pcesor(intv(i) is b); 

/* use analogs of equation (1) */ 

defc(b,x) = [+: pbEpreds] transf(pb,b,defc,x) orm nl; 

posc(b,x) = [+: pbEpreds] transf(pb,b,posc,x) orm nl; 

end V; 

end V; 
(Vsint E cesor(intv)) preds = pcesor(sint(l) is sl) * nodesof; 

(Vx E vars) /* use equation (3) */ 

inserted(intv,sint,x) = [+: pbEpreds]transf(pb,sl,defc,x) 

orm nl; 

end V; 

/* use equation (4) */ 

blnurn = [rnin: b E preds] ind(b,intv); 

clear(intv,sint) = ([*: 1 <= i < blnurn] clear(intv(i), 

intv(i+l}) orrn nl) *cle;\:~intv(blnurn) ,sl); 

end V; 

return; 

end contprl; 

This routir-,e uses the· following auxiliary routines: 

definef a orrn b; return if a ne ~ then a else b; end; 

definef ind(elt, tuple); 

/* finds the location of an element in a tuple */ 

(1 <=Vi<= #tuple) if elt ~ tuple(i) then return i;;; 

return O; 

end ind; 

definef transf(pb,b,tset,x); 

/* inserted and clear are global*/ 

return(inserted(pb,b,x) + if xEclear(pb,b) then tset(pb,x) 

else nl); 

end transf; 
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The next routine is used on the second pass to compute the 

final value of contents: 

define contdef(intv); 

/* vars, contents, pose and defc are global*/ 

(Vx E vars, b(i) E intv) /* use equation (2) */ 

contents(b,x) = (contents(intv,x) * posc(b,x)) + defc(b,x); 

end 'tJ; 

return; 

end con tdef; 

This concludes .our discussion of how to derive contents, and 

we now turn to an algorithm for determining the identification 

of distinct variables. First, however, we must discuss how the 

program is represented in these algorithms. The mapping progrph 

assigns to each block in the program, a tuple of instructions 

occurring in the block in order of ~~~urrence. Each instruction 

is represented by a tuple, the first ~lement of which is the 

output variable, the second the opcode and the remaining elements 

are the input variables. Thus the instruction x = y + z may be 

represented by < 'x ', oad, 'y ', 'z '>, where oad is the macro 

whose value is the opcod~ f9r the plus operation. Some opcode 

macros which will appear in the algorithms below are: 

owth 

olss 

olsf 

oset, otpl 

oof 

ondxass 

the SETL with operation 

the SETL less operation 

the SETL lesf operation 

the set and tuple formers 

functional application or indexing a tuple 

indexed assignment. 

This last operation of indexed assign~ent, takes n+2 input . 
variables if n indices are present. The first n are the 

indices, then comes the quantity to be assigned and last the 

set or tuple into which one is indexing. This set or tuple 
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also appears as the output variable. Note that if we perform 

an indexed assignment to a tuple the instruction tuple will 

be of length 5 (tuple name, opcode, index, value, tuple name), 

and if the length is greater we know that we are indexing a 

function of more than one variable. Similarly an indexed load 

from a tuple has length 4 (result, opcode, tuple name, index). 

A definition is represented as a triple consisting of the 

defined variable, the block in which the definition occurs 

and the location within the block of the definition. Similarly, 

a use is represented by a quadruple consisting of the variable 

used, the block in which the use occurs, the location of the 

instruction within the block and the location of the use among 

the input variables of tha.t instruction. For example the 

instruction tuple < 'x ', oad, 'y ', 'z '> occurring as the fourth 

instruction in block 7 would give rise to the definition 

<'x',7,4> and the uses <'y',7,4,l> and <'z',7,4,2>. We also 

assume the existence of two function 91 computed by a use­

definition chaining algorithm: ud, whfich given a use returns 

the set of all definitions to which that use may refer, and du, 

which given a definition returns the set of all uses which 

may utilize the quantity being defined. 

The auxiliary routine oper, given a use or definition returns 

the opcode of the instruction in which it appears: 

definef oper{a); 

/* progrph is global*/ 

return ((progrph(u(2))) (u(3))) (2); 

end aper; 

The routine defn, given a use returns the output variable of 

the instruction in which the use exists: 

definef defn(u); /* progrph is global*/ 

return ( (progrph (u (z))) (u (3))) (1); 

end defn; 
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With these preliminaries taken care of, we can turn 

to the algorithm itself. We construct a mapping equiv which 

assigns to each definition in the program the set of all 

definitions occurring prior to it on some execution path which 

may define the same run time object. 

The routine seteq initializes equiv by searching for uses 

of the definition which result in a modification of a run time 

object by insertions or deletions. Such uses are those occurring 

in with, less, lesf operations in which the defined variable 

is the same as the first input variable or in indexed assignment 

operations. For example, given the sequence 

X = 
x = x with y 

seteq would add the first definition of x to equiv of the second. 

The code for seteq is: 

define seteq; •i :., 

/* progrph, du, equiv, and defs are global*/ 

equiv= nl; st = {owth, olss, olsf, ondxass}; 

(~d E defs) equiv(d) = nl;; 

(~d E defs) total={u(l:3), uEdu(d) loper(u)Est and 

defn(u) ~ u(l) }; 

(Vdf E total) dqequiv(df,{d}) ;; 

end V; return; 

end seteq; 

The above uses a routine doequiv which accepts a definition 

d and a set of definitions, total. It adds total, equiv[total], 

equiv[equiv[total]], etc. to equi~(d). Further, if 

d E equiv(df), it also adds all of these,sets to equiv(df) 

and similarly to equiv(def) if def E equiv(df), etc. The 

code for doequiv is: 
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define doequiv(d,total); 

/* defs and equiv are global*/ 

equiv(d) = equiv(d) + total; 

wor.k = total; sum = total; 

(while work ne nl) df from work; 

equiv(d) = equiv(d) +(equiv(df) is edf); 

work= work+ edf; 

end while; 

work = {d}; 

sum = sum + e d f; 

(while work ne nl) df from work; 

(Vdef E defs I df E equiv(def)) 

equiv(def) = equiv(def) + sum; 

def in work; 

end V; 

end while; 

return; 

end doequiv; 

i 
After equiv has been initialized, ~e process the program 

to discover variables which may refer to the same run time 

object by first-level identifcation. The method used is as 

follows: for every definition which involves an arb operation 

on a set or a possible indexed load from a tuple, search 

through all operations which precede it in its basic block 

for indexed assignments to the tuple or variables placed in 

the set by a with operation, or variables placed in the set 

or tuple at creation with a set-former or tuple-former opera­

tion. Such variables may be identified with the currently 

defined variable. This backwards search continues through the 

basic block until a definition is found in which the set or 

tuple is ·redefined using an operation other than less, les f, with 

or indexed assignment. Such a redefinitioh acts as a block to 

identification of the current variable w.ith any prior definitions. 
' 

If no such redefinition is found, conten'ts of the variable 

representing the set or tuple at entry to the block is added to 

the set of definitions which may be identified with the one in 

question. The code to do this follows: 
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define eqproc; 

/* defs, progrph, contents, and ud are global*/ 

('r/dEdefs)optupl = progrph(d(2)); /* the tuple representing 

the basic block*/ 

op= optupl(d(3)); /* the tuple representing the instruction*/ 

if op(2) ~ oarb or(op(2) ~ oof and #op~ 4) then acc=nl; 

/* ace is used as an accumulator set for all definitions 

which may be identified with the current one*/ 

fl = !; /* fl =!if no redefinition blocks our progress*/ 

(d(3) > 'r/i > 0) /* proceed backwards from the current 

definition in the basic block*/ 

opp= optupl(i); 

if opp(l) ~ opp(3) then 

if (opp(2) is opr) E {oset,otupl} then 

/* add all things placed in the set or tuple to the 

set of identifiable definitions; also, since 

this represents a redefinition, set fl to false 

and leave the iter~~ion */ 

ace= ace+ • I 

[+: 2<j<#opp] ud(<opp(j) ,d(2) ,i,j-2>) orm nl; 

fl = f; quit Vi;; 

if (opr ~ owth and opp (1) ~ opp (3)) or -
(opr ~ ondxass and #opp ~ 5) then 

/* add the variable placed in the set or 

the set of identifiable definitions */ 

ace= ace+ ud(<opp(4), d(2), i, 2>); 

else if opr ne olss and opr ne olsf then 

tuple to 

/* we have reached a redefinition; set fl to false and 

quit the iteration*/ 

fl = f; quit 'r/i;; 

end if; 

end 'rJ; 

/* if the set has not been red~fined, add the contents 

at block entry*/ 

if fl then ace= ace+ contents(d(2), op(3)) ;; 

doequiv(d,acc); 

end if; 

end 'rJ; 
end eqproc; 
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To take care of multi-level identifications, we accumulate 

all definitions involving an arb or an indexed load from a 

tuple in a set arbdefs as we execute the above algorithm. 

After the first-level pass described above is complete, 

we check whether any of the uses of a variable defined by one 

of the definitions in arbdefs appears in an arb or indexed load 

operation; if so, the variable defined by that operation is 

a candidate for multilevel identification with the currently 

defined variable. For example, in the sequence 

( 0) X = 
( 1) s = s with x; 

( 2) f(n) = s; 

( 3) w = w with s; 

(4) g = arb w; 

(5) t = g (n) ; 

( 6) y = arb t; 

arbdefs = { (4), (5), (6)}. Focusing od_~efinition (4) which defines 
' . 

variable g, we note that there is indeed an indexed load operation 

from that variable in definition (5), so that the variable t 

appearing there is a candidate for multi-level identification. 

Similarly, definition (5) defines variable t which is used in 

definition (6) as the set upon which an arb operation is performed, 

so that the variable y defined by (6) is also a candidate for 

multilevel ident~fication. 

Such new identifications are made in the following manner. 

Let x be a variable "arb-ed" from y. We construct total, the 

set of all definitions which are to be identified with any 

variables "arbed" from x. For all definitions identified with 

the definition of x, check to see whether that definition involves 

inserting some variable w into the defined quantity. If it does, 

then add the definition of w to total.· 

For example, in the sequence (0)-(6) ~iven above, the 

first-level pass will set equiv(4) = {(2) }. Choose a definition 

from arbdefs, say (4). We check on (2) which is in equiv(4) 

and note that (2) inserts the object defined by (1) into its 
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defined variable. Therefore the object defined by (1) and any 

objects "arbed" from the object defined by (4) are equivalent. 

Thus equiv(5) = {(1)}. A similar process on (5) leads to 

equiv (6) = { (0)}. 

Note, however, that if we would have processed arbdefs in 

the above example in a different order, e.g. (5), (4), we would 

have only recognized that equiv(5) = {(l)} but not that 

equiv(6) = {(O) }. This is because we cannot make the identifica­

tion of x and y until afters and t have been identified. 

For this reason, we must keep on processing all of arbdefs 

until none of the equiv sets have been changed in an entire pass. 

The code for the entire algorithm is therefore as follows: 

define eqproc: 

/* de fs, contents, du, ud, equiv, and vars are global * / 

arbdefs = nl; 

(Vd E defs) optupl = progrph(d(2)); op= optupl(d(3)); 
'( 

if op(2) ~ oarb or (op(2) ~ oQ-f and #op~ 4) then 

ace= nl; din arbdefs; fl = !; 
d(3) >Vi> 0) opp= optupl(i); 

if opp(l) ~ op(3) then 

if(opp(2) is opr) E {oset,otpl} then ace= ace+ 

[+.:2<j<=#opp]ud(<opp(j) ,d(2) ,i,j-2>)orm nl; 

f 1 =. f ; quit Vi ; ; 

if (opr ~ owth and opp(l) ~ opp(3)) or 

(opr ~ ondxass and #opp~ 5) then 

ace= ace+ ud(<opp(4) ,d(2) ,i,2>); 

else if opr ne olss and opr ne olsf then 

fl = f; quit Vi;; 

end if; 

end 'rJ; 

if fl then ace= ace+ content~(d(2) ,op(3)) ;; . 
doequiv(d,acc); 

end if; 

end \/; 

/* this is the end of the first-level processing; now comes 

the multi-level case*/ 
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ftl = ~; /* fll is a flag indicating whether or not to continue*/ 

(while f21) f21 = f; 
(Vd E arbdefsloper[du(d)] * {oarb,oof} ne nl) 

total = nl; 

(VdfEequiv(d)) optupl=progrph{df(2)); op=optupl(df(3)); 

if (op(2) is opr) E {oset,otpl} then 

(2 < Vj <= #op) if op(j) E vars then 

total=total+ud{<op(j) ,df(2) ,df(3) ,j-2>);;;; 

if opr ~ owth or (opr ~ ondxa.ss and #op §:g_ 5) 

then total=total +ud ( <op ( 4) , df ( 2) , df ( 3) , 2 >) ; ; 

end V; 
(Vu E du(d)) 

/* we're looking for objects "arbed" from the 

variable defined by d */ 

optupl = progrph(u(2)); op= progrph(u(3)); 

if (op(2) ~ oarb or (op(2) ~ oof and #op~ 4)) 

and not (equiv(<op(l) ,u(2) ,u(3)> is df) incs total) 

then fl = t; doequiv(df,;total) ;; 

end V; 

end V; 

end while; 

end eqproc; 


