
SETL Newsletter# 121
An Algorithm to Determine the Identity of SETL
Run-Time Objects

January 2, 1974

Aaron Tenenbaum

One of the causes of SETL' s current inefficiency is its

method of storing all sets in a way which facilitates function

application. If a set is not used as a function, a more

suitable storage and retrieval scheme for it would cause

an increase in efficiency. This consideration leads to the

desirability of an algorithm to determine at compile time how

a particular set is being used, which would in turn determine

the most efficient storage method for that set. Ordinarily,

this would be a simple matter of use-definition chaining except

for the following complication. Assume we have code of the form:

f = f with s;

t = arb f;

Since the with operation involves only inserting a pointer to the

element into the hashtable of the set and the arb operation

simply involves retrieval of that pointer, the- variables sand t

might refer to the same run time object. Thus any- operation

applied tot would be relevant in det~rmining a storage and
.,[

retrieval method for s. The same prob1.'em occurs in the sequence:

f (n) = s;

t = f(n);

The identification of sand tin the above examples will be called

a first-level identifcation.

The situation may be even more complex such as in determining

the identify of x and yin:

s = s with x;

f = f with s;

t = arb f;

y = arb t;

Such an identification, depending as it d?es on a previous first­

level identification (in this case, t and s) will be called a

multi-level identification.

Our first focus of attention is to compute the function

contents(b,x) which for each basic block band variable x

would yield the set of all definitions in the program whose

SETL 121-2

defined variable may be an element of x upon entry to b. The

method of computing this function follows closely the method

of computing available computations upon entry to a block in

the redundant computation detection algorithm.

We assume given the following functions which can easily be

computed by analyzing each basic block:

inserted(b,sb,x) for all basic blocks b, sb a successor of b,

and variable x, the set of all definitions

whose defined variable has been inserted into

the item represented by x along the path

through b to sb such that x has not been

redefined along that path after the point

cZear(b,sb)

of insertion (except possibly by a with,

less, les f operation on itself·, or an indexed

assignment to itself).

for all basic blocks b, sb a successor of b,

the set of all va~iables which have not been
\ : {

redefined along th~'path through b to sb

(again, with the above exceptions).

If we already knew contents(pb,x) for every predecessor block

pb of b then we could compute contents(b,x) using the equation:

(1) contents(b,x) = l j (inserted(pb,b,x) u
pbEpcesor(b)

if xEclear(pb,b) then contents(pb,x) else~)

where pcesor is a map from each node to the set of its

predecessors. Therefore, if we knew contents(int,x) for each

interval int, we could then process the basic blocks which make

up the interval in interval order to co~pute their contents

sets.

Two extreme assumptions can be mad~ about contents (in t, x):

one is that all defined variables are elements of x, and the

other that none are. We can define two functions on the basic

blocks which make up the interval under these two assumptions:

SETL 121-3

posc(b,x):

defc(b,x):

the contents of x at entry to b under the assumption

that all defined variables are elements of x at entry

to the containing interval.

the contents of x at entry to b under the assumption

that no defined variable is an element of x at entry

to the containing interval.

Once these two functions have been defined, and given

contents(int,x), the calculation of contents(b,x) is a simple one

and is given by:

(2) contents(b,x) = (contents(int,x) n posc(b,x)) u defc(b,x)

When the graph is reduced to a single interval, int, the

quantity contents(int,x) is known to be null, so that we can

proceed backwards in the derivation sequence to calculate

contents(b,x) until we come down to the level of basic blocks.

Our only remaining task, therefore, is to compute pose and defc

for intervals. To do this, we use tli~ranalogs of equation (1),

substituting pose and defc for contents. However, equation (1)

necessitates knowing clear and inserted for intervals. Letting

preds = pcesor(sint(l)) n {int(i), l <= i <= #int} we have that:

(3) inserted(int,sint,x). = l J (inserted(pb,sint(l) ,x)
pbEpreds

if xEclear(pb,sint(l)) then defc(pb,x) else 0)

To compute clear(int,sint), we have to face the possibility that

there may be more than one exit from int to sint. Since we want

to compute all possible contents of each variable, we must assume

that clear is as large as possible. This leads to the calculation

of clear along the path terminating at the earliest possible

exit from int to sint.

int we have:

Letting ind(b,intJ be the index of bin

(4) blnurn = min ind(b,int)
bEpreds

clear(int,sint) = (r-1 clear(int(i),int(i+l))) n
l<=i< blnum

clear(int(blnum) ,sint(l))

SETL 121-4

Thus the entire process involves two passes: the first

going in the order of the derivation sequence, computing

cZear and inserted for an interval using equations (3) and (4)

and their previously computed values for the constituent nodes

of the interval while simultaneously using the analogs of

equation (1) to compute defc and pose for those constituent

nodes; and the second pass proceeding in reverse order of the

derivation sequence, using equation (2) to compute contents.

The driving routine follows.

define contdrv(seqd);

/* contents and vars are global. vars is the set of all

variables in the program, seqd is the derivation sequence*/

/* proceed along the derivation sequence in the- first pass*/

(1 < Vk <= #seqd), intv E hd(seqd(k))) contprl(intv) ;;

contents= nl;

/* initialize contents for every variable to nl at the entry

to the single interval to which:~he graph eventually reduces*/
~ :

(VxEvars) contents(arb hd (seqd(#seqd)) ,x) = nl;;

/* proceed in reverse derivation sequence for the second pass*/

(#seqd >= Vk > 1, intv E hd(seqd(k))) contdef(intv) ;;

return;

end contdrv;

The following routine is called for each interval in the

first pass to compute pose and defc for the constituent blocks

of the interval, as well as inserted and cZear for the interval

itself.

define contprl(intv);

/* vars, defs, pose, defc, cZear, pceaor, cesor and inserted

are global. defs is the set of all definitions in the

program, cesor is the map from each block to the set of

all its successors*/

SETL 121-5

hed = intv(l); defc = nl; pose= nl;

nodesof = {intv(i), 1 <= i <= #intv};

(~xEvars) defc(hed,x) = nl; posc(hed,x) = defs;

(1 <Vi<= #intv) preds = pcesor(intv(i) is b);

/* use analogs of equation (1) */

defc(b,x) = [+: pbEpreds] transf(pb,b,defc,x) orm nl;

posc(b,x) = [+: pbEpreds] transf(pb,b,posc,x) orm nl;

end V;

end V;
(Vsint E cesor(intv)) preds = pcesor(sint(l) is sl) * nodesof;

(Vx E vars) /* use equation (3) */

inserted(intv,sint,x) = [+: pbEpreds]transf(pb,sl,defc,x)

orm nl;

end V;

/* use equation (4) */

blnurn = [rnin: b E preds] ind(b,intv);

clear(intv,sint) = ([*: 1 <= i < blnurn] clear(intv(i),

intv(i+l}) orrn nl) *cle;\:~intv(blnurn) ,sl);

end V;

return;

end contprl;

This routir-,e uses the· following auxiliary routines:

definef a orrn b; return if a ne ~ then a else b; end;

definef ind(elt, tuple);

/* finds the location of an element in a tuple */

(1 <=Vi<= #tuple) if elt ~ tuple(i) then return i;;;

return O;

end ind;

definef transf(pb,b,tset,x);

/* inserted and clear are global*/

return(inserted(pb,b,x) + if xEclear(pb,b) then tset(pb,x)

else nl);

end transf;

SETL 121-6

The next routine is used on the second pass to compute the

final value of contents:

define contdef(intv);

/* vars, contents, pose and defc are global*/

(Vx E vars, b(i) E intv) /* use equation (2) */

contents(b,x) = (contents(intv,x) * posc(b,x)) + defc(b,x);

end 'tJ;

return;

end con tdef;

This concludes .our discussion of how to derive contents, and

we now turn to an algorithm for determining the identification

of distinct variables. First, however, we must discuss how the

program is represented in these algorithms. The mapping progrph

assigns to each block in the program, a tuple of instructions

occurring in the block in order of ~~~urrence. Each instruction

is represented by a tuple, the first ~lement of which is the

output variable, the second the opcode and the remaining elements

are the input variables. Thus the instruction x = y + z may be

represented by < 'x ', oad, 'y ', 'z '>, where oad is the macro

whose value is the opcod~ f9r the plus operation. Some opcode

macros which will appear in the algorithms below are:

owth

olss

olsf

oset, otpl

oof

ondxass

the SETL with operation

the SETL less operation

the SETL lesf operation

the set and tuple formers

functional application or indexing a tuple

indexed assignment.

This last operation of indexed assign~ent, takes n+2 input .
variables if n indices are present. The first n are the

indices, then comes the quantity to be assigned and last the

set or tuple into which one is indexing. This set or tuple

SETL 121-7

also appears as the output variable. Note that if we perform

an indexed assignment to a tuple the instruction tuple will

be of length 5 (tuple name, opcode, index, value, tuple name),

and if the length is greater we know that we are indexing a

function of more than one variable. Similarly an indexed load

from a tuple has length 4 (result, opcode, tuple name, index).

A definition is represented as a triple consisting of the

defined variable, the block in which the definition occurs

and the location within the block of the definition. Similarly,

a use is represented by a quadruple consisting of the variable

used, the block in which the use occurs, the location of the

instruction within the block and the location of the use among

the input variables of tha.t instruction. For example the

instruction tuple < 'x ', oad, 'y ', 'z '> occurring as the fourth

instruction in block 7 would give rise to the definition

<'x',7,4> and the uses <'y',7,4,l> and <'z',7,4,2>. We also

assume the existence of two function 91 computed by a use­

definition chaining algorithm: ud, whfich given a use returns

the set of all definitions to which that use may refer, and du,

which given a definition returns the set of all uses which

may utilize the quantity being defined.

The auxiliary routine oper, given a use or definition returns

the opcode of the instruction in which it appears:

definef oper{a);

/* progrph is global*/

return ((progrph(u(2))) (u(3))) (2);

end aper;

The routine defn, given a use returns the output variable of

the instruction in which the use exists:

definef defn(u); /* progrph is global*/

return ((progrph (u (z))) (u (3))) (1);

end defn;

SETL 121-8

With these preliminaries taken care of, we can turn

to the algorithm itself. We construct a mapping equiv which

assigns to each definition in the program the set of all

definitions occurring prior to it on some execution path which

may define the same run time object.

The routine seteq initializes equiv by searching for uses

of the definition which result in a modification of a run time

object by insertions or deletions. Such uses are those occurring

in with, less, lesf operations in which the defined variable

is the same as the first input variable or in indexed assignment

operations. For example, given the sequence

X =
x = x with y

seteq would add the first definition of x to equiv of the second.

The code for seteq is:

define seteq; •i :.,

/* progrph, du, equiv, and defs are global*/

equiv= nl; st = {owth, olss, olsf, ondxass};

(~d E defs) equiv(d) = nl;;

(~d E defs) total={u(l:3), uEdu(d) loper(u)Est and

defn(u) ~ u(l) };

(Vdf E total) dqequiv(df,{d}) ;;

end V; return;

end seteq;

The above uses a routine doequiv which accepts a definition

d and a set of definitions, total. It adds total, equiv[total],

equiv[equiv[total]], etc. to equi~(d). Further, if

d E equiv(df), it also adds all of these,sets to equiv(df)

and similarly to equiv(def) if def E equiv(df), etc. The

code for doequiv is:

SETL 121-9

define doequiv(d,total);

/* defs and equiv are global*/

equiv(d) = equiv(d) + total;

wor.k = total; sum = total;

(while work ne nl) df from work;

equiv(d) = equiv(d) +(equiv(df) is edf);

work= work+ edf;

end while;

work = {d};

sum = sum + e d f;

(while work ne nl) df from work;

(Vdef E defs I df E equiv(def))

equiv(def) = equiv(def) + sum;

def in work;

end V;

end while;

return;

end doequiv;

i
After equiv has been initialized, ~e process the program

to discover variables which may refer to the same run time

object by first-level identifcation. The method used is as

follows: for every definition which involves an arb operation

on a set or a possible indexed load from a tuple, search

through all operations which precede it in its basic block

for indexed assignments to the tuple or variables placed in

the set by a with operation, or variables placed in the set

or tuple at creation with a set-former or tuple-former opera­

tion. Such variables may be identified with the currently

defined variable. This backwards search continues through the

basic block until a definition is found in which the set or

tuple is ·redefined using an operation other than less, les f, with

or indexed assignment. Such a redefinitioh acts as a block to

identification of the current variable w.ith any prior definitions.
'

If no such redefinition is found, conten'ts of the variable

representing the set or tuple at entry to the block is added to

the set of definitions which may be identified with the one in

question. The code to do this follows:

SETL 121-10

define eqproc;

/* defs, progrph, contents, and ud are global*/

('r/dEdefs)optupl = progrph(d(2)); /* the tuple representing

the basic block*/

op= optupl(d(3)); /* the tuple representing the instruction*/

if op(2) ~ oarb or(op(2) ~ oof and #op~ 4) then acc=nl;

/* ace is used as an accumulator set for all definitions

which may be identified with the current one*/

fl = !; /* fl =!if no redefinition blocks our progress*/

(d(3) > 'r/i > 0) /* proceed backwards from the current

definition in the basic block*/

opp= optupl(i);

if opp(l) ~ opp(3) then

if (opp(2) is opr) E {oset,otupl} then

/* add all things placed in the set or tuple to the

set of identifiable definitions; also, since

this represents a redefinition, set fl to false

and leave the iter~~ion */

ace= ace+ • I

[+: 2<j<#opp] ud(<opp(j) ,d(2) ,i,j-2>) orm nl;

fl = f; quit Vi;;

if (opr ~ owth and opp (1) ~ opp (3)) or -
(opr ~ ondxass and #opp ~ 5) then

/* add the variable placed in the set or

the set of identifiable definitions */

ace= ace+ ud(<opp(4), d(2), i, 2>);

else if opr ne olss and opr ne olsf then

tuple to

/* we have reached a redefinition; set fl to false and

quit the iteration*/

fl = f; quit 'r/i;;

end if;

end 'rJ;

/* if the set has not been red~fined, add the contents

at block entry*/

if fl then ace= ace+ contents(d(2), op(3)) ;;

doequiv(d,acc);

end if;

end 'rJ;
end eqproc;

SETL 121-11

To take care of multi-level identifications, we accumulate

all definitions involving an arb or an indexed load from a

tuple in a set arbdefs as we execute the above algorithm.

After the first-level pass described above is complete,

we check whether any of the uses of a variable defined by one

of the definitions in arbdefs appears in an arb or indexed load

operation; if so, the variable defined by that operation is

a candidate for multilevel identification with the currently

defined variable. For example, in the sequence

(0) X =
(1) s = s with x;

(2) f(n) = s;

(3) w = w with s;

(4) g = arb w;

(5) t = g (n) ;

(6) y = arb t;

arbdefs = { (4), (5), (6)}. Focusing od_~efinition (4) which defines
' .

variable g, we note that there is indeed an indexed load operation

from that variable in definition (5), so that the variable t

appearing there is a candidate for multi-level identification.

Similarly, definition (5) defines variable t which is used in

definition (6) as the set upon which an arb operation is performed,

so that the variable y defined by (6) is also a candidate for

multilevel ident~fication.

Such new identifications are made in the following manner.

Let x be a variable "arb-ed" from y. We construct total, the

set of all definitions which are to be identified with any

variables "arbed" from x. For all definitions identified with

the definition of x, check to see whether that definition involves

inserting some variable w into the defined quantity. If it does,

then add the definition of w to total.·

For example, in the sequence (0)-(6) ~iven above, the

first-level pass will set equiv(4) = {(2) }. Choose a definition

from arbdefs, say (4). We check on (2) which is in equiv(4)

and note that (2) inserts the object defined by (1) into its

SETL 121-12

defined variable. Therefore the object defined by (1) and any

objects "arbed" from the object defined by (4) are equivalent.

Thus equiv(5) = {(1)}. A similar process on (5) leads to

equiv (6) = { (0)}.

Note, however, that if we would have processed arbdefs in

the above example in a different order, e.g. (5), (4), we would

have only recognized that equiv(5) = {(l)} but not that

equiv(6) = {(O) }. This is because we cannot make the identifica­

tion of x and y until afters and t have been identified.

For this reason, we must keep on processing all of arbdefs

until none of the equiv sets have been changed in an entire pass.

The code for the entire algorithm is therefore as follows:

define eqproc:

/* de fs, contents, du, ud, equiv, and vars are global * /

arbdefs = nl;

(Vd E defs) optupl = progrph(d(2)); op= optupl(d(3));
'(

if op(2) ~ oarb or (op(2) ~ oQ-f and #op~ 4) then

ace= nl; din arbdefs; fl = !;
d(3) >Vi> 0) opp= optupl(i);

if opp(l) ~ op(3) then

if(opp(2) is opr) E {oset,otpl} then ace= ace+

[+.:2<j<=#opp]ud(<opp(j) ,d(2) ,i,j-2>)orm nl;

f 1 =. f ; quit Vi ; ;

if (opr ~ owth and opp(l) ~ opp(3)) or

(opr ~ ondxass and #opp~ 5) then

ace= ace+ ud(<opp(4) ,d(2) ,i,2>);

else if opr ne olss and opr ne olsf then

fl = f; quit Vi;;

end if;

end 'rJ;

if fl then ace= ace+ content~(d(2) ,op(3)) ;; .
doequiv(d,acc);

end if;

end \/;

/* this is the end of the first-level processing; now comes

the multi-level case*/

SETL 121-13

ftl = ~; /* fll is a flag indicating whether or not to continue*/

(while f21) f21 = f;
(Vd E arbdefsloper[du(d)] * {oarb,oof} ne nl)

total = nl;

(VdfEequiv(d)) optupl=progrph{df(2)); op=optupl(df(3));

if (op(2) is opr) E {oset,otpl} then

(2 < Vj <= #op) if op(j) E vars then

total=total+ud{<op(j) ,df(2) ,df(3) ,j-2>);;;;

if opr ~ owth or (opr ~ ondxa.ss and #op §:g_ 5)

then total=total +ud (<op (4) , df (2) , df (3) , 2 >) ; ;

end V;
(Vu E du(d))

/* we're looking for objects "arbed" from the

variable defined by d */

optupl = progrph(u(2)); op= progrph(u(3));

if (op(2) ~ oarb or (op(2) ~ oof and #op~ 4))

and not (equiv(<op(l) ,u(2) ,u(3)> is df) incs total)

then fl = t; doequiv(df,;total) ;;

end V;

end V;

end while;

end eqproc;

