SETL Newsletter Ne. 123 K. Kennedy, Rice University
Variable Subsumption
with Ceonestant Feclding Februsry 1, 1974

Ore of the difficulties of a thorcugh strength xeducticn
algorithm which works on an interwmediate language of gquadiupies
{11 is that it leaves many assignments of the form

X=Y
inside locps. A good register allocation algorithm might take
care of this problem but many of these assignments can be
aliminatedé during the machine-independent phase. Suppose that
after the azbove assignment the only use of X comes before Y
is assigned. In that case we could eliminate the assignment
by using ¥ instead of X ~- the assignment to X would then be a
dead computation and could be eliminated by a deasd computation
elimination algorithm [2). This type of optimization is kaown
as “"variable subsumption® and has been treated by a number
of authors [3,4]. A global sclution is presented-here as part
of a series of reduction in strencth algorithms begun in
SETL Newsletter No. 102, “Reduction in Sirength Using Hashed
Temporaries™ [i]. The intermediate language, which consgists of

gimple guadruples, will net he described here; the reader should

see [1] For a complete introduction.

Basic Cousiderations

To eliminate an assignmwent of the form X = ¥ we must be #ble
to replace all uses of X which car be reached from tris assignwant
wy uses of ¥. The algorithm we develop here will attempt to
do this as often as posgsgible although its success will be judaed
by the suceess of the dead computation elimination aslgorithm
invoked latar. ‘

In the assignment X = ¥ we call X the prisrary and ¥ the
alternate. At any point in onr processing we will have a numbhay
of primeries and corresponding alternates {(nach prinary will
have only one alternate) which we will maintain sg 3 auwbesumpreics
liat of ordered pairs

<primary,alternate> .

SETL 123-2

e

say that this palr ig covalued at that point because the

bwo vavisbles will alwavs have the sans value there.

Suppos: wa are processing straight-line code, say within

& basic block. We move forward through the code of the block

performing the following steps at each instruction.

l.

w
[

A

If the instruction is an asssignment % = y, all pairs

with x as an element must be removed from the gunsumption
1ist and the new pair <x,y> must be added.

Whenaver an operand of the instruction is a primary in the
subsumption list, that operand is replaced by its alternate.
If z is the target {the variable assigned) of the instruction,
all pairs with z as an element must ke removed froum the
subsumption list because these pairs ave neo longer covalued.
{The exception is that of the assignuent, covered in case 1.
interesting point about this method is its resemblance to

congtant folding. If we wisgh to perform constant folding in

basic blocks, we keep a list of <variable,constant value> pai

and perform the following staps at each instruction.

)]

“ e

g tt]
[NTE]

s1d

4 complete (0ob of globnl wariskle subrunphion and

any ralr with x as its first element and insert the pair
<x,conztant> inﬂthe folding'list.

Raplece all eperanﬁs of the instruvection bI»v constants whexse
applicable.

If z is the target of the instruvction remove any paiy with z
as its first element from the folding list,

If the instruction is of the form z = x aop v and ¥ and ¥
are hoth sonstants, perform op on X and v {et coppile tims:
to produce constant ¢, veplace the instruction by 4 = o,

and apply case 1 (abovai,

<

similarity of these methods bhiute that we wdi

<

sonstant folding by generalizing a scobguaption

x

ghtly. The algorithm developed in this newslel

b4

incomplaots job of constant folding

O

SETL 123~3

Bagic Block Alqgorithm

The fundamental tool in our gystem wiil be am algorithm

which, given arn input subsumption-folding list subinput,
performs sgbgunption and folding in the basic block and computes
two output sets.

1.

2.

subout - the output subsumption list, and
killedout—- the set of all variables to which an assignment
is made within the block.

" This second set is important for the global analysis, discusszed

later. The routine is written along lines suggested in the
previous section.

definef subfold(block,subinput):;

/*

a nunber of gquantities are global:

contents is a function which produces the imstructions in a block
next is a seguencing function for the block

op, args, and targ produce parts of an instruction

common is the eet of common variables

eonstantes is the gset of atoms which are congtant valuss

/’k

/t

/t

val maps a constant onto its value
instruction mnemonics are alsc global */
subout = inputsub;
killedout = n%;
find the first instzuction */
inst = if 2b € contents(block) |
b n € nexticontents (hloclk)]
then b elsa 0;
loop through the block %/
{while inst & contents(blork} <oing inst= next{inst);)
first check for a call */
if op{inst} = {bfn,bsr} then
arg = argsiinst);

assume all arguments killed ¢/

S8&ETL 123-4

newkiii « {arg(i), 1 2 i < garg}
+ gomreon /¥ all common varyg ®/
+ if op eq bfn '
- then {targ(inst)} else ni;
- killedout = killedout + newkill;
/* remove appropriate pairs */
(Yp € subout | hd p € newkill or t& p € newkill)
subout = subout less p; end ¥p;
else. /* a normal instruction */
const = £; arg = args(inst);
(L < ¥i < #arg) x = arg(i)
/* check for possible replacements */
if subout{x) ne 2 then arg{i) = subout(x};;
if arg(i) n € constants then const = f£;;
ernd Vi;
/* now compute values for constant operaticns */
if const then /* compute value */)
go to {<add,plus>,
<gub,minus>,
<mul ,mpy>,
<div,dvad>,;
“exp ,power>,
<xld,noth>,
<sto,noth>,
<neg,chs>,
<xst,noth>,
<hr,noth>,
<bre,noth>,
<hlt,noth>}{op{insti);
else go to noth; end if const;
/F code for constant compuatations */
plus: value = wal{arg{l}} % vallarg(2});
go to svbst:
minus: valus = val(argfi}} -~ valflarg(Z)};

go te subst:

SETI, 123-5

mpy: value = val(arg(l)) * val(arg(2));
go to subst; ‘

dvd: value = val(arg(l))/val(arg({z});
go to subst; , :

?ower:'value = val(arg{l)) exp val(arg(2));
go to subst;

chs: value = - val(arg{l)):
/% insert value in constant table and change instructien *#/
subst: if 3x € constants|val(x) = value
then ¢ = x;
else ¢ = newat; .
constants = constants with c;
end if;
op{inst) = sto;
args (inst) = <c>;
/% remove killed pairs */ .
noth: (Vp € subout|targ(inst) € {hd p, t¢ p})
subout = subout less p; end V¥p;
A add new pair if appropriate %/
if op(inst) eq sto then
subout (targ(inst)) = arg(l);;
VA update killedout */
 killedout = killedout with targ(inst);
end if op(inst);
return <subout,killedou£>;
end subfold;

Although this routine is long, it is nevertheless straightforwazd.

SETL 123~-¢

&iobal Considerations

Suppose that a basic block b has a number of predecesssrs,
blocks from which tramnsfers to b can be made. Then the input
-subsumption list subin(b) is just the intersecticn of the
cutput subsumption lists from these predecesscr blocks.

In order to do global variable subsumption, we must have
correct inpat subsumption lists for every bleck in the program.
This can be achieved in two passes. The first pass gets
ocutput subsunption lists for each of the blocks, then output
subsumption lists for intervals, then for higher order intervais
andifp on. When all output subsumption lists have been computed,
we can apply the "intersection®™ principle on an ocuter-to-inne:r
basis until we have correct subsumptior: lists at the entry of
each block. We then invoke subfold once again to perform the
final subsumption (and. folding).

- As simple as this seems, there remain some tricky problems
to be solved. First, we wish to invoke subfeld only twice
for each block in the program -- once or the first pass and
once on the second pasgs. If we are to be able to do this,

we must be able to exactly determine what the subgumption list

(cn the second pass) is for input to the head of an iaterval if

we know what it is on input te the interval. There are o

cases tc consider. ‘

1. A subsumption pair is active en entry to the interval head
if it is active on entry to the interval aad if it is not
killed on any path in the interval wvhich leads back to the
head.

2. A subsumption pair is active on entyy to the head if it is
active on entxy to the interval and it would be a member cf
the output subsumption list of every block which branches
back to the head, even if po suhstitutions were active on

sntry to the interval.

SETL 123-7

The infermation required to determine these twe conditions
must be computed on the first pass. In particular, we need
to compute killedin(head) -~ the set of variables killed on

. some path through the interval lsading back to the head,

vhich will be used to determine condition 1 -- and
subaround(interval) ~-- the set of subsumption pairs which

are in all the output subsumption lists of blocks that branch
back to the head, which will be used to determine conditicn 2.
If inputsub is the subsumption list on interval entry, then

.aubin(head), the subsumption list on entry to the head, is

given by the SETL code fragment
(1) subin(head) = /* condition 1 */
{p € inputsub|hd 'p n € killedin(head)
and t2 p n € killedin(head)}
+ /* condition 2 */
inputsub * subaround(intexval);

The sscond problem'arises when we attempt to compute

8aubout and killedout for intervals. If we are to compute

subaround (to solve the first problem above) we must
assume that on entry to every interval the set inputesub is ni;
however, we must also know what the output subsumption list
is for a given input subsumption list -~ a seeming contradic-
tion. Fortunately, this second output subsumptién list may
be computed from the first by using a method similar to the
sclution of problem 1. Given the input list subin(b) for
an interval (or block) b, a pair will be in the general output
subsumption list if
1. if is in subout(d), i.e. it is produced in b assuming
the null input list to b, or
2, it ie in eubin(b) and neither of its elements is killed in b,
i.e. it is in the sget ‘
{p € subin(b} |hd p n € killedout(h)
and &£ p n € killedout(b)} .

SETL 123-8

Thege cobservations will be the basis for a general subsumption- (T)
iist jump funciion te be discussed in the next section,
Pasg 1 . .
- -We are now ready to present an algoritam which passes through
&n interval, computes subout (assuming the null input list) '
and killedout for each entry-exit pair cf the interval, and
. computes the sets subaround and killedin(head) needed in puss 2.
If the interval to which this algorithm is applied is in fact
a basic block, the algorithm will callsubfbld‘mnd th@n convart
the output to &ntry-exit pair form.
_ Two important intermediate variables are maintained.
a. subin(b), for each block b in the interval, is the input
" substitution list for that block assuming the null
"substitution list on interval entry.
b. kiiledin(b), for each block b, is the set of variables which
are killed on some path leading from interval entry to bh. ~
This information wxll be saved for use by pass 2 since (:
it pever changes. - - o
From the discussion in the last section, we can define funciiaas
which eompute subin ard killedinfor a given block b.- Firsz to
compute’ subin(b) we will need to lock at sach predscessor
pb of b, take the union'cf subout(pb)} and
{p € bublnipb)!hd p n € killedout{pb)

and 1nter3Lc* th@se for all such predevesso;%. The arqgumeat
cont restricts the set of blocks that we will consider.

&efiﬁéf jum@sqb(bycént?i'“
/* pred, subovut, killedout, and subin sre global */
return {{%*: phSpred(b) |phEcont]
7 {subout{pb) + ‘ .
'{pésubinfvb)lhd p n€ikilledout (pb)
and 2 p n € killedout(phi});

—————— .
S~

end jumpsuak;

SETL 123-9

A similar function can be coded tc¢ compute the set killedin(b).
Hexe the consideration is simpler - a wvariable is killed alvong
& path from interval entry to b if, for some predscessor pb,

it is either killed on a path %o pb or killed within pb.

definef jumpkill(b,cont):
/* killedin, killedout, pred are global */
return ([+: pb € pred(b) | pb € cont]
(killedin(pb) + killedout({pb))):;
end jumpkill;

Using these two functicns, we can now code the routine subpassl
which computes the desired guantities for an interval. Note
that the killedin sets must be medified to take looping paths
into consideration.

definef subpassl (interval,inputsub)
/* contents, order, blocks, killedin, subin, subaround,
pred, succ are global */
cont = contents(intexval);
/* isinterval really a block? */
if cont * blocks eq ul then
/* call subfold and use the input subsumption list */
<x,y> = subfold(interval,inputsub);
/* convert to entry-exit pair form %/
(Ysb € succ(interval))
subout (interval,sb) = x;
killedout(inteival,sb) = y; end ¥sb;
/* return the pair */
return<subout{intervall, killsdout{intexwvall>;
else /* we have an interval */
head = order(intexval,l)
subin{head) = n¢;
killedin (head) = nf;

<subocut{head}, kiiledout{head}>=gubpascsl {head,subin(head;;

£* now paseg through the interval in interval order %/
(2 < ¥i < dcont) b = order{intzwval,i);
/¥ abyly jump functions */
gubin (b) =jumpsub({b,.cont):
killedin{b}+» jumpkill(b,cont);
/* call subpassl recursively to get subout,killedout for b*/
<puboutibl,killedout{b}> = gubpasal(b, subin(b));
end Vi;
/*® recompute killedin for head */
killedin(head) = jumpkill (head,cont);
/¥ recompute killedin for every block */
(Yb € cont - {headl)
killedin(b) = killedin(b) + killedin (head}:;
end Yb; '
/% compute subaround */
subaround{interval) = jumpsub{head,cont);
/* now compute the output sets, killedout and subout for the
interval */
{¥sint € succ{interval))
heint = order(sint,i);
killedout{interval,sint) = /* apply jump functions®*/
jumplill {hsint,cont);
subout{interval,sint) = jumpsub{hsint, cont);
end Vsint;
return <subcut{intervall, kiiledont{intervall>
end if cont ¥ hlocks;:
end subpass 1l:

When this routine is applied to {thz2 interval representing

the entire program it will computs the kiliedin sefs for evarw
biock end interval ian the progres and will computs {ha
cubaround sets for every interval in the procyram, preparing
the way for *he second pass. HNote thet MIlsdout ard suhout

are not olobal,

SETL 123-11

Pasg 2

e et ot

The second pass is gimilar to the first except that
correct subsumption lists are passed into intervals and
distributed to the varicus contained blocks. The input
subsumpticn list subinput to an interval must be modified
along the lines suggestaed in the "Global Considerations"
gection hefore beinyg passed to the head of the interval.
The following function, essentially a transcribed version
of code fragment (1} from that section, performs the task.

definef convertsub (interval,inputsub);
/* killedin, subaround, ordexr are global */
killedinhead = killiedin{order(interval,l));
return{ /* condition 1 */
{p € inputsublhd p n € killedinhead
and t£ p n € killedinhead}
+ /* condition 2 */ A
(inputsub * subaround(interval));
end convertsub;

The other main differences from pass 1 are

a. killedin sets are not recomputed; and

b. therefore nothing is done zhout branches back to the head.
Here then is the SETL code.

definef subpass2(interval,inputsub);
/% contents, oxder, blocks, killedin, subaround, pred, succ
are all global */ '
cont = contents(interval);
/¥ is interval really a bhlock? */
if cont * blocks eq nf then /* call subfold */
<x,y> = subfold(interval,inputsub};
/* convert to entry-~exit pair form */
(Vsb € suce(interval))
subout {intexval ,sb) = x;
tilledout{interval,sb} = y; end ¥Ysb;

/% return the resulting pair %/
« return “subout{intervall}, killedout{intervall>;
alse /* we have an interval %/
head = order{interval,l);
subinfhead) = convertsub(iaterval.inputsub);
<gsubout{headl}, kiiledout{hzadl}>=subpass?2 (head,subin(hsad}};
/* now pass through in interval order */
(2 < ¥i = fcont) b = order(interval,i):
subin (b} = jumpsub{b,cont);
/* call subpass 2 recurgively */
<zuvbout{b}, killedout{b}> =subpasgs2(b,subin(b)); end ¥i;
/* note that killedin is not recomputed and no
loop considerations are needed */
/* now compute output quantities */
(Ysint € succ{interval))
hsint = order(sint,l);
/* use jump functions */
subout{interval,sint) = jumpsub{hsint,cecnt);
killedout(interval,sint) = jumpkill (hsint,cont):
end VYsint;
return<subout{intervall,killedout{intervall>;
end if cont * kLlocks;
end subfolde;

Suppose progint is the high-order interval which represents
the whole program. The entirxe variable subsumption process

can be invoked by two calls

dummy = subpassliprogint,al);
duminy = subpass2{progint.nl};

SETL 123-313

Digcussion

The gtorage reguired by this nethod is not large. Zetween
passes, wa must save killedin for every block and interval in
the program and subaround for every interval in the program.
The recursive routines can be converted to an iterative formm
if intervals are processed in the correct order. (otherwise
storage requirements go up because more versions of kvlledout
and subout must be kept on hand simultaneocusly).

This method does gome constant folding but by no means ali
of it. This is because g¢ach folding pass may create nevw
constant assionments which must then be distributed globally.
However, this may be &ll the folding we need because it gets
two important cases. PFirst, the algorithm shouid do a
reasonable job of local constant folding, since two passes
are made through each first-level interval and the results of
the first pass are folded in on the second pass. Second, a
constant assigned in any block will always be folded into
the klocks it predominates. Thus, constant parameter
initializations will usually be taken care of.

Since a good code motion algorithm will remove from loops
most expressions which might be eliminated by constant
folding a complete algorithm basel on data flow analysis
might not be needed or even desirable, given the time and
gpace requiremants of such an algorithm.

Acknowledgment. This rasearch was supported Ly the National

Science Feoundation, Grant GJ-40585.

References.

N

1. ¥ennedy, K., "Reduction in Strength Using Hashed Tenmporarie=,

_ SETL Newsletter #102, Courant Inst. HMatk. Sci., New York, 2/7..

2. Kennedy, K., "Global Dead Computation Elimination,” SETL News--
letter #1111, Courant Inst. Math. Sci., New York, Auvgust 19731,

3. Allen, ¥. E., and Cocke, J. "A Catalogue of Optimizing Tuoans-

« § wroon

formations,” Design & Optimization of Compilers, Prentice-Hal:i.

4. Lowrv, E. S., ard Medlock, €. W., "Object Code Ontimization,

Comue. ACH 17, 1 (Jsnuary 196%; 313~:2,

