SETI Newsletter § 124 Ed Schonberdg
Janvary 30,1374
The VERS2 Language of J. Earley

Considered in relation to SETL

We comment briefly on a recent article by Jay Earley
whose contents will be of interest to these famlliar with
the SETL project. Earley deécribes some of the features
of a very high-level language, VERSZ (implemented on the EL1
extensible system of Wegbreit gt al.)whose overall design
has a number cof points of contact with SETL, and which .
includes some very powerful primitives not provided by SETL.
We will see in the course of their description that most of
these can be realized in SETL without undue effort as
syntactic extensions. However, the VERS2Z pattern-matching
operations specified by Earley are a set of semantic facilities
whose realization in SETL would be non-trivial and worth
studying. We discuss first the composite data-types of VERSZ.
We will then describe itervators and related operations, and
finally examine pattern matching.

- Data TYpes

The motivation behind VERS2 is very simllar to that which

~gave crigin to SETL: the need for a pewerful language for

algorithnr design ard description; where matters of efficiency
are gsubordinate to expressiveness. ‘Az a result, VERS? uses
sets, mappings, and some of the notations of mathematical
set theory. In addition, Jdata-types that have proven useful
in a mamber cof programeing situations, namely lists and
structures with named fielids., are also provided. The following
list describes each type hriefly: ,

a) sets are unordered colilections of homogeneous valuss.
Bg { 1,2,3,41



S A BT

b} Sequences are orxdered collections of immogensous
valueg. They correspond to the SETL tuple, and are noted
[ a,b...} . _
Tuples correspond to the gstructures of ALGOL or PL/I.
They have a fixed number of named components.

d) Relatione arxe sets of tuples describing mappings

between values, They correspond to SBTL tabular functions.
e} Functions 1like relations ars mapplngs, but they
are required to be total, so that the value of a function
ig defined for every point in its dommin. The domain itsels
has to be static and cannot be redefined. -~
£} Ordered-sets are linked 1lists, constructed by pre-
senting some ordering relation on the slements of a set.
Once constructed they are accessed like sequences, but thay
are modified like sets, uaing ‘the primitives ADD and DELETE
(similar to SETL operators in and out). Conceivably the
primitive ADD when applied to an ordered get, will make use
of the ordering defined on this set t¢ imsert & new clament
in its approprate positien.
g) Bagz, i.2. sats with repmated alements, are zlso
Qﬁavided@ |
Iterators

2 xich” family of iterators over sets and sequencesz iz provided,
The gquantifiers :ad and Y, have the game meaning as in
SETL. &n intsresting semantic distinction is made batwesza
Citeratoxs and itexziive oporations. Ir the expreasion

O 8 TR M Y )

¥axe s o)

xe5:C{x) 1= an iterator, 2nd iz undorstood to supplv &
gtream of wvalues. VW' is an iterative opexation, and i%

acts upon that atream of values “o yaaﬁ & pesult.



The iterative operations B and V¥ yleld boolsan values.

To expreas an iterative loop that pearforms a block of code,

the iterative operation FOR is used (where in SETL VY would do! .
Iterators without iterative operations appear in the usual

set former: { xes | C(x) } ond also in a similar sequence
formex: [ xes jC(x)} ]. Notice that the same iterator

ie used in both casas, bypassing the explicit mention of

- an index used in SETL to iterate over tuples.

For numerical iterations, the following form is provided;
A<ed, n{d), £ - - -
agquivalent to the SETL dictions:

A=1i; until A eg f doing A = n(A);....

A conéerge iterator useful in connection with reals iz provided,
which iterates until the same values are gensrated for the
iteration variable: :

This'would be expresssd in SETL as follows:

new = i; while (cld ne new) doing [0ld = new; new = nfnew}si....
vher uzing real variables, e will be sn epsilon Zefining
cofivergence, 1.e. the argument of the whilg clause above will
be {{old - new) it a) ' |
otherwise e is ;;ittedo

Iterators appear in the definition of composite oparators,
as in SETL. WHILZ and UOWDIL operxators are provided. Finally,
a simple algebrz of iterators is defined. The sequence

iterntor: itsrasor ¢

s,

generates first one sequance of values, then the other, the
sequence '

ftarator X iterator



PN PR

3

corvesponds Lo Lhe wzoal negting of iterators in SEYL. ey

(¥ xes, xiex)

The par&l;el combinration
itarator || iterater

generates the first value of one sedquence, then of the other,
and so on.  The parallel combination can only be applied
to sequences, and its a&vantagas seen slight. Several
additional iterative operations deserve wmention: THE, FIRST,
and LAST return the only value genarated, the first or the
last, respectively. Th2 action of FIRST is clearly identical
to that of the existential quantifier:

truthval = ¥ xes | p{x):

firgt = % ;

when iterating ovar sets, the actlon of LAST can he exprasusd
by the code block:

f: Y(xes} if p(x) then last = x;;; return last:]

the action of THE reguiraes a slightly lengthier expression:

-

{: 1= 0; Yixes) if pix) then the = w3 i=i+l,:;
- return if % eq 1 then the else om; 1

¥otice however thah tha power of these lterative sparalliong
is ygreater than that of the SETL expresailonsg above, In
particular, a differsnt form would have to be writtsn iu
SETL Loy each tveps of iterator, while in VERSZ cone can wrile

with the same easze, €.q.

LAST a4-=1; t{A) | &(A

3

SOKT is another ltarativ e gperation whisch produces & soyie!

usauen e out of the strezw of values generpbted by an Afg oo,

O



SETL~ 124~ ©

DEL (deletej and REPL(replace) can be applied to iterators
with obvious results. For example

REPL xee |(x gt 5) WITH(x//5)

would correspond tc the following SETL code:

81 = 83 (¥ xesl) if (x gt &) then x out s; (x//5) in s8::;

We mention finally that an iterator is provided to generats
21l members of the power set of a set, or all subsequences
ef & sequence: A C 8 | {Notice that
in the current SETL implementation, iterations over the
power set of a set are carried out without explicitly
constructing the power set, set rather by generating each
element of it in some arbitrary @rder. The same intent is
apparent in VERS2).

- Pattern Matching

VERS2 1s intended to have pattern-maZching facilities
simlar to, but more powerful than those of SNOBOL. In
particular, matchings can be attempted on any data-type.

To support these facilities, VERSZ makes use of a primitive
MATCH operation, and a new data-type, the extractor variakle.

An extractor variable is similar to an immediate zszsigmment
in SNOBOL, and it provides therefore the equivalent of the

SNOBOL unevaluated expression facility. Az a suggestive

example, considexr the following VERS2 statement:

- 8 MATCE <{g.,arpl, {p, AR®}> =» TRUE
(where p has been declared tc he an extractor)., This cmn
be expressed in SETL as foliows: '

& E’P*‘:{. get? > = 8 :

match =3 pe setl, ge setZz {(» 8¢ ¢ )



w
=i
k2

It is clear that as the putiern to be metched grows
in compiication, the SETI coda necessary to describe the
matching will becoms more obdcure, Wnat fg implied by the
MATCH primitive is z fairliy elabcrate pareisng slgorithm
capahle of building arbitrary trees.

4

The following details cohc@rning pattern~matching in
VERSZ deserve mention:

a) A simple set of pseuvdo-patterns similar to those of
SNOROL, ie provided: REP(patterﬁ, number) {(aquivalent to DIPL)
REP (pattern) (equivalent to ARBRQ), and ARB. {(Notice that
in the example above, ARP matches a subset of a set)

b} The names of data~types are wvalid patterns.

c) Patterns can be used in conjuction with iterators,
thus implying any nunber of matching operstions. For example
- {TOPLE, [w&el-, 831} ¢ 3
returna the sumber of sets in. 8§ which contain twe olements:
& tuple and a sequente cansisting of § arbitvary siencnts.

t is clear that an impressive economy of notstion hag
bean schieved by this combination of primiti

4
&%
@
L

v
g

c
aloorithns nced not be emphasized o thore fwailiazr with SBETL.

Ta¥

kil

¥

e7ENCa

¥ e

Barley, J. % Relational lsvel data structures is
programring laundguages”, Camputer Scelencs,

Caiverzity of California, Berhelay, 1370

*Bigh lewval operaitiong in subowmadic drograoeming

1a

#3iFfornis,

2

compatar Solenoa. dmiverelity of

Notaper, 1873



