
SETL Newsletter# 127

Edge-Listing Data-Flow Algorithms

K. Kennedy
March 15, 1974

The problem of constructing data-flow information

from the control-flow graph of a program has been studied

by a number of investigators [1,2,3,4,5,6]. In [3] the

author presented an algorithm which uses "Cocke-Allen interval"

analysis to solve the problem of locating "live'' variables

in a program. Hecht and Ullman [4] proposed a tabular

method which has been shown to require more bit-vector

operations than the interval method on some graphs and

fewer on others [5].

This newsletter proposes an entirely new tabular
'(

approach which is applicable to m~t global data-flow

problems. After an initial processing expenditure, this

method is optimal in terms of bit-vector operations.

Edge-Listings

We define an edge-listing to be a sequence

9., = (el, e2, ••• , em)

of edges in the program flow graph, where some edges may

be repeated, such that every simple path in the flow graph

is a subsequence of 9.,. That is, if

(dl' d2' • • • I dn)

are the edges of a simple path in the flow graph, there

exist indices

jl, j 2' ' jn

such that l _::. i < n, and d. = e.
l J.

l < i < n.
1.

Certainly an edge-listing exists, becauce if f 1 , ..•. , fk

are all the edges in the graph then

with k repetitions of (f1 , ..• ,fk) is a valid edge-listing.

An edge-listing is said to be minimal if there is no shorter

edge-listing for the same graph.

Data Flow

2

Most data flow problems can be expressed by "edge-equations"

on the edges of the control flow graph. For example,

consider the problem of identifying "live" variables. The

following sets are important.

1. live(b) - the set of varl~ples which are live on
~I')

entry to the block b - where a variable is "live"

at a point if there exists a path from that point

to a use of the variable which path contains no

redefinition of the variable.

2. inside(b) - the set of variables for which there

is a use not preceded by a definition in b.

3. thru(b) - the set of variables which are neither

used nor defined in b.

It has been shown [3,5] that the following class of

equations defines the problem:

(1) live (b) = inside (b) u U ; (thru (b) n live (k))
'

k£S (b)

where S(b) is the set of successors of the block bin

the control flow graph.

The essence of the edge-listing method is to propagate

the "live" information backwards along all simple paths

by applying the following analog of equation (1)

(2) live (b) = live(b) U (thru(b)nlive(k))

(Zive(b) is initially inside(b)) on each edge (b,k) of an

edge-listing in reverse order. The following SETL algorithm

does this. Its argument edge list is an edge-listing

represented as a tuple of pairs <b',k>.

definef liveanalysis (nodes, edgelist, thru, inside)

/* initialize live to inside*/

(Vb £ nodes) live(b) = in~ide(b); end Vb;
/* iterate through the edge-1isting */

(# edgelist ~Vi~ 1) /* reverse order */

<b,k> = edgelist(i);

live(b) = live(b) + (thru(b) * live(k));

end Vi;
return live;

end liveanalysis;

This simple algorithm is optimal whenever the edge listing

is minimal.

Our only remaining problem is to find an algorithm

which generates a minimal edge listing.

Enumerating Simple Paths

The first step in the generation of a minimal edge

listing is the enumeration of all simple paths in the graph.

For each node n, we will compute path(n), the set of simple

paths which terminate ~t n. This computation can be

performed by an iterative method similar to Kildall's [6].

3

Initially, paths(n) contains only the null tuple. We

iterate through the nodes n of the graph adding to

paths(n) all paths leading to a predecessor k of n and

through k ton (which paths do not contain n). When no

new paths are added during an iteration, we halt.

The following is a SETL function which accepts graph,

a tuple of nodes, edges, and entry node, and produces the

paths sets.

definef computepaths (graph);

/* break graph into component parts*/

<nodes, edges, entry>= graph;

/* compute the predecessor function*/

preds = J <tQ.x, hd x> x E edges} ;

/* initialize the paths to ~µ11 tuples */

(Vn E nodes) paths(n) = {nufi} ; end Vn;

/* iterate through the graph until there

are no changes*/

change= t;

(while change) _change= f;
/* recompute paths for each

node in the graph*/

(1.:/n E nodes)

newpaths = [+: k E preds {n}] paths(k);

/* check each new path for the

occurrence of n */

(',;/ p E newpa ths)

if (1 :5._ \fj :5._ # P,1 hd p(j) ne n)

and (p + << k ,n>>) ~ E paths (n)

4

then paths(n) ;= paths(n) with (p + <<k,n>>);

change= t; end if;

end 'V:Jp;

end Vn;

end while;

return paths;

end computepaths;

Our next task is to eliminate some duplication. We take

all the paths into one set and eliminate those which are

contiguous within another path.

definef reduce (paths);

/* pool all paths*/

allpaths = [+: x E paths] t£ x;

/* dheck for contiguous subsequences */

5

(Vt E allpaths 13(q E allpaths - {t}, 1 < 3:. <
J

(#q-#t+l)

I q (j : * t) eq t))

allpaths = allpaths - {t};

end 'tft;

return allpaths;

end reduce;

On completion of this function,'~ are left with a set of
"_. l

maximal simple paths.

Edge-Listing Generation

We must now find an edge sequence which contains

each of the enumerated paths as a subsequence. To do this

we will use an exhustive search through a tree of possibilities.

We build a tree in which we have two quantities

associated with each node:

(1) sofar(node) - the pa~tial edge-listing generated

so far.

(2) rpaths(node) - the set of paths remaining to be

accounted for.

In other words, each node represents a sequence of decisions

which have led to the partial listing sofar(node). When

a new node is created by a decision to add a certian edge

to the listing, that edge is stripped off the beginning

of each remaining path to create a new rpaths set. When

the set of remaining paths reduces to a null tuple, the

edge-listing is complete. Each leaf in the completed

tree represents a valid edge-listing, the shortest being

a minimal edge-listing.

The SETL function multimerge uses an adaptation of

this method. The tree is built in stages: first all

possible initial sequences of length 1 are computed,

then those of length 2, and so on. We stop whenever all

paths have been exhausted for some leaf because when this
i

happens we will have a minimal lljfrting. A small speed-up

is attained by the following trick: Whenever an edge

appears only at the beginning of the remaining paths

we can add this edge to the partial sequence without

considering other possible decisions - thus we can move

to the next stage with ·only one son tending from this

node.

The following SETL function creates a new tree node,

given the sets sofar and rpaths for the parent node

(seq and rempaths, respectively) and the selected next

edge x. If, after stripping x from the remaining paths,

all paths have been accounted for, the edge listing is

returned as the value; otherwise, th~ new node is added

to the argument set newo

definef createnode (x, seq, rempaths, new);

/* get a new atom*/

node= newat;

sofar(node) = seq + < x >;

6

/* strip initial edges from remaining paths to

create a new rpaths set*/

rpaths(node) ~ n1;

(Vt E remset)

if X ~ t(l)

then rpaths(node) = rpaths(node) with (t1 t) ; -- -
else rpaths(node) = rpaths(node) with t;

end if x;

end 'r/t;

/* test to see if remaining paths are null*/

if rpaths(node) ~ l<nult}

then return (sofar(node));

else new= new with node;

return nult;

end. if;

end createnode;

Finally we present the routine multimerge which builds

the tree. Note that the operator seqelt returns the

index of an element in a tuple.

definef multimerge (pathset)

/* initialize the first node*/

node= newat;

rpaths(node) = pathset;

sofar(node) = nult;

nodes= { node } ;

(while nodes ne n1 doing nodes= new; new= n1;)

/* iterate through the tree nodes at this stage*/

(r/n E nodes)

<seq, remset> = <sofar(n), rpaths(n)>

/* check for special condition*/

7

if 3t E remset I ("</q £ remset I (t (1) seqelt q) 1e 1)

then /* create only one son*/

test= createnode (t(l), seq, remset, new);

if test ne nult then return test;; ---
else/* multiple branches*/

startset = hd [remset];

("(x E startset)

test= createnode(x, seq, remset, new);

if test ne nult then return test;;

end t/x;

end if;

end \fn;

end while;

end multimerge;

The operator seqelt is progra~~& as follows.

definef a seqelt t;

return (if 1 < 3i < # t I t(i)':::9_ a then i else 0);

end seqelt;

The method we have presented is clearly "brute force".

It is probably not worth the effort to compute an

edge-listing with such a time-consuming method. However,

it does provide us with a method of evaluating heuristic

edge-listing generators.

Summary

We have introduced the concept of a minimal edge-listing

and we have used such a listing to rapidly compute global

data-flow information. A time-consuming algorithm to generate

a minimal edge-listing has been presented. This algorithm

will be used in the evaluation of heuristic generators to be

discussed in future newsletters.

8

Acknowledgment. This work was supported by the National

Science Foundation, Grant NSF - OCA - GJ - 40585.

References

1. Cocke, J. "Global Common Subexpression Elimination",

SIGPLAN NOTICES, Vol. 5, No. 7, pp. 20-24, July 1970.

2. Allen, F.E., "A Basis for Program Optimization",

PROC. IFIP Conf. 71, North Holland Publishing Co.

Amsterdam, 1971.

3. Kennedy, K., "A Global Flow Analysis Algorithm",

International J. Computer Math., Section A, Vol. 3,

pp. 5-15, Dec. 1971.

4. Hecht,M.S., and Ullman,J.D., "Analysis of a Simple

Algorithm for Global Data Fa9w Problems", Proc. of . [

ACM Conference on Principles·, of Programming Languages,

Boston, Mass. October 1973.

5. Kennedy,K., "A Comparison of Algorithms for Global Flow

Analysis", Technical Report 476-093-1, Dept. of

Mathematical Sciences, Rice University, Houston,

February 197 4.

6. Kildall, G.A., "A Unified Approach to Global Program

Optimization", Proc. of ACM Conference on Principles

of Programming Languages, Boston, Mass. October 1973.

9

