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Estimates from below of the domain of a mapping 

In optimising SETL programs, it can sometimes be 
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useful to know that the domain hd [f] of a mapping f includes 

all of a sets. This information, if available, can be 

used either to ensure that a particular value f(x) is not 

n; or to justfy the association of a field for the value f(x) 

with each element x ins; or, in connection with some future 

optimiser capable of carrying out sophisticated mathematical 

transformations, as part, e.g. of a proof that f ~s a 1-1 

transformation defined ons. Even though these potential 

applications may not yet justify including 

a mechanism for proving propositions s -~c hd [ f] in a practial 

SETL optimiser system, we shall in t~~ present newsletter 
r ,' . 

discuss techniques for establishing propositions of this 

form. Our discussion will also address an interesting 

technical question ha•ing to do with the treatment of 

set-theoretical iterators (1xEs), and will bring us into 

implicit but suggestive contact with a fundamental question 

of optimiser design: how broad a range of issues and methods 

can be brought into an optimiser without reducing its 

efficiency to a point at which the optimisations it attains 

do not repay the cost of optimising? 

The constructions which are normally used to build up 

a function f defined everywhere on a sets are as follows: 

i. The sets may be defined first~ and then f may be 

defined for each element of s, either by an iterative loop, 

e.g. 

(1) f n9.,; (l;/xEs) f(x) 0 ; ; 
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or by a set expression, e.g. 

( 2) f = {<x,Q>, xEs}; 

ii. The sets may be built up progressively, and f 

defined for the elements of s as they are added to s, e.g. 

in the pattern 

(3) • • • 1 X in Si f(x) = y; 

Loops (1), as well as the loops implicit in constructions 

like (2), can be handled as follows. For each loop 

(4) ('t/xEs) block;; 

·i , 
. • I 

generate two auxilary set names s
1

, a·na treat ( 4) as if it 

were the following while-loop: 

( 5) s = ni• s = nt· 1 :::_;_;_/ 2 _, 

(while s
1

. ne s) 

x = 3 ( s-s1) ; 

block; 

s 2 = s 2 with x; oralternatively s 2 = s 1 ; 

end while; 

s = s 1 ; oralternatively n9op; 

Here the underlined keyword oralternatively represents a 

'binary operator on statements', used to indicate that either 

of its two 'arguments' (which are both statements) can be 

applied at a given point since both certainly have the same 

result. 
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Note that 'optional' statements, indicated in NL 130 by the 

use of parentheses, i.e. by (atatement;), can be written in 

the form 

(6) statement; oralternatively noop; 

using the statement operator oralternatively. If we treat 

the loop (1) according to the general schema (5) it becomes 

(7) s 1 = ni; s 2 = ni; 

(while s 1 ne s) 

x = 3 (s - s 1 ); 

f (x) 

s 2 = s 2 with x; oralternatively s 2 = s 1 ; 

end while; 

s = s 1 ; oralternatively noop; 

Within the loop we always have hd [f] ~ s 1 and s 2 ~ hd[f], 

making it plain that hd[f] =son exit from the loop. Note 

that a fact - gathering algorithm like that sketched in NL 130 

will duplicate this reasoning if only it allows sets like 

hd[f] to enter freely into the relationships which it manipulates. 

Now consider the alternative definition (2) of the mapping 

f. When schematised and treated a la ( 5 ), it will become 
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f = nl; 

s 
1 

= n t ; s
2 

=· n t ; 

(while s 1 ~ s} 

x = :3 (s - s
1
); 

t = <x,O>; 

f = f with t; 

s 2 = s 2 with x; oralternatively s 2 = s 1 ; 

end while; 

s = s 1 ; oralternatively noop; 

Within the loop we always have hd[f]i ~ s 1 , and our optimiser 

will know this since it will be aware: 1of the fact t(l) E s 1 . 

Similarly, the optimiser will know that s
2 
~ hd[f]. However 

it is more complicated to prove using (8) that f is single-valued 

than it is to prove the same fact by analysing the code (7). 

The proof is as follows:_ s~nce hd[f] ~ s 1 , we have x n E hd[f] 

at the start of (8). Thus hd[{t}] is disjoint from hd[f], 

which guarantees that f remains single-valued. This argument 

also will be within range of a fact gatherer like that of 

NL 130, if only free use of sets like hd[f] is allowed. 

Ifs and fare built up progressively in.the manner 

illustrated by (3) then a proof that s ~ hd[f] can be 

obtained along the following lines: before x ins is executed, 

s c hd[f] should be true; and then after'f(x) = y is executed 

s c hd [ f] will be true again. For this:, line of reasoning to 

be accessible to an optimiser, it will clearly have to 

manipulate at least some limited class of propositiona of the 

form s c {x} + hd[f]. 
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We see in sum that to allow automatic recovery of all 

the deductions described in the last few pages, it is 

sufficient to make the following additions to the fact

gathering algorithms described in Newsletter 130: 

i. If f is a set of ordered pairs used as a mapping, 

its domain dam= hd[f] should be regarded as a set able to 

enter into. relationships x R dam and dom Rx. This can be 

done by generating a variable to represent dam, and inserting 

update-code to modify dam whenever f is is modified. Note 

that f = nt makes dom = nt; f = s makes dom = hd[s]= dom, 
- - - s 

f = f + g makes dom = dom + hd[g], etc. An indexed assignment 

f(x) = y makes dom = dom + {x}, if y ne n (which might well 

be known from prior typefinding) and dom = dom - {x} if 

y ~ n. If y may or may not be n, one must use dom = dom + {x}, 

where+ is a new SETL primitive witW semantics which should 
; . ( 

be clear to the reader. The plausibi'lity and necessity 

rules which apply to relationships involving dam are the 

same as those which apply to any other set, with one 

exception in the necessity rules, which exeception we will 

explain immediately below. -

ii. If f and x appear together in the context f(x) = 

then we apply the following procedure: 

... , 

(a) Find all statements of the form x ins, s = s with x, 

and s = s + {x}, and prefix each such statement with an 

auxiliary assignment x = x. Convert the forms s = s + {x} 

and x ins to the forms= s with x. Then perform data-flow 

analysis. 

(b) If the only ovariable chained~to the ivariable x 

of f(x) = ... is the ovariable x of one of the assignments 

x = x thus introduced, allow statements 

( 9) O C {x}+ o
1

, 
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where o is any ovariable occurence if s,,1- .and where o
1 

is any 

ovariable occurence of dom = hd[f], to appear among the 

hypotheses being processed. In (9), which we shall prefer 

to write as 

( 9 I ) O C o
1

, 
-x 

x is the target ovariable of some particular one of the 

assignments x = x introduced by rule (a). 

(c) The plausibility and necessity rules for propositions 

(9') include those which apply to ordinary assignments o ~ o 1 . 

However, for (9') to be plausible we also demand that xEo 

and x E1 o 1 be plausible; and at statements of the form 

o = i 1 with i hypothesis (9') will be confirmed if the hypothesis 

i c o 1 is available and if K is the ,pnly ovariable chained to i. 
' : / 
·, ' 

(d) Apply the following modified necessity rule at 

every assignment f(i) = y for which the only ovariable 

chained to the ivariable i is the x of (9'): if the hypotheses 

y ne ~ and o ~x domf are available before this assignment, 

then o c domf is available after it. 

With these modifications, the procedure outlined in NL 130 

can be used to prove that a map f is defined everywhere on 

a sets; and also to prove that f is single-valued. 

7. A general observation concerning 'source' and 'schematized' 

forms of code in optimisation. 

The following general remark is s~ggested by the technique 

used in section 1 above to treat set iterators (VxEs). 
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When source code is schematised to prepare it for analysis, 

expressions and other relatively 'integral' constructs easily 

detected in the source will expand into longer,less integral 

sequences, e.g. of quadruples. 

Even though sound global optimisation techniques will 

withstand most of the impact of this expansion, information 

will occasionally be lost, at least 'in the sense of being 

hidden in an implicit form from which its explicit recovery 

by global analysis would be over-expensive. To avoid or 

minimise this difficulty, one will of course want to choose 

schematisation rules rather carefully. In particular, it 

can be useful to examine the source code for optimisation

significant local features while its schematised form is 

being generated, and to va+y the schematisation, perhaps by 
1 

compiling in extra indicators, in a way reflecting any 

significant source-level features which are detected. The 

oralternatively construction used in section 1 is handy for 

this purpose, as it makes a logical 'and' operations available 

for use during the global analysis which follows schematisation; 

note that in this global analysis converging flow paths are 

associated not with the 'and' operation but with the logical 

'or' operation. 


