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The Use of Equalities in. the May 30, 1375

Deduction of Inclusion/Membership Relations.

1. Confirﬁ&tiéﬁ“of‘relaticnshiﬁs withcct use of cha;ﬁc df‘équaiities.

In this newsletter we shall discuss the 1nclusion/membership
analysis alcor;thms described in NI 130, justifying fheir
correctness, ‘and’ eménding a number of inaccuracies concerning
the use of equalities in in»luaion/membershlp analysxs.

Note first of all that in writinq a relatzon.hxp och, we
agsert that" immediately after o has besen evaluated 1t ‘has a
value valo which stands in the relationship R to the value
valoz calculated at the last evaluatton of ox pric- to ths
evaluation of 'o. (Asauming that 6 and ox are not the samel
ovariable; this is the value which ox retains when waJc is
calculated ) Similarly, in writing irox, we are asqerting that
at the moment of its use i1 has a value equal to that last
calculated for ox. The assertion essential to Justl ‘icatien

of the 'elimination of relationshipa method of nclnsxon/membershlp

deduction sketched in WL 130 is that any set of relatlonshxp»

- confirmed by this method of deduction (for brevity, we shall

call these ‘confirmed relationships') is true.

For this asserticn to be justlfled, we must define our
deduction method clearly, and restrict it carefully in one
particular regard. The situations which make neccasa:y the
restriction to which we allude are typified by the fo.lowing
example:

8' = nt; | /* iine 2 %/
{(while ...)
8 = 8 less y; /% line 4 »/
x = Dg; /* line 5 %/
' = g' with x; A% line 6 =/

end while;
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In this code, the ivariable occurénce of 8 in line § is
linked only to the ovariable occurence og of s in line 4.

Thus we can be sure that ox € os (where ox is the ovariable
occurence of x in line 5.) The ivariable occurence of s'
(line 6) is linked only to the ovariable occurences of &' in
line 2 and 6, which we shall call os2' and o0s6' respectively.
Since 082' 3 € os (because the value of o0s2' is n!) it might
appear that there was no reason ever to eiiminate the plaasible
relationship os6' 3 € os, yet as a matter of fact this may

" well be false since 8 is diminishing, perhaps to g&, while 8°
" 18 increasing. The‘trcuble comeslfrom the fact that line 4,
which mbdifies 8, can be executed between the time that os6’
is calcuiated and the time that its value is used.

This makes it plain that our deduction algorithm shouid
not confirm a relationship iRox if there exists an ovariable
o €ud(i) and a.pathvfrbm o to ox to 1 free of occurences of
other ovdriables o'€ ud(i). Setting aside all special issuas
involving the use of equ@lity (these issues will be discussed
later in the present newsletter) we can state the rules to he
applied in this case, together with a number of other significart
supporting definitiors and rules} ag follows:

A. Relationships iRox and oRox can be confirmed either
on value greunds or on standard grounds.-

B. A relationship iRox (resp. oRox) is confirmed on value
grounds (which we will abbreviate as veonfd) if either:

a. constant wvalues are known for i and ox (resp. o and ox)
and the relationship R is seen to hold for these constant values;
or ‘

b. &a constant value is known for i (resp. o) and R is
seen toc hold in view of this known value and the known type of
‘the value of ox {here an example would be i = n! and ox a set,
in which case { 3 € ox can be vconfd); or

c. &a constant valus is known for ox, and R is seen to
hold in view of this known value and the known type of the value
_of i (oxr o). (An example here would be ox = n&, in which case

we can be sure that 1 € ox is true.)
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¢, A velationship oRox will be ccnfirmed on standard
grounds {which we will abbreviate as sconfd) under the conditions
explained in NL 130 i.e., if appropriate relationships x Rox
involving the argument ivariables ij of o are confirmed. A re-
lationship iRox will be sconfd if the relationship oRox is
confirmed for each o € ud(i), and if, whenever oRox is sconfd
rather than vconfd, there can exist no path from o to ox to i
which does not pags through some other variable in vd(i).

D. Cases in which © and ox are the same ovariable
require special treatment, and are probably bhest handled by
not adritting any relationship ot the form oRo as plausible
unless it is time ¢ priori. . .

Given these rules, it is not hard to see that every con-
firmed relation is.true.

Tc prove this, we envisage some run of the program P
‘which we are analysing,.cohsider the full gsequence cf ovariakle
evaluations which takes place during this ron, and let the n~th

evaluation in this gsequence evaluate c.

' We srgue by induction en n. If n = 1, then o must be set
either by a read statement, in which case the set of corfirmed
relationshipz oRex will be null, or ‘o must he set from a constant,
i.e., from an ivariable whose value is known, and then clearliy
sach confirmed oRox must be veconfd. But it is plain that all
veonfd relaticnghips are true.

Now saeppose that n > 1, and first consider the case ©of 2z
confirmed relationship iFox involving one of the argument
ivariables of o, If woonfd, this relationship is true. Other-
wige it is zconfd. The value of i used in evaluating o will
be that storsd at the last preceafing time that an ovariable
o' € ud(i) was encountared. Since iRox is confirmed, ¢'Rox
"must also be confirmed, and hence either vconfd or sconfd.

If ¢'Rox is veonfd, then o'Rox must remain true when i comes

to be used, even if the value of ox has changed since o' was
evaluated, aince 1f ox can change, 0'Rox must hold (as a reiation-
ship betwesn ovariable values)
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by virtue of the known value of o' and the type of ox. If o'Rox (fﬁ
is sconfd, then by rule {c) above, the path from o' to i ‘
 cannot have passed through ox. By inductive hypothesis, ¢'Rox
wag true {(as a relationship between values) at the moment that

o' was evaluated; since the value of ox cannot have changed,

iRox must remain true (as a'relationshfp between values) when

i comes to be used. And now, since oRox is by assumption sconfd,
it is, when regarded.as'a relationship between ovariable values,

- — -

a logical consequence of relationships involving argument -

ivariables, which relaiionships are known to be true. Hence
oRox is true for n > 1 completing our induction and proof.
| The following is a practical techniqﬁe for imposing the
restriction that a relationship iRox should not be sconfd unles:
there exists no o € ud(i) and path o to ox to i along which no
other o'€ ud{l) ie encountered.
<. Ignoring this restriction, generate a preliminary
estimate of the set of all confirmed relationships. (j'
i1i. Form the set of provisionally confirmed relationships
iRox for which there exists an o € ud(i) such that ox can be
reached from o along a path clear of occurences of the variable
v common to o and i. ' .
ti1. For each such relationship, modify the text of the
source program being processed by inserting an assignment v = v
into it and re-analyse data flow. If after this the ovariable
of this assignment appears in ud(i), then iRox must be dropped.
iv, After applying rule (£if) to drop some collection of

relationships iRox, proceed, much as in step i, to eliminate
additional relationships untili a mutually confirming collection
iz obtained. By the preceeding prcof, all the relationships
which remain must necessarily be true.

2. The use of chains of egualitieas.

Next let us consider relationships of the special form K,
O eq ox, and the way in which the preceeding argument is changed
ig we allow reascning by chaing of equalities.

-
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Note first o! all that, in the present context, the relationship
oy eq ox is not symmetric. In writing oy eq ox, we assert that
immediately after the evaluation of oy, oy has the same value
as was last calculated for ox; in wrzting ox e¢gq oy, we assert
that lmmediately after the evaluation of ox, ox has the same
value as was last calculated for oy. Suppose now that ox eq oy
has been proved, and that we also know that oy cannot appear

on a phth fréﬁ ox to o that does not go through ox twice. Let
valox (tesp. V§loy) be the ialue obtained when ox (resp. oy)
was lagt calculated prior to some particular calculation of o.
Let vaioyf be the value obtained when oy was last calculated
prior to the calculation of valox. Then since by assumption
the value of oy is not recalculated between the caluclation

of valox and the calculation of o, valoy and valoy' must be

the same. Thus the relationships oRoy  and oRox are equivalent.
To fix our attention on this useful fact, we state it formally
as a lemma.

Lemma 1. Let ox eq oy be true, and suppose that oy cannct
appear on a path fram ox to o that does nct pass through ox
twice. Then if oRox ig truve, so isicRoy, and vice-versa.

Next suppose that o eq o, and ‘that ox cannot appear on
a path from o to o' which does not go threugh o twice. Let valo
be the last value calculated for o before some particular
evaluation of o', and let valox be the last value calculated
for ox before valo is calculated. Then alt the moment of calculation
of o', valox is still the last value calculated for ox. Hence
if oRox is true, then o'Rox is true. Suppose next that o' eq o,and
that ox cannot appear on a path from ¢ to o° which does not go
through o' before reaching o again or reaching a program exit

- node. Then the value valo calculated for n at some given moment
‘is equal to the value valo' calculatzé for o' when o' is next

encountered; and between these two caleulations neither valo
nor the last previously calculated ox value valox will not change.
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Hence if o'Rox is true, then ORox is also true. The following
lemma summarises these cbservations.

Lemma 2. Let o' ¢q © be true, and suppose that ox cannot
appear on any path from o to 6' that does not go through o ,
twice. Then t

1. If oRox 1s true, then so is o'Rox.

i1. If o'Rox is true, and if in addition ewvery path start-
ing at o must pass through o' before it reaches o again or
reaéhes an exit node, then oRox is also true,

It is easy to give examples which show that the hypotheses
appearing in Lemma 1 and 2 are essential. First consider

the code
g8 = ,,. /% line 1 */
8' = nk; /* line 2 */
(while ...} | '
8= ,,, /% line 4 */
if ... then quit;;
g' = g3 /% line 6 */
and while; .
t = 3' less ...? /* line 8 */

Denote the ovariable occurences of t, the two covariable occurences
of 8 (in lines 2 and 6), and the two ovarizble occurences of

s {in lines 1 and 4) by ot, og2', 036', osl, and os4 respectively,
and the ivariable occurences of & and s° by g and is'. Then

ig is linked only to os4, g0 0s36' eq os{. Moreover is' is

linked only to 682! and ©0s6', and since os2' 3 € o0s6', we

have ot 3 € o0s6'. But otD€csd need not be true, since os4 can

be re-evaluated between the execution of line 6 and the next
following execution of line 8.
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As a second exemple related to Lewma 1, consider the code

(while ...}
8’ o W &

if ... then quit;;

8' = g; /% line 4 %/
end while;
t = 8; /* line 6 */

Let the ovariable occurences of g, s'} and t be called os, os',
and ot respectively, and let the two ivariable occurences of s
{(in lines 4 and 63 be called isd and 1s6 respectively. Then
since is4 is linked only to s, we have o' eq os. Similarly,
ot eq 0o3. But ot eq o8’ can c¢learly be false.

Next we give an example showing that if its hypotheses
are gubstantially relaxed Lemma 2(i) may cease to be true.

Consider the code

BX = ... /* line 1 */

8y = n&; ) /% line 2 */
(whitle ...} )

8 = gy less ...; /% line 4 */

6X = 8x less ...; /% line 5 */

8y = 8xX; . /* line 6 */

7 %/

8! = g; /% line
end while: ‘

in which o~ and ivariables osxi, usx5,08y2, osy6, 0s,cs', isy,
isx%, isx&, mné 75 occur (the reader will easily identify these

occurencesz.}) Since isx6 is iinked only to osx5, osy6d€osx5.

Since osy2®osxS also (by veonfirmation), we have osDEcsxS.
Clearly cs' eq os; yet os'DEosxb may ke false since sx can change
(by the execution of line 5) after ¢ is calculated (in line 4}.
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Finally, we give a simple example which shows that the
second part of the hypotheses of Lemma 2(ii) cannot be sub-~
gstantially relaxed. Consider the code

xm © e

Yz Y .

if y € % then
y'=y

elge ...

w#hich may alzo be written
X = ..,
Y = ca.
if y € x then
v = y oralternatively 3x;

y' = y;

else ...

Then it is clear that oy' eq oy and that oy'€ox is true;’however
there is no reason why oy €ox should be true.

If we substitute an ivariable i for the cvariable o' in
Lemma 2, we obtain a statement which is also true. To see thisg,
let the variable of the ivarxriable i be v, introduce an assign-
ment vv = v immediately before the occurence of i, and let the
resulting ovariable occurence of vv be called o'. Then plainly
iRox is equivalent to o'Rox for all ox, while paths to i and
paths to o' are essentially the same.

Equality relaticnships should be used in the following way
to deduce additional relationships of membership and eguality
for a program F. We begin by calculating the class CREL, of
‘all confirmed (i.e..vconfd and sconfd} relationships fcr P
without making any special use of equality relationships.

By the arqument presented in section 1, all these relaticonships
are true.
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Some of the relationshins in CREL; may e relationshins of
equality. By applying the principles embodied in Lemma 1 and 2,

these relationships can be used to confirm a stiil larger set ¢ Ll
of relationships. Specifically, given a relstionship oRex

in CRELl or CRELl’, we ‘

1. Add oRoy to CRELl' if oy eg oy and there is no path

from ox to oy to ox which does not go through ox twice;

' i¢. Add oRoy to CREL,' if oy eq ox and there i¢ no path

from oy to ox to o which does not go through oy twice;

ii{. Add o'Rox to CREL,' if o' eq ¢ and there does not
exist ‘a path from o to ox to o' which does not.go through ©
twice; ‘

iv., Add o‘Rox to CRELl' if o eq o' and if in addition
every path starting at o' must pass thru o before it reaches
o' again or reaches an exit node.

It is clear from Lemmas 1 and 2 that all the relationships
in CRELI’ are true. Next, using these relationships, and .
proceeding as in section 1, we can generate a still -larger
family of relationships CREL, . This isg done as follows: we
extend ,the definition of the term ‘sconfd! by including any
relaﬁiqnship oRox in CREL,' in the set of confirmed relationships;
then CREL, is the set of all relationships which are veonfd or
sconfd in this extended sense. The family of relatiornships CREL2
can be extended tc a larger family CRELZ' in much the same way as
CRELI was extended to CREL1 anéd then a set CREL3 can oe

derived from CRELZ’ eteo.

‘A few relationships which would remain cut of reach if no
special use was made of relationships of eguality can ke dsrived
in the manner just explained. As an examplc, consider the
code sequence

8§ = ,,..5

8* = {x € 8f...};
Y = <y,s'>;

s" = {x € s'}...};
u = y(2)]

X = BFg";



Here we have oy 2 eq os', so that ou eg os'; and 0s"D € os',

from which it follows that os™ 3 € cu belongs tc CREL,’ (but (?3
not to CRFL;), and that ox € ou belongs.to CREL,. ©On the

other hand, consider the seguence

8 = ...} /* line 1 */
g = nk; ' /* line 2 */
(while ...}
8 = g.less ...; /* line 4 */
x = 38; /% line 5 */
Y = <¥.X>; /% line 6 */
u = y(2); . /* line 7 */
88 = 88 with u; /% line 8 */
end while;

Here ovariables osl, osd, oss2, oss8, ox, oy, and ou, and
ivariables is4, is5, iy6, iy7, ix, iu, and iss occur (the
reader will readily identify these occurences.) It is readily .
seen that ox éfos4, so that oy2 € as4, and thus ou € os4 and <T
os3 D€ o054 all can be confirmed without any special use of
equality relationships becoming necessary.
An inclusion/membership analysis algorithm may or may
not decide to make special use of eguality relationships; it
is not at all clear from the preceeding examples that it is
worth while doing so. If these relationships are exploited,
it will be necessary to f£ind all cases in which ©' eq o, and in which
relationship oRox, ©'Rox, oxRc or oxRo' holds, and where there
also exists a path Srom ¢ to ox to o' not going through o
twice. Thiz can be done with reasonable efficiency as follows:
for each pair of ovariables such that o' eq o is confirmed,

find the set § from
from o, and the set g to (¢'}) of all those blocks which are

{c) of all blocks which lie along a path

the origin of a path tc o' not going through o.
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be stated for &hg;e mOye goneral caseg:

Lemns 3: (Ansiog of Lewme 2j. Let ¢’ n g1 ¢ he {rua,

and gupposy thel oz cannct appear on any path from o Lo o
that does not o through o dwies. nen
. 1¥ oRex Is true, than so is o' r Rox;

4, IF o'y Jiow i rvrue, 2ud 1f in sfdition svery path
etariing 2t o wmash always pass throush o' before it reaches o
aJain oF reavrnss an exit node, vhen ohox 1z also Lrue.
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ORox: and Lemma 3711 follows immediately.
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Lemma 4 {Analng of Lewma 1), Let ox n oeg oy be true, and
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suppose thav oy cannot appsar en a path frov ox to ¢ that does
not pzus thru ox twice. Let T Ry geesiy he @ seguenrde of
component aperators, and let ﬁ S DyseeniTigs Thern if ok % ox
is tyrue, sc is oRoy, and vice-versa,

To prove this, let valex {(resp. valoy} Le the value obtained
when ox (resp. oy} was last calculated pricr to some particu
¢alculation € o. Then by hvpotheses Valcx’!nl,...,nk} ig the
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same as valoy., and thus ¢R »n o and 0ROy are aquivalant.



