
0

S.E~L Ne"rsletter t 130

peducing r~~~tionshiPs of

"inclusion and membership tn· SETL J[rograms.

J. S'.chwz.·ctz
l-'.iay 2 9 , .i.(:--, 4

1, Introdu·cti.on. A--Pr-t·ori: plau·stbili•ty o·f inclusion/1nembersh.i:E_

· reTatioz::shi,zs o

This newsletter takes up the 1 high level optimisation'

theme of NL.71~ NL.118, NL.121, and of Aaron Tenenbaum's

thesis (. .hereinafter referenceq as TT). The 9enerally good

performance of Tenenbaum's 'type-finder' program suggests

that it may be feasible to deduce deeper properties of the

objects appearing in SETL programs. In the present newsletter,

we will outline techn~ues which,building on the approach

and result of the typefinder ,allow use·ful relationships,

among them relationships of inclusion .and mem.bership,to

be established.

Before entering into technical detail, we make a few

generalising remarks. Global optimisers are progra.1Tts that

prove, and then exploit, facts concerning other programs.
Thus optimisers may be considered as co1.mtry cousins of

those still largely hoped for, mere sophisticat0d ro,ltin<::s

which prove the correctness, in some appropriate formai

sense, of thesE: other programs o ln cont:ra.st ·Lo ful:!.. corrtc'-C Lnet:J •·

prover systems, which ai;n to prov•::i a fe,,; maJor, hard,

programmer•- specified factR about a prcgra.m,. an cptL1.1iser

aims to prove m.ITaerous small, ..-~aFy facts about the programs

\.th:Lch. j_ t analyses; moreover, opt.irrtisers thems<~l ves :normally

generate. the surrnises that they ,.:,tt.empt tc) pn~ve. He may

put this comparison somewhat diffe:tently ,, by consid,?.rinJ

the nature of the theoren:-provin:r algori thrns ··,/hi eh are

typically employc!d by program <."i.nci l:i ::;e?./optimi :.;ers on the

SE'I'Ir-130

Theorem prov5.ng programs fall into two main families~ on

tr_e one hand, those generically similar to the ori~ina:i.

'geomet.ry theorem prover'of Gele:rnter; on the other hand,

·rhose: belon:;·:L::1g to the resolution group. ProverH of the

first kind p~oceed very cautiously in generating objects

not abnost r;;xplic:i t in the si tuaticns w::_ U:. ·which they a.:::<=-;

presente<l. Thi.s 1.i.mi ts very significantly t\1e space of

possibil:L ti-2:sr uhich such a prover needs trJ e::{f)lo.:te I and

makes i.t possible for such provers to genera-:e facts usin?
a kind of transitive closure method; of course the

closure-forming process employed may be optimised in vari.c·..12

ways or steered by some heuristic. Provers of the second

kind are more gr:meral, and in principle capable of reachi.ns1

out much farther from an initially given set of hypott1ese~ r

largely be ea.use they have Rvailable I and are prepared to

UEe, constr1..:.ctor mechanisms capable of gener2.ting all t~.e

objects of some full 'Herbran.d uni verse'" H:::weve:r-, t'!-,si.r

very generality confronts provers of the second typa ~ith

tht= problem of searching rapi{!}.y growing, pote.r,·:i.~:'.Lly

infinite sets of p~•~sibilit:_es: .::.nd at the p~:·e;c>::nt: -:-J.:,,:~

provers of tii:i.~ sec:md typf: generally fcunte:: 2~:-d.est

~ultitides cf unexplcre1 possibilities. We ~a~ ther2fore

SE'rI,-130

For such an optimiser to be possible, it is probably
necessary that rich semantic relationships should appear

fairly explicitly in the source text with which an optimiser

is required to work. This is to say that we expect deeper

optimisations to be possible in a high-level language whose

primitives are.semantically r:1.ch, than in a language

of lower level, whose primitives are of a more impoverished,

hardware-like, character. The technical discussion which

follows illustrates this gene~al remark, and shows that a

suitable optimiser will be able to guess and prove relation

ships of inclusion and membership between the objects of

SETL programs. In a language of only slightly lower level,

as for example a LISP-like language, it could be hard to

formulate these relationships, much less to prove them

efficiently.

2. _An algebra ~f. membership and inclusi•on re1·ationshi_ps.

We supposa the SETL programs w:i.th which we work to be

schematised in the manner described in T'l' 1 i.e., as et set

of operator-argument tuples with designated target variables,

arranged in a collection of basic blocks among which flow

relationships are defined by a sucessor mapping. We shall

when necessary write operator-operand-target tuples either as

(la) targ n op(arg1 ~ tu:·g2 , ••• ,argnj

as

(lb)

or in whatever other notational fprm is convenient.

SETL-130

We suppose that John Cocke• s •usr::i·-de£in.:i.tion chaiTling r p:cc;cris~

has been carried out1 the algorithm to be dei;cribed will

use the output data of this procedure, which makes explJ.cit

the data flow re,lationships within a program P to be analyeed.

We shall ·call the target variables of operator-operami

tuples like (la) , (lb) ovaPiab les. The analyrd.s described in

NL. 71 and TT associates a t:ype symbol with each ovariable.

This type symbol classifies a."l ovariable I or rather its

value as understood at compile time,as being one of the

following: eiementa~y (i.e. integer, real, string, etc.),

set, kno1.tin-length-tup"le, or unknown-'legth-tuple. Values

of these last three kinds are described by type symbols of

the structure {t}, <t1 , ••. ,tn>, and [t] respectively, where

t, t 1 , ••• ,tn are themselves type symbols and give information

concerning the type of a set's members and a tuple1 s corrponent;;.

We now introduce a numhex· of formal inclusion and

membership relationships between ovariables appearing in a

schematiE-ed SETL program P; the analysis which follows will

base itself on these relationsh Let o 1 and <)2 be c,va.riabler;

of P. Then

i. o1 e: o 2 mr2!arts that (immediately after t.he definition

of o1) the value of o1 is (necessarily) a. member of the

(current) value of o 2•

ii. o1 £_ o2 means that. the value of o1 is a subset of:

th , f f . d"' 1 ,;=t tt.. ., f f e va ue o o 2 . J.trune .;·.c1.te y a.~ er .1.,.e a.e 1.n11..ion o · 01 ;

necessarily; whe:i.Ae 02 refers to it.G cur:rent valu,:;) .

iiiv e,l e::r.: o 2 means th3.t. ol is a. t.uple of ,:noi-m 1,~ngi'.,

this length being at least n 3 and th...s.t the· n-·th co;;nponsnt

of o 1 is a member of o
2

.

iv. ol C -·n
known length,

0
2

roeaw,i ei t:.hex that
this lenqth bsing ~t

o., :i.s
.l.

a set of tup:i.es

i (" a.::~; t.

:.:1.--th comrJ::ri.cnt: (f. ec,:.:h r.·ic,rnbcr u:° .-::. :i::, ''.. me:;:r;·; :]: c:" ,::,:~; ci

i.f n "" 2 anothe}: meaning is po:< -; h :, -:~; ,. '::./ .-:.<1.·, U,.c, :: o l:; a

SETL-130

v. 0 £:
]. to

o2 means that o1 :ts a tuple of un.knm,.rn

lt!ngth 1 and that every component of o1 is a member of o 2 ~

vi. o 1· 5
00

o 2 means that ?i is a set of tuples cf

unknown length, and that every component of every member of

o1 is a subset of o
2

•

The type symbols associated with the ovariables of P

tell us which of these relationships ara plau8ible, i.ee

possible a priori. Let t 1 and t 2 be the type symbols of o1

and o 2 respectively. Then the relationship o1 E o 2 is only

plausible if t 2 = {t} and t.~ t 2 in the lattice of type

symbols (cf .. TT); o1 £ o.~_. only plausible if t 1 = · { t •}, t 2 = { tj,

and t ,. < t in the type symbol lattice. Moreover,

(- o 1 En o
2

is only plausible if t
1

= <t
1

, •.. ,~> with k > n,

o 2 · = { t}, and tn ::_ t in the type symbol lattice; o1 ~n o 2 is

only-plausible if either t 1 =· {<t1 , ••. ,~>} and these same

conditions hold; or n = 2, t 1 ,.. [t '] and t 2 = { t} wi. th t '_ < t

in the lattice;· or n = 2, t 1 = _<t1 ," •• ,tx? r t 2 = {t}, and

tj < t in the type lattice for all 1 2 j < k. The relaticnshir•

o 1 £ o is only pla.usible either • f c is of t·_vpe [t],
00 2 ... 1

o 2 = { t'}., and t < t' in the type lattice. or if c,1 is of

type <t1 , .•• t > with t.
n J

in. the type lattice fo:r: all j.

The relatior .. shin o.. 6
.. .L. _,:n <.">..,, • 1

~ l i:i on ... y plausible either if o1

.is of type [{ t}] r o
2

;:: { t'} and t < t' in the tyµe lattice, ,::·.r

if o1 is of type <{t1 }, ... ,{tn}>

l 12.tti\'.:e for all J.

wi t.h t.; < t' in the type
'

SETL .. 130

The set of all relationships plausible in this sense

for a progra."1't P will be calle"d the ma=imu.m plausible set

of 1•e latior:.shipa for P.

3 .. 9t1tli.ne of ·a11 anal_ysi•s· ·ai-gori•thm::._

Given a SE'i'L program P, we. wi.sh to determine the set

of all formal inclusion relationships which hold between

its o~Jar-iables. To this end, we propose an algorithm which

works 'downwards' (in the set_of relationships described in

the preceeding section), starting with the maximum plausible

set of relationships for P, and systematically eliminating

relationships which might be false until only relationships

which are certainly true remain. The rules which apply

are as follows.

a) Call the 'source' or 'input' variables of operator~

operand tuples like (la), (lb) ivaPiables. Each ivariahle i

will be chained to a set ud(i) of ovariables. We allow

i variables i to participate in i.nr::::lusion/membership

relationships i.e:o, i C of i Eno, etcc A relationship i:Ro

can only hold if. o1 Ro holds for all o1 E ud (i.) •

b} 1.rhe family of. true :celationships c,Ro.., .,,.
which an ov.a.riable o participates depends on 1:he

the operation defining o and. on the relationships which hold

for the input variables of this operationo 'L) define this

aspect of the a::1alytic s:i.t.uaticm completely r ;,;. rale :Ls re-iui::.•e,~:·

for every SE'l'L primitive and (=;very possible Li.cluz5.on 1:e

lationship. 'l'he SE'fL prirni t.i.ves are enumerah-,d on page

4 c,f NL» 7L H~i do not give ?:. c:omplete list cf:: -the rr1les

showing t~1r:; sffi3-:!t. of SETL pri.mitive:s on jncl,.-:s:ion relations

hJ?.X'~, but or: ly d.isplt-,y a few t~{9ical cases.

Case ~-: I'elationshJ.t) o c e,._. Tli.i.s i.~ <wavs f:r.,1~:;e
------- •. ..t -

if thf~ op10 .P:atior: defin~ng o ::.s .:;nyt.hing oth;_;;:;: di.Ti\ 3 :1 ,Jvi J ..

j (~ \ ! !> .: ' . 1 ·'- 2 1 ' ,L "J. ·. ,. :: , · • ' ' ·'-k ; •
;::,: :r € c .. s f c~.) .1, 1-: ~-. ,:_- .-:

G

(

C

C

SE'!1L-130

Subcase (la) o .,. ~i. Then relationship o £ o
1

, is :fa.h;..t:~

unless i ~ 01.

(lb) 0 = hd i. Then o £ 01 is false unless i e. 1 OJ

or i Et.0 01.

(le) 0., i1<i2>· Then either i 2 must be a known

constant n and il En ol; or i 1 must be of type <t.1 i • •• , t. > n

and i 1 Ek o1 must hold for each k ~ n: or i 1 £~ o1 must holdt

or i 1 must be of type {<t1 , t 2>} and i 1 ~ 2 o1 must hold.

(ld) o = i 1 {i2 , .•. ,ik). Then i 1 must be of type

{<t1 , ••• ,~+l>} and i 1 ~ k+l o 1 must hold.

· Case 2: Relationship o c o 1 • This is always false

if the operation defining o is anything other than+,-,*,

with,~, il {i2},i1 {i2 ,.@ •• ik}, o~·{i1}. The rules foL

these seperate subcases are as follows:

Subcase (2a) o = i
1

+ i
2

• B,'.)th i
1

c o 1 and i 2 ~ o 1 must.

hold. ln the subcase o = i 1 with i 2 , i 1 s; o 1 and i 2 e: o 1 lil'I.Jst

hold.

(2b) f; ·- il - i2 I' c, = i less i2; then il C Ou must
l - - J.

(2.-..'- 0 = i • ~ t.hen i.. ~ cl or i2 ~ 02 must hold • ,. I l ... 2.
..l.

7

hold.

(2d) 0 -· j_1 {i2}. Then J.l ,!\llSi: be of type { <t 'I , t,, >} ' - "·
and il C 01 mnst hold.. We lea.ve it to the reader to -·2

wr.i te the similc:i.r rule which applies to· i-1 · { t.., •••• , .i.1 } •
. '- X

Th,~.n i~ s o, must. hold
o 1 £;; o

1
is always true.

SETL--130

Case 3: o kn o1 • This is always false if the operation

defining o is anything other than+,-,*, with, less,

.:.t1{i2}, i 1{i2 ,_Ha,ik},<i1 , i 2 P •• ,ik>' or {i1 }. Rules for

these seperate subcases may readily be stated; most of

8

these rules rather closely resemble the rules for the

corresponding subcases of Case 2. For example, if o = i 1 + i 2 ,

then i 1 en o1 and i 2 ~ on must hold. If o = i 1 · {12}, then

i 1 must be of type { <t1 , ••.• , tic>}, and i 1 c;;n+l o1 must hold;

the rule for o = i 1 {i2 , ••• ,in} is a straightforward

generatisation of this. When n = 2 a few additional

subcases arise. If o = i 1 + i 2 , then o c 2 0 1 can hold

if the types of i 1 and r2 represent tuples (of known _or

unknown length) and

then o c 2 o1 can hold if

Case 4: o e;n o1 • This 1-s always false if the operation.

defining o is anything other than+, <i1 , .•• ,i1>, i 1 (i2),

or i 1 (i 2 , •.• ,ik). Rules.for the verious subcases are

as follows:

mu$t be ~-~le~ If 1 1 is of known length R., and 2.. ~ n, then

i. 2 ct,-n o1 must hold; if t > n or if i 1 is -of unknmvn lengtht

i:: O-i must also hold.
!).

Then k

0

l

'4c) 0 s:t ·l ('1.' \ '"h~n l,
0

.. ,.,~.,,t b~-.. ~f ·1-rr= {<t +- :.,,l \ . ""· 1 2 I • .I, >;:. 1 """"'U 'v V • \._l t.••,;c: • 1 I • • • I ~• .£. . ,

with 1 .::_ n + 1, and i 1 £n+l o1 must hold: the rule for

o = i 1 (i2 , ••• ,ik) is a straightforward generalisation of this.

It must be provable in both these cases that o is not n.
Case 5: 0 Em 01. This is .alw,ays false if the operation

defining o is anything other than +, <i1 , ••• ,ik> ,11 (i 2), ·or

i 1 (i2 , ••• ,ik)o The rules applying to these various subcases

are rather like those stated for the corresponding subcases

of case 4; we leave it to the reader to supply all necessary

details.

Case· 6 : o C o
1

•
co

This is always false if the operation

defining o is anything other than +, - , *, wit.~_, ~_!,

il._{i2}, _:_f1{i2 , •.• ,ik}, or {i1 }. The rules applying to these

various subcases are rather like those stated for the various

of case 3 ..

A few basic SETL constants. will regularly enter into operation.s

as ivatiables. Each of these constants has properties

which are to be exploited in applying the abo·,.re rules or

appropriate slight extensions of them. For example, the

null set n.l!. satisfies nP~ ~-; c 1 ,• !.}.t ~-n o 1 , and n!l

every o1 ; the null-tuple nul_t_ h,:rn propsrties Fhich should

be reflected in appropriate small ('.xte.nsions of the rules

which have been stated.

SETL-130

'l'he rules uhich have ju.st been stated determine a ,

map pi n~J muB t:ho Zd f:com the class of all ndaticnships o:Ro
1

to the power set of the class of all relationships i.Ro1 •

1 ()

Given that o is the tal'.'get variable of the operation op(i1 , ••• ~k:,,

the set muathold(oRo1) is defined as the set of all re

lationships iRo1 which must hold according to the foregoing

r~.les if ono1 ir; to hold. Using this map, w-0. can describe

our i.nclusionimembership finder as follows:

i~ Given a schematised SETL p~gram P, perform a

type analysis for it and then determine the maximum plausible

set S of relationships for Pin the sense of section 2.

Next reduces by eliminating all relationships oRo1 which

are obviously impossible in view either of the operation

t'iefining o or of the types of t..lie ivarahles cf this operatlort.

This should leave a managea.-":;ly small set of rel!'.ticnship

symbols to be treated.

ii,. J!.ftsx· the preparatory steps just de:scribed, build

up a map .o which sends each ovariable o into the set'{o~}

of all ovariables o' which are chained to an ivariabl~ of

the operat.io~1 doflning o., and then iterativel.y remove r<-dat:·,.on-·

A workpile W i.~\ initialised to contain all ovarir.lbles o.

Fo::.:· each o ~-n the workpile, and each relatior,ship oRo1

is inr.:luck,d in !:; • If not, cRo., i:::: :t:C;?mi:.,v,2d f:: e:m t, r and c., .• ,
.,t,

put :i.n t-,, SE~t " 1 of modified v21ri::-\bles •
. ,,

(

SETL-130 11

to
-1 u [W~], and the process repeats.

.l
Lets~ be the set

of inclusion/membership relat.ionships remaining in S when

W becomes null. We call SO') the set of relationships aonfii•mBd

by our analysis procedure;· thes4= relationships are necesaa1.·i}.:y

true.

r
The relationships of membership and inclusion utilised

in section 3 cen. be generalised substantially. The fuller

· set of relationships which we shall wish to consider is moat

adequately represented by composite symbols which we shall

call :relation stztings. Let n1 , n2 , ••• ,nk.be symbols representinq

monadic mappings on composite SE·rt objects, and let ,, be a

symbol representing a binary truth-valued operator on SETL c,bj<2~cu1

o and o1 Q Then

(11k nk·-l • •• n2 n1 o) n o 1 holds •. '.l"'he following examples ,;,1ill

indicate the intent of these defin.itions. Let the symbol 3

signify a monctdic 'random rne:mb~;rship choice' -operati.on on

sets, let the syz:ibol n. indicate t:,H:i operation cf choosing

t.he n~·th compone:nt o:f a ituple, let the s.Y)nbol a; signify tl:w

operation of cho)Sing ;,_ random component. of a tuple, and let th,~

-symbol n f~ignii:y the operation of choosi.nq somr:,, :::-anclom

Let e;; denote the boolean tnH~rJ.:b~ri.,t·ip I relation, a~.d Jct

SETL-130

"1'hen the relationships o 3 E 0 11 on E o1 , o«> E o1 r o 3 n E o1 ::..nf,;.

o 3 « Eo1 , are respectively the relationships o c o 1 , o e:r
1

o1 f

o £co o1 , c c n o1 r and o cc-> o1 of section 3, The relatic,n·~

ships o 3 3 E o1 , o 3 n 3 Eol., and o 3 ori3 Eo1 are worth

considering, as are o 3 n o1 and o 3. n 3 E o1 • By working

with arithmetic relationships_like o > oi, o 3 >· o1 , etc.

one can hope to prove semantic facts like 'o is a set of

non-negative integers/ which when known will permit useful

optimisations.

For a relationship on1 n2 ••• nkno to be plausible, the

type of o must be such as to allow n1 , ••• ,nk to be applied

too in sequence, and the type of the resulting quantity

o' = (nk ... an1 o) must be such !is to permit o'no to be true.

Once the types of the objecti3 appearing in a SETL program

have been found, this restriction should serve to.

guarantee that the set of relationships which remain plausiL-Je

is manageably small. A 'neces~ity rule' can then be given

for every relationship on1 n2• ·.; nkno1 admitted into an

analytic system., following which the analysis algorithm

described in section 3 can b(~ 1.rn-2:d with minim~.l chan;Jes to .

prove the validity cf some su.:;;s,r:,t of the collaction 0£

initially plausible :relationshipH.

C

SETL-130

F'or exar:nplei", c: £ o
1

car: holrl f.·ven if o is deif'ir1ed by an

operation of the form 3ii t :Li½;, or i 1 (i. 2 , ,in) , provided

that. the .following condi t.ions are satisfied~

Subcaae (a) o • · 3i.. 'l"hen i3 3 Eo must hold.

(b) o • i 1 (i2). Then 11 must either be of type

_tupl~. and i 1
003~o must hold,or of type {<t,{t'}>}, and

i 1 323Eo must hold.

(c) o = i 1 (i2 ,,~.,in). Then 11 must have type

· { <t1 , ... ~ ,tn-l' { tn}>} and 1
1

3 rj3Eo must hold.

{1)

In~ation· derivable· from the presan·ce,:_p_:_f in•sertion

an~union oP!:·r~i~.

Consider the code sequence

At a program point immediately subseque.Jit to this sequence

we can be sure that _n is a member of s 1 • But if taken in

its simple form, the inclusion/ml.? .. mbership an&lysis described

i:n sect.ion 3 will remain uno:n<1are of, and so fail to exploit,

this fact. Indeed, it will miss e,..~en the simpler fact that

n:::s is certain to hold immediately afters= {n) ahas been

However,, a stra.i.ghtfoD~·ar.:1. imp.rovement of our approach

1-,

can remedy this deficiency. Ea.eh appearance of the schematised

version of an in.structi,m

SL'i'L-·130

(~!a) t ::. s 1 + s;

can in effect. be replaced by a."1 appearance e>f the sequence

each appearan~e of

(3a)

by an appearance of

(3b)

each appearance of

(3a)
J

by appearance of

(3b)

r J'l in a; n =3 {mf;s I m ~ n};

s a:· {n} 1

s • · {n} J. n = 3 s;

etc. Note that in the schematised progra~ versions with

which "iie work, the sequence (lb) can most appropria.tely be

handled by treating it as if it read

(4)

where by writing n = 3a; we have indicated the presence of

a 'pseudoassignment' forcing n to be a meil'tber of Sr but

where by placing this operation in parentheses we indicate

that no ot.her relationship involving n is spcil<:.d by this

{or, indeed, any other) pseudoassigrunent. Similarly the

schematised form of (2b) may be t.reated in the ;:aa.nner which

is suggested by the sequence

0

0

.,.

SETL-130

It is occasionally possible to glean useful infon,,ation

from the form of the conditional transfers determining the

successor relationships among the basic blocks of a SETL

program P. Su9poser for example, that such a transfer has

the form

(6) if s ~ nR. thl:in go t.o l,abel1.

then the program point 'label. is reacheq via (6), we may be

sure that sis nt.

To ensure that our analysis does not miss information of

this kind, we apply the following treatment to every conditional

transfer whose governing condition is simple enough to be worth

(bothering witha An auxiliary pseudo-block is generat~d from

the transfer; the transfer is modifie~ so as to j~11p to the

pseudo-block, which in turn jumps to the original transfer

destination. The pseudo-block:--Pontains a pseudoasaignment

which forces the condition appearing in the transfer to be

true. For example, in treating• (6) , we modify it to read as

l

(6') if s -~ nt then go to label'~

where Zabe Z. ' is a generated label prefixing the pseudo·-block

{6) label 1 : (s = n1;) go to label1

'!'his pseudo-block insertion process gives P· a some·v:!-.:at

different flow graph from that which it would oth~.rwise !':ave,.

a:1alysis is applied to P. In the modified dato·-:flow •· sorr:e

ivariables will be changed -to ovariables appearing in

SETL-130 15

c:r;,1:is revised chaining makes explic.i. t more precise infonn&tiox:,

than would othendse be ava,i,lable, and this enlarges the se 1;.

of r.elationships which will be established by our analysis

algorithm.

Note that it might be useful to allow SETL users to

write pseudoassignments explicitly. A user-•supplied pseudo·

assigrunent would act as a kind of declaration, and could

supply an optimising SETL canpiler with information which it

was unable to deduce 9 but in a form which it was easily able

to use.

6. Inforn,at~~E_lemen·tazy _to in•clusion/membership relati~~-l~:,;~~c

Once relationships of inclusion and memb:e.rehip bet,,reen

the objects of a SETL program P have been established, ·

certain interesting optimisations cotne al:most within reach ..

Our intent is to find Cc?.Ges in which a aet s 1 included within

a set s ca.."11 do without explicit" represent,-,tion of its o-vm; wia

hope merely to issue a 'serial number' to each element of s1

and then to represent &.. by "- bit-vector, the n-th bit of
J.

the vecto:r signifying whether the; n-th element of s does or

do,3s not belong to s
1

. We may also try to ·find cases in

wh.1ch a map f kncwn to have doma:.in included :;_n B can be·

pointer dt:tenni.n'?.s one value f (x_.l ,_

l

SE'fL-130

For representations of' this kil'id·· to be witJ11.n r~ach, .lt. is

clearly necessa.ry that the analy1ds descr.ibed in section 3

and 4 should confirm the relationships s 1 Cs and f ~l s_e

We must also be sure thft e1 (resp. f) is not set up when the

set s has one particular value and then used after el&7"3ent.s:.

have been remo,red from · s.

If s 1 is itself made part of some composite object o,

either as a set member or as a tuple component, additional

·complications arise. Por representation of s 1 as an s-basad

bitvectpr to remain desirable in this case, it is necessary

that the following condition should be satisfied:

(Cl) o is dead at each program point at which sis

diminished.,

Relatively few complications will be caused by insertion

into o of bitvectors representing subsets of s if the following

condition is also aatisfiedt

{C2) All the elements of t~1e composite object o are

subsets of s.

Condition (Cl) is not quite: sufficient to ensure the

desix:abil:i. ty of representing s
1

by an s-based bitvector.

To state a sufficient condition, we must fix-st mak-a some

appropri:~tc~ definitiomo Given an ovariable o er .an iva:r:t;~ble

i of a SETL program P, we define the :following functions.

By cr·this (o} resp. ai-thia ({..) we mean the .set of all ovariables

wh.ich can create an object which at some moment in the

execution of P becomes the current value of o (resp~ i):

If the value. of o or i can be a set, then by crmemb (oJ'(resp.

CPmemb(i)) we mean the collection of all !variables j whose

values beco~~ incorporated as members into a set which at
some moment in the execution of P becomes the current value
of o (resp. i) If the value of o or i c&n be a vector~
then by cPsomcomp(oJ (reap. orsomcomp(i})we mean the collectio~l

of all ivariables j whose values become i.ncorporated as

components into a vector which at some moment in the execution

of P becomes the value of o (resp. i). By crpart(o) (resp.

oPpart(i)Jwe mean the collection of all ivariables whose
value might either be equal to or become incorporated, either
as members, members of members, components, members of

~ .
components, components of members, etc. into a composite

object which at·some moment in the execution of P becomes

the value of o (resp. i). Methods for calculating these

functions are described in Newsletter 131.

Using these functionsr we make the following

· 'Defin·ition: Let s, s 1 and t be ovariables cf a progra:m P,

we say that t is auperioP to s 1 if s 1 belongs to

[~: ie crpart(t)] crthis(i).

W(;~ say that s 1 i:s; a depanden.t subaet of s ii ~is;; s {in the
sans-s of section 3) and if the valma of every object superior

t,:i s 1 is dead. at each operation which might remove an elemeni:

fn:,m s. ~•Le lTii1f.- f is domain depe,,deri t · o:n s
.. i'

j0?sndent en~} J.f f C. s (rasp. f
. ·--· l..

-~•?e.Y:y object ,=:arpe;:-ior to f is dead at

lD

l

SETL-~130

To indicate subset dependency, domain dependency, and.

range dependen.<..--y we write s 1 C: s., f C: 1 s, f C: 2 s

respectively. Note that an analogous notion

may be defined for each 'of the relations o 111 nk n o1

introduced in section 4 above.

If s1 C: s, then s1 can,in the manner described at the

beginning of the present section, be represented by a vector

of bits. This vector can be inserted, in lieu, of s 1 , into

each composite object of which s1 is to become a part.

Similarly, if f C: 1 s, then f can be represented by a

vector or some other suitable collection of pointers, which

can be inserted, in lieu of f, into each composite object

of which f is to become a part.

Note that once P has been analysed for inclusion/menibexship

relationships, we can use something very close to a standard.

live-dead analysis to tell which of the more precise

· i:elationships s 1 C: s, f C: 1 Sv etc. hold.

SE'rL-130

We luive n.o~:ed abo,·e that insertion into a composite

object o of bitvectors representing subset~ of swill be

least problematical when the part of o into which this

insertion is mad~ can only contain subsets of s. The

methods which have already been described allow just such

propert·ies of objects o to be established~ in the notation

introduced in eection 4 11 the fact to be proved is o 3 3Es

if o is a set, on3Es or o 0) 3Es if o is a tuple.. Additional

details concerning the manner in which we propose to treat

bitvectors representing subsets of s (and vectors of pointers

defining functions with domain contained ins) will be

found in the following section.

7~ QFt;misations which inclusion/men,hership information

Once the inclusion/membership relationship and other

forms of information described in the preceeding secticma

have been made available, one has developed a basis upon which

optimisation is possible. Some of the optimisations which

come within reach are global in character, and relate to

the q·11estion of data-structi1re cho:~ce. Others a.re simple

but useful peephole opti.miss:t::.:Jn.s. One such local optimisat..io;:

is the follmv'in.9: .:\.f s 1 ~; a:~ is known to hold~ then the

. . . 1 . is very s1.mp. e ana Gan be

SETL-130 21

The global optimisations which can be based on the

analysis presented in the preceeding pages are more numerous,

interesting, and significant~ Let s a."'ld s 1 be variables

appearing in a SETL program P 1 and suppose that s 1 C: s has

been established9 Then,as noted in the preceeding section,

we can treat s 1 {at the implementation level) as a bitvector,

each bit position corresponding to some element of s, and the

associated bit/value determining membership/norunembership in

s 1 ~ This implies that the elements of shave been assigned

serial numbers; this can be done simply by issuing serial

numbers sequentially to elements as they are added to s.

The bitvector representing s 1 can be carried with two

auxiliary fields, one detennining ·the number of bits in

the block which represents it 1 the other representing the

number of elements present in s 1 • Elements x for which we

can establish XE:S can be represented as .implementation-

level pairs consisting of an lnte£:er (the serial number of

x as a member of s) and a supplementary root-word {giving

x in some more explicit way; perhaps in its st.mda.rd SE'l'L

rep~esentation, perhaps, i.f for exa.mple x is known to stand

in the relationship x C: s to some other set :a, in a bi t-vectc:t

representation detcnnining the ~le:ments <.>f s which belong to x) ~

Note that the second component of this pair can in some

cases be seen to be unnecessary. If ar, optimi ':,dng eornpiler

decides to use these representc:c=:ionE, ~te shalJ ,,,4·z.-i te s 1 c~ : s ..•

SETL-·130

Mappings f for which f c: 1 scan be established can be

:represented either by a vector v of pointers, v(n) being

the value f(v} for the xEs with serial nmriber n, or, if

f is never made part of a composite object; by a family of

pointers stored directly in the s- representing hashtable.

If one of these representations is used, we shall write

f ~: : s. If an optimising SETL compiler decides to use t.J1ez~e

representations (and the number of possibilities among which

it must decide will be nicely limited by the set of re

lationships o n1 ••• nk n: o 1 which it has been able·to verify)

then quite a number of code improvements will become possible.

Let us examine a few typical cases.

If s 1 C;;~s and s 2 C::s, equality tests become bit-equality

tests, unions and intersections become boolean operations

on bit-vectors. If in addition XE::s, then the test xEs1

becomes a bit-condition test .. Even if ye:::s ia false, inc1~ed,

even if the membership relatio~ ye:s remains tmcertain,

the test ye:s1 can be transformed into the ~oc£• sequence

conveyed by

(l}

1-Ierei> serial
5

(y} is an implemente.tion-level Jr1apping which

transforms Gia.eh y into .its seric1 l nurr.bEJr as 1 member of s,

if y if found to be a m~mber of s; othexw:.s:,~

ir:; n. If s must su.pport tha mapplr;g se:t'ial
5

, th.e :-.nteger

val~es requ:Lrec c~n be stored d:1.re,ctly with ':h1:! hash- 1.::able

0

SE'!'L-130

dynamic test y£s is made. Note that the calculation implied

by {1} is no faster than the standard SETL t:E:st ye:s1 ;

howe,ter, by keeping s
1

in bitvector fa)rm we speed up

the tests xi:;s1 when XE::s, and can also hope to save

space since s 1 is represented i~ a highly condEmsed way.

If s 1 c: :s but s 2 (.:: :s is false, then to form the union

s 1 + s 2 we will have to transform s 1 back into a form

compatible with s 2 ; perhaps the standard SETL fonn, perhaps

some other. The code sequence which results can be that

suggested by

(2) · z = copy(s 2); CV x e: s I serial
5

{x) E s 1) x in z;;

We emphasise that (2) may ha no faster than ':.he standard

SETL union-form~.ng operatL:.m. Inc:.eed·, it may be slower,

since it involves an iteration overs (rather than over s 1 ,

which is smaller} . Nevertheless, keeping s 1 ,is a bit-vecto:.:

may yield a worth-wh.ile,,saving in space. And by modifying

our implementation techniquer we can avoid the loss of speed

which the full iteration ove:c s appearing in (2) seems to

imply. An approach can be employed which is useful wherever

a set s 1 ~ : : s appears, explici tl:r or implicitly, in an iterat•)r -

Suppose that this is t.he case. Thtm, if s 1 is: :.:·t:.Lltively

'dense' ins, i.o., if (i s 1)/(i s) is expect0J to exceed

10% approximately, then 1-m H:arr,.-cor {\'fxEs 1 } c.:;;:. without. g-:r:avc

inefficiency g~nerate the sequence of a .seria1 Ili.l.'Ttbers n

for which the n-th position i.r; thr.~

pro-:.~e&s. Bupp:,f.e n1~xt that {i 61)/(f s) is CQnsiderably

smaller than t.l-1i.s. Then to represent sl we can uee a list

(of serial numbers) and a bit.vector V in combination; the

bitvector as before, the list chaining together all those

integers which correspor1d to '1 1 bits in the bi tvector.

Then iteration C'irer s 1 can be iteration over this list.

If deletions from s 1 must sometimes be mad.a, then L can be

a two-way list; alternatively, one may delete the element x

L

with serial number n simply by turning off t..lle n-th bi t~·positiox:

in v, but leaving n in L until the next iteration over L, at

which time n can be removed. Note that to chOC;se the most

advantageous way of represent:i.:ng Lone requires density

information of a type hardly likely to be_ deducible automaticalJy.

This information can be elicited interactively or made

a.vailable through 9rogrammer-suppl.i.ed declarations.

I~ serial numbers n assigned to elements of s mu.et ever

be converted back into standard SETI. 1:ep:tesentati.ons of the

objects x which they represent (,?, cg., on assign1Lent y = x of

an xe:: s to a variable y not poi,essin9 this proFerty) than

as noted above x may b:! represented by ,1 _r:,·c.:dr wrus~ :f.ixst

CC!!lponent is a ser.iaJ. number ,ui.d w.hoae second. cio:.1ponent

points to the standard SETL rE:cp::-ese.ntaticn of x. If no such

ond t:ted.

(

SE'fi:.-130

If the :EHlt ,:;l satisfies s 1: c;_: s, then the elements of s 1

can be represente.d simply by hi t.vetJtors, possibly supplemented

by lists. If ~l can assume V.!tlues which are not aubsets of s,

then we may ·have to attach a compile-time 'type' field to

each value of s 1• This field will define the manner in which

the value of s 1 is to be interpreted: whether this be as a

bitvector defining a subset of s, a SETL object in its standard

representation, or whatever. If· f is a mapping or a tuple

satlsfying f ~: 2 s then f can be treated as a set of ordered

pairs in which the second element of each pair is a

serial number. If this is done, we shall write f s:: 2 s.

If s 1 is a set of sets satisfying

c--, s 1;.) 3E :s, then the elements of s can be represented by

b:i.tvectors; if then :s2 c: s 1 ,, we can issue a oerial number

for each bitvector, and represent the set-of-sets s 2 as a

bitvector or ao a bitvector supplemented by a list.

..

Leto and o1 be two ovariables of a SETL program P, a:nd

suppose that both are kn()wn to be of type !}1t~g_er. Then
_,
'•

relationships o ~ o, o1 ~ O, etc. may be provable. In

addition to relations of this simple, essentially una.ry, form,,

we may also hope to prove binary relationships of the form

o ~ o1 etc. Proved assertions ensuring that particular

integers appearing in Pare necessarily short can be of

considerable value, since they can allow these integers to

be held in LITTLE rather than in SE'l'L form, possibly yielding

great improvements· in the speed of arithmetic and indexing.

If o is the integer output·of an operation o = i 1 + i 2

then o > O will hold if il ~ 0 and i 2 ~- 0

hold. By using this rule in connection with the analysis

algorithm described inrsection 3, we will be •Jble to prove

'monadic' inequality relationships o ~ O" o1 ~ O, etc.

•rhe proof of binary relationships o ~ o1 wilJ generally

depend on the improvements to the a.nalysis al~1or;L thrn which

are outlined in section 6, and, in particular, require use of

inf,?1.,nation o.bt(lined the fo1."Ill of -'::he condi t.1ons appe,.1.xu1g

in condi tion;;d transfers such afl

(1)

{2) • • •

0

0

l

SB'J.'L-130

{uc1efi of i., but no ope1•ations mc-difying i)

i "" j + .l;

(more usee of i .. but no opePationB modifying l)

it' i < j then go to label;

The technique outlined in section 6 changes this to what is

essentiaUy

(2')

j = ft s;

i =- O;

label: (uaes of i)

i.= i + l;

(more uses of ii

if i < j then go to label';

label' : (i = 3{k < j};) go to label;

!n this modified program the f :l.rst group of uses of L chain~; to

the two assignments i :: 0 and 3, "" 3 {k < j}. Thus W"':.! can be rm.~: :>

that i < j for these uses of i. :a follows that i. <: j

after i ~ i + l is executed 1 and hence that· < j i·; vali6

for all uses of i in the second group.

It would ~hen be reasonable to include i ~ i :n ~he set of

(i =3{k < j};) appears .iri the modified program source.

Mo~e generaily, we can choose to regard certain kinds of

relationships R as •marginally 1 ikely apriori' and investigat<::

the truth of such relationships only when this is suggested

by some expli.cit feature of the ·source code being analysed.

9 .. t:::rovin~ 'Nonc~._up!.J:.cation' of Elen1ents Added to a Set;

If one knows (by operator-operand tracing} that a SETL

program P adds elements to a sets, and removes unspecific

elements (essentialy by the from operator); if one knows

in addition that sis never used for a me~hership test xcs;

and if one knows finally that none of the elements added to

s are members of s at the morr...ent at which addition is atte:m~3tc~d,

then we may say that sis being used as a 'simple workpile'.

In this case it is very reasonable to implements either as

a pushdown stack or as a list of pointers used in pushdown

fashion. In the present section, we shall show how to

establish those assertions of the form x nE: s which .'.'l.re r.eeded

to justify su.ch a representation. \'le ach.ieve

this by quite a straightforward adf:'ptation of the methods

described in sections 2 and 3, It is convenient to proceed

by :i.ntroducing :.in expiici t no'::ation for set COfi,plements into

the algebara ~f celationships given in section 2. Suppose

that we der:,cte the complement of s by the symbol s. 'I'hen

proceedinq much as in section 2 we can defin..:! :-elationship.s
r= - - n .. ,--__ 0 0 0, --o..,,, o 1 <_=D•;r '-'· ,__ -

' ,. -- .,_ .1 -n 2 ' 1 ':::n
.. -
0:)2' 0 1 r-:: 0 2· -··oc,

J~recver, generalised relationships o 1 ~ 1 ... nk E ~
2

Jike

those introdncc~a :;n sect-ion 4 c;m ~1so bf: ,'iefin<.:?cL

(

(

.. ' ·. . , ·:. : ~ .

t:_~,.::··:\•, ·, . :;.1_: .

SETL-·130

The rules defining the effect on ·these r-~lat.it)nships

of the various SETL primitives ,!ery much resemble those

described in sections 2 and 4~ As an example, note that
the relationship o E o1 will fail if the operation defining

o is anything other than 3i, hd i, i 1 (i2), i 1 <i 2 ,, ,ik) or

newat~ The rules for the first few of these cases are the

same as those stated in subcases·la-ld of sectlcn 2. If o

is defined by o = ·newat, then o E o1 is certainly satisfied~

Note also that, if additional relationships are carried,

then o E o1 may be found to hold in a few additional cases.

For example, if in the notation of section 4 we have o13~ i

(resp. o 1 3:: i) and if o is defined by o = i + 1 (resp. o = i - 1)

then (?.:f.o1 will hold.

-The relationship oco1 can hold if o is defined by

+~ -, *, with, less, i 1{i2}, i 1{i2 , ••• ,ik}, {i1}, i 1 (i2) or

i 1 (i 2 , .•• , ik). The rules controlling the validity of o c o1

in the case of defining operation +, *, wit.E_, ~' i 1 {i2 l 1

i 1{i2 ,., •• ,ik} {i1 }, i 1 (i2), end i 1 (i2 ,& ... ,ik) are very much

like those stated in cases 2a and 2c-2e of section 2 (as well
~s the remarks concerning o Co, made in section 4) and

- -L

will not be restated. Concerning the case in whicrh o .is
defined by o :--= i 1 - i 2 , we note that o £;o1 wi.i.l remain

1 ·a · f . h . . vc1-..1. .1.. ei t er 1 1 s_ o1 or o 1 c i;~.

Observe that we will need to inv·estic~iate relationships

like o Eo1 or o ~ol only if o E.o1 (reap. o c;: o1) is plaus:Lble,

lf o Eo1 is implausible, then ot ccurse o Eo- is true.

Infot·mati.on useful in. d<:::duc.~.:Y.! relat:lonsh:'.pr:, o':::=o1 ,
· c, co1 , etc.. will sometimes be G('·:c,:_vable from the forrn of

the conditional trans.fers whir:'h appear in P. _;c._ ~"Ondi ·d .. cnal

transfer of tl-:e form

SE'l'L-130

c,m, in much the. :mt.·tnrher describe.a. in section S, be .rewri ttt-r~

if x £ s then go to label':
{x = 3 s;)

...
which maket:J the facts£ s available along the non-transfer

branch.

As an example of the foregoing, we may consider the

following transitive closure routine

(3)

Ll:

L3:

definef tranc{f 1 s);

new= s: all~ s;

(while new ne n~)

x from new;
newer~ f{x} - all;

611 =all+ newer;

new - ner~ + newer;

end while;
return all;

and tranc;

Appl.yi~g the Jr.ethods that ha,re ::>E·~n r.,utlined above 011•.? wi:t l

'.\,=du~e that n:0w 5..: all,. a.11d henC~! th.c=:.t 1.n line s .}. }i(;:We:C C aYL
·7 :com this .it :i:'ol1ows that newer c: ·n,:~w in line ::.3. l:'rom thi~ .

• ;=:1 optimising compiler cou.ld t}O -:.n to the deci:,~.on to represent

; ':-1..e set new aF a. simple list.

JO

C

L

0

SETL-130

In ik~,!$.ling with E;1aps it is. geriera.11:t imp.:)rta.nt to know

wlum they are single<Qvalued. When true, this fact can

often be proved by a simple method, which as t.he reader
j,,

will see is a stra~ghtforward variant of the tecl'lniqt:r.es

used earlier in the present newsletter. Specifically,

we introduce a family of monadic assertions concerning

a set f of ordered n-tuples; these assertions are wri.tten

as anf, where n > 1. The assertion a f signifies that f
- n

is a single-valued mapping of n parameters. This relation-

ship is only plausible if f is a set of (n+l)~tuples or

if f is the null set. The necessity rules for C& fare as n
follows: the assignment f =!!!,,or any assignment of the

form

Q confirms anfe For anf to hold after an aBsignment

l

f{x1 , ... ,xn) = e, it must hold before this assignment. For

o;nf to hold after f = fr>with <x1 , ••• ,xn,y>, one of the.

assertions xj£jf must be provable.

SE:TI-130

In order to assess the improvements likely to be attained.

by the optimisation algorithms described in tb~ t.he proceeding

section, we shall consider a few exa.mples. The follm·ring

small 'transitive closure' routine bears examination:.

define£ tranclose(f~ startset);

/* ,f is a· mapping from a set s to itself; ata:rt:net a subset of a ,':/

tranc = startset; new= startset~

{while new ~ nK.)

new= f[new] - tranc; tranc = tranc + new;

end while;

return tranc;

end while;

We assume that an optimising compiler is able to r8congnise (

that the return statement should be written as rs tul'n copy (trmn) J

then the relationships tranc s_:a and netJ c:s can be a.educedr

and hence compilation can proceed on the basis t:ttana c~: f:;.

new c::s. This will lead to the use of a pure bit-vector

representation for t:t'anc, and a bi.t-vector-plus-J.ist rer,,resen::,-,•;_i.on

for new (since an iteration cve.r neu> is implicit in the

operation f[11ew] ,) With these representations, the set. diffe:cc:mc·::

3nd union operations appearing inside the Mhile-loop will be

9erforme:d either as boolczn op<?.rntions or as a sequence of

Next. we corir.-d.der one of U1.,~ 1 Huffma.n code' :ront:Lnes

changes, is as follows t~ha~ges

L

SETL-130

cl = getmin wor:q c2 ::::. get;nin Wi:i,rk;

i(n) ~ cl, r(n) ~ c2;

wfreq(n) - wfreq{c1) + wfrE'.(J(c2}; n :i.n work;

end while,:

code = ni:_; seq =• rl'}-_]l?; w·alk.\:) work: is top) i

n~turn <code, .£. , r , top>;

end huftables,

definef ~~in set; /* &,fr-eq :ls global*/
<keep, least.:>:: < 3 set •is x, wfreq 1,:r;) >;

{'</x€ set)

if wfreq(x) f.t lt:!ast: then <k:e:ep, least> - <x, f:req_{,:,: >J:

end Vx;
keep out set; return keep;

end · g,_e--tniin i

We shall suppose in thE''- discussion which follows tha:t:

the types of all the quani.:i-i::ii;,D uGed in. the above code have

bt::en determined. WE, also c.SZU.ltR" t.h;;1t. an una.ly sis li~e thnt

described in the proceedir!.g sections hut applying ew~n acros;;

£. c" basis, wfreq c:., bas:-f, 'l't:e t.Eichnia_u,::, uB;:l L·1 t.he pr~,·->:·.,ci ,is._1
-.t. -- -- J. --;1

}~t1ction wil::.. riet~hJ.isb. ::he re1.:;:-,t.1.onsh.ip n f~ 'h'•i.-a::: fo:r the

t.:r·a~n lo. li()r1 .,

t;,·,t(~ howeve:c that a progr,3mme.:r. implE:menU.ng this :;,ame

.l}_g,Jri thm might c;;oose to repxesent thi::: tree functions t

... me r by arrays. Of course, this c:an only be done i.f comp,~nsating

,_;;han~,res are iT:;trodu.ced into whatever code callri the huft,,blf:s

r<:;tttinlii: ~ ~nd such clumges may be r,,.:::1 ond tha capabil:1 ty of

·c.he autorriatic opti:niser we ,m•qisag1::.

As a fin.-=:tl example, we consi.r.k.1: ,x pr.:>rtion of tLe
1 interval finder' routine described in o.~.YI, pp. 269-270.

The code in question:-is as follow.s r

~1ef.:inef interval {nodes, x) ;

/<, npreds, fotiowers~ a.nd cesor are ass1.ui:ed to be global */
..:1pr12:d.s = { •:x: 0> :-:!:£ nodes} ;

(1 x E'. 11odes, y t: ceeox- (x})

npreds{y) =- npreds(y) + 1;;

-:::ount (x) "" npred£: {x) ;

r~~,j~iJ..e {y C fol.l(;Wers

c'i/ z £ n(-ndn)

count

intll int + 1) u z,

SETL-130

definef intervals(nodes, entry};

/*foZZower-~,follow, intov are all assumed to be global*/

ints = n.t: seen == {entry}; follow -- ·nt; intov = :nJ,;

(while seen n~ E,l-)

node ·f :;:_~ seen f

interval (nodes, node)· "is i 'in ints;
follow(i); followers;

(1· ~ '(k· :5. i i) intov Ci (k)) ::: 1; 1

seen= seen+ followers;

end while;

return ints;
end intervals;

Once more we suppose that the types of all quantities
used in the above-:! code have been determined, and that an

analysis like tha.t described in the preceeding sections but

applying even ac:coss subprocedures has.been applied to this

code. Then, applying the techniques used in t.he preceeding

section!' one will establish the following relationships~

npreds c: 1 nodes,, int f::o:, nodi~s, followers'.;-;.: nodes,1 count

newin c: ·nodes, ~~E: nodes; y£ ~ nodes, seen c: nodes c

i E: nodes, ints 3 E.,., nodes: fo.l~ew c: 2 nc,des, i C~ nodes,

follow 3 E: 2 nodes, intov c.1 nodes, intov C 2 ints. Koreover r

.,, f ...

:)

nodes"

the only sets which must s1.ipport ib3rat.ior~s are nodes, fo!,lo:.,;er,r .,

neti.,in and aeen.. An optimising SETL compiler could tr-.e:refo:r-e

generate a. trans:ia.tion in whi.ch the elements o:: notfrs and

of in ts carried sG-rial nu.mbe:<.'.'fc-, ;and in which z ic.ili.d !-f were

represented by serial numbers ,-i' and int by a ',t~;;ctor of

serial nmnl:>€!:"S, a.nd fol 7..ou>e:rs, ,;e:.,,in., and seen. by list/bi.t"'H:c~':o;·

combinat.io;1s. ''he values of the maps np1•eda _. c,;;1,mt and

fol z.o'/J, ca.n be st(•red in a group of three fields 2;:;sociated

w·ith each r. E no·:''ee; the value 0£ follow will be a t>itstri11~;r.

This gives :much better code than that which re~-mltB from

~noptimised translation of the predeeding SETL source.

A still more penetrating and global optimiser might be able
t.n deduce that th_e values in·tov can be stored within a

fourth field associated with each n e: nodes,and that each

VB.lue can be represented by a se+ial· nUJT1ber designating

some int e: into~ This degree of optimisatic>n ,-muld come

close to matching the code likely to result from manual

transcription of the preceedin~ SETL code into a language

of the PL/1 level.

26

Cl

