" Additional Pursus Block Examples.

SETL Newsletter # 133A J. Schwartz
July 7, 1¢74

Examination of the SETL algorithmsg of 0.P.II reveals a rumber of
cases in which the pursue construction suggested in Newsletter 132
allow algorithms to be written in sﬁbstantially more succini
and/or transparent ways. This newsletter will record seve:ral
such cases. In the algorithms to be presented, we use a
notation somewhat different from that suggested in NL 133;
specifically, we write

(1) (pursue)

as

a4, | oy .

and write

(2) (pursue Yxes | C(x))

as

(2‘) {fyxes | Ccix),

and write

3} (pursue x i VYn <y | C(x)i
_ag

(3] x5 Yin <y | ee,

SETL~113A 4

etc. For the criginal forms of the algorithms to be given,
the reader is refered to O.P.IX, pages to be cited. In

many of these algorithms we will see that use of the ¥ V
construction suppresses one level of control that wouid
otherwise be explicit; £his often allows a few auxiliary
variables, and the operations which update them, to be dropped.
The ¥ ¥ construction proves to be useful in describing ‘transitive
clesure'! constructions of the most general sort, as wsll as
systems of numerical or combinatorial eguations to be solved
by iteration. It is not useful for describing algerithms
whose specific procedural structure is of importance eithex
for efficiency or because the input to be processed has

some specifically serial character., It may be observed that
proéedural viewpoints, whose ultimate root probably lies

in the sequential nature of hardware, pervade many

attempts to define algorithms. WNote alsc that recursive
routines can in some cases be replaced by ¥ ¥ blocks.

A. -~ Predominator finder (0.P.IT, p 265)

definef predoms (ncdes, entry);
/* the sucessor function cesor 18 assumed to be glohal */
notfor = n&; notfor(entry) = nodes lesg entry;
(¥ ¥ € ncdes, v e cesor(x))
notfor{y} = notfor{x) less y + inotfor{y) orm ni):
end ¥ ¥;
dom = ni; _
{¥ye nodes) com{y) = nodes ~ notfor(y) less y;;
return dom :
end predoms;

B. ~Nodal Span parse, Simple form. (0.7 ,IT,op. 161162},

define ncodparse (input, gram, root, syabvpes, spans,&iviis, ams;
spans = {<n,x,n+l>, 1 <m o< (%input)‘ig ilen. »s gyntypes{iwpufiy?}’ﬁ

divlis = p&;

(€%

SETL-133A

(¥ VYsespans, spend e spans {s(3)}, type ¢ gram{s(2) is typl,
' - spend(1l) is typZl }
<s (1), type; spend {2} > is newsp in spans;
<newsp, typl, s(3), typ2> in divlis;

end ¥ Y:
/* check on grammaticality */
if n (< 1, root, ilen + 1 > is topspan) € spans then

<épans, divlis, amb> = <pl, n& £ >; return;
end if;
/* else clean up set of spans and determine ambiguity */ .
amb = f; goodspans ='{topspah};
(Y ¥ s ¢ goodspans)

if #(diveis{s} is d) gt 1 then ambig = t ;;

~goodspans = goodspans _

+[+1dedli{<s(1),d(1),d(2)> * <d(2),d(3),s(3)>};

end ¥V
Teturn;
end nodeparse;
(this is 17 lines excluding comments; the algorithm of
PP. 161~162 is 34 1lines).

C. Nodal! span parse, Earley form (0.P.IT, pp. 163-154).

defihe earleypa:se (input,gram,root,syntypes, spans,divliis,amp};
spans = {<n,x,n+l>, 1< n <(finput) is ilen,xe syntypes{inputin:};
divlis = n&; symbs= {root};
ultbegin = {<x(3),x(1)>, xeqgram};
descends = {<x(3),x(2)>, xegram} + ultbeginy
(¥ ¥ y € ultbegin) vlibegin = ultbeqin + {<y(1),z>,z ¢ ultbegin{y(2:i};;
VYV s € symbs) symbs = symbs + descends [symbs]:;
.startat = <ultbegin {roct}>;
(VY ¥ 5 € spans,svend ¢ spans {s{3}],
type € gram(s{2) is typel,spend(l] Ls typl) * startatis{i};)
<s (i} is newbeg, ty

pe,spend (2> L8 newsp in spang;
&
3.

<newsp,typl, s{3}, typir in divlis;

* s P en sy —_— Loy P e
startat {newheg; » shartsiinswhan) ok Lk

wltbagin{{x (1), xe gramlecypl} | x{2) estartat{newbeg)l};
vy
/* now check for grammaticallty */
(the remainder of this algorithm is identical with the
corresponding portions of the code given above for the
simple nodal spar parse)
end earleyparse;

B. Toplogical analysis algorithm.’ 0.P.TI, pp. 262-263

Here we recast our algorithm substantially, in a _
mathematically ecuivalent but very much less efficient foxm.
Our new algorithm merely pushes the representative of each
'blqck' B in our collection to the smallest (earliest row,
. earliest column) possible position in the connected region
similarly colored bricks containing B. This algorithm, as
revised, extends easily to three and more dimensions. —
Attempts to optimise the algorithn 2re bound to raise (~

interesting problems.

definef a smaller b; /* lexicographic comparison for bricks ¥/
X y> = oa; <a,v> =y
return x &t v oxr (x eg w and y Lt v);
and smallex;
definef a touches b; /* adjacéncy’function for bricks?*/
<,¥y> = a; <u,v> = b;
return (y eq v angabs(uvxﬁ'gg_ly or
fabs (v~y} eq l‘§§§_{x-gg woox
if v mod 2 eqg i then x eg(u-1) else x ¢
end *ouches;

definef topanalyse (color, nrows, ncols):
MY Bricks is assumed to be gilobal *7
hricks = {<nr,nc>,1< ny <nrows,i7 n1 < acolsl;

reprasents w'{&u,n>, D € brichaiy

SETL~123A

(Y ¥ b e bricks, bprime ¢ bricks]
b toucies bprime and color(bprime) ¢q colox{b) and
{represents(b) smaller represents (bprime}})
represents {bprime) = represents(b);
end V Y;
primebricks = {b ¢ bricks | represents(b) eq b};

inside = nk;

(¥ p € primebricks |(@ b ¢ bricks | b smaller p and b touches p!}

incside(p) = represents(b);
end ¥;
return inside;
end topanelyse;
(Excluding comments, this is 24 lines; the algorithm giwven
on pp. 262-263 is 21 lines.)

In casting about for dictions allowing gereral purpose
languages of higher level than SETL to be defined, the idea
of using nonprocedural dictions which select a desired item
out of gome very large space of obj=cts is bound to c¢rop up.
This is a technique which is used from time tc time, often

with spectacular suceess, in mathematics (consider, fcor example,

the definition of homology groups by the use of singular
homology.) In programming terms however this approach does
not always seem convenient, and at any rate the transformation
intc usable algorithms of solutions defined using this
technigue raises probklems which belong to mathematics rather

than 0 routine cptinmisation.

w1

