' Zeneral Comments on Hiqh Level Dictiona,,

SEIT, Newsletter # 133E. J.T. 8chwariz
‘January 29, 1575

"COnverge’ Iterators and Some Rélated Dictions.

1;'Introaucfion¢

" The 'level® of a language, l.e., its degree of abstractness,
ia eggentially defined by the manual optimisatlons and routine

'program transformations which the semantic structure of the

languaqe enables one to aVOid making., For example, by writing

programs in FORTRAN one avoids all necessity either to allocate

registers to data or to linearise multidimensional arrays; by
writing programs in SETL one is able to bypass many questions
of data structure choice. It then becomes the business of a

- compiler to impose the bypassed transformations and optimisations.

To the extent that the compiler succeeds in doing this, the
step to 2 higher language level is without cost; to the extent
that it uses efficlency-inferior substitutes for the better
sequences which a hand programmer might invent, the use of a
high level language imposes space and routine penalties.

At the present stage of development of optlmieation
methods, certain optimisations can be handled automatically,
while others cannot. Among those which cannot, some are
‘almost mechanisable!, and most appropriately regarded as
routine transformations which can be applied without undue
intellectual effort by the educated programmer after study

‘of & very high level program text; others are deep and
nathematical, i.e.,‘are rezl ‘'inventionst, Transformations

of the first sort are typified by the iterator inversicn
gptimisations introduced by Jay Earley, cf. Newsletter 138;



)

“inventions belonging to the second category are typified by
the heapsort algorithm, which we sre hardly in a posiftion o
vegard as a routinely optimised variant of any trivial,
direct,sorting procedure.

Tc attain significant insight into the process of programaing
wne will wish to see as many as possible of the devices uzed
in programming as routine program transformations; prograws
tili thereby be seen to involve relatively few unique
"inventions®!. As part of this process, one will have to lesrn
0 write programs in their 'urforme’, i.e., as they may ie
xupposed to exist before the application of any routine, even |
3£ manual, optimisation (but nevertheless after the crystellisaticn
uf the program out of a still more primitive underlying‘kable‘»z
7o do so is not easy, since to apply routine cptimisations is
so much a part of the programmer's gstock~in-trade, so fined
a habit, that a special intellectual effort is required to (h\
desist from it or even tc see clearly that one can desis:.
Nevertheless, by disciplining onessif to supress routine
optimisation i.e., by learning to use a language, and espeoially
a2 high level language, in as high a style as possible, ons
can hope to create highly succinact, readable, and mathemstics
orogram versaions, from which secondary, more efficient variigoas
{stili in a high level language such as SETL) can be seen
te arise by a process of transcription having a formzl fizvor.
And from this secondary high-level program version » fu-tior
rocesg of manual transcriptidn Lo prograw versiors ‘n osoilil

lowsr language level can begin.

If this general approach to programmineg is adopied, {-o
trained programmer ‘e knowlasdge will smong other taings ooaprisa

o~



@

i. Algorithms, l.e., various bagic algorithmic inventions
(e2.¢. heapsort, fast Fourier transform, fast polynomial
factorisation methods, parszing methods, etc.j. This knowladge
is function-oriented and much of it has a mathematical flavor,

ii. Optimising transformations. {e.g.'iterator invérsion',
techniques for deferring or eliminating computations, reducing
iterations to recursions, recursions to stack manipulation,
condensing and encdding tables, etc.) These transformations,
some of which are discussed more explicitly below, have a
pragmatic flavor. ‘

iii. Pormal principles of data structure choice.

iv. Tricks, perhaps even machine-dependent tricks, for

inner-loop optimisation.

The optimising transformations noted under (ii) above
may eventually come to lie within range of a fully automatic
optimiser. However, even before this becomes possible, we
may hope to develop semi~automatic {poseibly interactive)
systems capable of accepting 'high style' codes and transformation
directives as input, and of producing 'low style' codes
(perhaps in the same language) as ocutput.

2. A catalog of routine but non-automatic optimisations.

At the periphery of any attempt to formalise the process
sf optimisation one will collect optimising transformations
too complex to bhe worth performing auﬁomatically, but stilil
egsentially routine. At the ALGOL or FORTRAN level, for
example, the following reccgnise& optimisations fall into the
'routine but not automatic' category:



SETL-~133B-4

1. -~ Unswitching. Convert a Joop centaining a loop-

infdependent forward branch ('bypasg')minto two separate luops,

one containing the bypassed code, thes other - -itting it;

appropriate test, made before loop entrance.

2.  Loop Amalgamation = " '('6';:' ";iamui'ng') . If two
sucessive loops '

blookl
1 ...
D 2 N=4A, B
dloek?
2 ..

mznipelata sufficiently disjodnt éata, ama]gamdte ther
into & singla locp : : -

D@ l N=RAa,B
bloskl
block?2

1l ...

whﬁreby saving loapoassociated bookeepina and possivly atr
other henefits besides '

o«

3. ~ Loop Unrolling. Change critical inner loows of

D 1 NWNe=3a,3B8

block
...
o loups
331/ i H= ks, B, X
Eicck‘
0&Oﬁk
Blogy.

and
enter one or the other lcop, depsnding on t result of an

aining

She Foorr



SETL-133B~5

“h where each pass through the latter loop increases the loop index
B by k, and where blbckj,;..,blbckk"are obtained from the biock
- of the former loop by substituting N+ 0, N+ 1,...,N+k -1
respectively for N. This can cut down significantly on the

number of 1oop-bookeepi§g operations executed.

___ The text of routines called from within critical innexr loops,
“and also foutines called only once, can be inserted 'in line’,

and optimised in the context of their points of call. This will
allow constants to be propagated'into the routine body, test
outcomes to be calculated at compile time and useless code

eliminated, redundant computations remowed, etc.

5. ' Transformation of recursions to stack manipulation.

" A hand programmer, knowing the subset of internal variables
of a recursive routiné whose values will be required after a
recursive call, can stack only Ehese; moreover, his specially
tailored stacking procedures can be considerably more efficient
than the general procedures used to support a generalised

recursive call facility.

ks one of a large number of occasionally useful program
-improvements we mention

6. ~Transformation of an immediate pre-exit recursive self-
"call to a '‘change' of input parameters and restart;
The code structure

. " procedure recursive (paxama, paramk ;
enter: ...
call recursive {(apa, apb):

(4) ) return;



can be transformed to
'ggggggggg recuraive (parama, paramb);
anter: ...
savea = parama; saveb = paramb;
parama = apa; paramb = apb;
g0 to enter;

© e L]

2% or above the SETL level of languzage we find the followiny
woutine but not easily mechanisable optimisations.

7. ~ Set theoretic strength reduction. (J. Earley's
‘iterator inversion'; 'formal differentiation®.) This
transformation, of common occorence, keeps the current value
of a frequently used expressicn available, and, at each progran
point at which one of the parameters of the éxpression changss, (fﬁ
ingerts operations updating the value of the,expression. Updating B
mzy be very much faster than recalculation since the new value
required may not differ much from the available prior value.

8. Transformation of tree iterations into recursions.

If some process P must be applied to all the nodes of a tree.
and if the order in which the tree nodes are processed is
irrelevant, then the tree may be walked recursively and P applied
to its nodes xs they are encountered. This same remark applies
o oany situation in which a2 necessary order of node processing
iz compatible or can be made compatible with, some treewalk
crder, and to a wide variety of tree related calculations. The
zecursive routines typically used in such situations can bea
sonsidered to arise by application of this organising idea ¢ an
underlying, less specifically arranged, algorithm. Generall:y
speaking, any relevant aspect of the mathematical structurs
of @ compound data object can be used to guide and optimise e



$5TL=1338B~-7

#he order of processing of its constituent subparts. For

—

cxample, strings may be processed in right~-to-left order,

cvcle~free graphs in an ancestor-descendant—ancestor order, etc,

9. Computation deferal , replacement of coimpound data objeni

" by 5generator' c6routines which generate their individual parts.

In some cases, a compound obkject may be seen to be generated
at one point in a code only in order that it may be iterated
over later in the same code. If this the case, we may,instead
of generating the object, simply provide a generator routine
which will supply its sucessive parts as they are subsequently
required. The generator routine and its internal data c¢an then be
regarded as a kind of symbolic form of the object, which would
otherwise have to be enumerated in extenso. As a typical
axample of this frequently occuring optimisation we may nota
f(:} " the existence of'on the fly' parser/code-generator routines

d which generate the nodes of a parse tree implicitly and use
them immediately for object code generation, without ever
f£inding it necessary to build up a full representation of the
tree itself., A parser/ccde-generator of this sort can be
regarded as an optimised version of a two stage compiler which
first generates a tree and then walks it to produce object code.

Note that routine pregram transfcrmations of lower-level
{16} above are alsoc applicable at the SETL level and at higher
linguistic levels.

The program transformations defined in the preceeding
pages are optimisatiéns in the strict sense that they transfovm
che code inte another having exactly the sane function., ¥t iu
worth considering, as akin to these, a wider class of trans-
formations which do not wrecicsly wreserve, bol instead ewmtzed

L\) sregram function, in ways however that axs essansially vourine,



s |
SETL~153R-C | | ]

We may regard the 'unextended' version of a program to be
axtended as an wrferm from which the extended version arises
routinely. Among transformations of this class we note the
 following:

10.  Insertion 0f'diagnostté5'and data~acceptability tests;
relaxation of assumptions concerning input data.

In a logically ninimal version of a program which handles

 input data,one will probably want to assume that the data

conforms to some convenient external specification; such an

assumption may of course be overoptimistic. One corrects it,

and comes to a sounder program version, by a process, often

rvoutine, which inserts tests for data acceptability at suitable

points along data input paths. These tests can correct orx

reject erroreous data, and may emit notifications when data is
rejected; by the time they release data to the rest of the

system, it can have been certified as (partially!) correct. C?\
Inserticns of this type cause a program to grow incrementally; ’
a similar process of incremental program growth is to be expected
whenever logical assumptions concerning input data are

relaxed, and when in consequence processing of this data must

cope with the new possibilities. In all such cases, it will

sometimes be possible to insert,along the relevant input paths,

node which handles these new possibilities. If the ‘old® code

will never. ~ 'see' any of the new cases which are being

handled, this incremental zpproach is fully successful.

Generally, so fully isolated a treatment of a significantly

axpanded set of allowed cases will not be possikble, and the

¢ade which handles new cases may need to use sections of old

code; 80 that to accomodate the new code in a rational manner

old code may have to be restructured, online blocks moved

around or converted to subprocedures,etc. Note that many

of these same transformations will have to be applied when

#né if the presence of a bug signals the occurence of K
internal data not counforming to assumptiorn.



SETL-123E-8a

1l. We note, to conclude this section, that equations

of ordinary mathematical form may be considered to constitute

a programming language of very high level. Equations specify

their solution, but not how to find it; however, if the way

in which equations of a given class are to be solved can be

deduced from the form of the equations themselves, we can

regard péssage from the equations to the routine which solves

them as a transformation from higher to lower prcogram language,
- in principle like the other transformations which have been

considér in the preceeding pages.

|
!
|
|



SETL-133E~9 . .

3. Benefits associated with the formal use of ‘high style' (:7

progyrai yvariants.

One 6nly extracts a programming style's full potential
benefit when one succeeds in codifying the style as a language
subject to automatic processing. Nevertheless, even if this
crowning step is not taken, benefit can still be derived from
the deliberate use of 'high style', i.e., deliberately abstract
znd unoptimised, program variants. A high style algorithm will
suppress some of the‘optimising complications which the same
algorithm, written in the same language in a 'lower' style,
would embody. The introduction of these optimisations then
constitutes a separate step of composition. By breaking the process
of algorithm composition into two subparts, and by apprcaching its
second step in a manner emphasising its routine aspect, the
programmer will attain a significantly better final result
than if "he approaches the whole design of an algorithm at once. (:)

It is also worth noting that, when a pfogram is to be
proved correct, it is bound to be best to approach it via a
variant of maximally high level, to prove this variant correct
first, and then to proVeAfhat the optimising transformations
subsequently applied to it preserve correctness. Note that a
relatively small standard set cof optimising transformations is
likely to be used repeatedly, so that the proof that these
trensformations preserve correctness will be a standard 'Lemma‘.
‘oreover, compared to an equivalent low 1gvél variant, a high
level prugram variant will be significantly less cluttered with
subsidiary detail of the sort that makes difficulties for and
lengthens a zorrectness proof.

By using a given language L in a deliberaztely ‘high' stvle,
Wz prepare ourselves for the formal defimition of a still higher
gamantic level L' of language. The program {ransformations that \ :

are informally sean as routine improvements whan i is used iu hich



style become potentially automatic optimisations when L' is
explicitly formalised. WNote that it is only after we have
formally defined L' that the problem of optimal translation

¢f L'-programs into L-program is truly opened; i.e., it is only
this step of formal definition that allows us to see certain
fundamental issues concerning L-level programs in their truest light.

We note finally that the development of programming languages
to progressively higher levels will eventually close the gap
which presently separates the 'bottom-up' approach of the formal
language designer from the 'top-down' approach inherent in
various current studies of 'automatic programming'. As this
gap narrows, programming language design should be able to
contribute significant ideas to, and absorb ideas from, the

.natural-language/artificial-intelligence oriented ‘'automatic
. programming' work.

PO ]
.

4, A _few suggestions made in conformity with the preceeding

generalisations.

While not having any great improvement in language level
to recommend at the present moment, I shall suggest a few syntactic
conventions intended to make 'converge' iterators of the sort
introduced in Newsletter 133 and 133A easier to use. For the
reasons adduced in Newsletter 135A, iterators of this sart
may be expected to occur frequently. I will also suggest a
few. small SETL extensions which address deficiencies of the
language and which may be found particularly convenient for
the ‘high Style‘ use of SETL suggested in the preceeding pages.
After these extensions are outlined, a few sample algorithms,
written in the envisaged style, will be given.

Revising the syntax {but not the semantics) suggested in
Rewsletter 133A, we shall write simple converge iterators as



) N2 | O

block
.énd Vs

Note that, as before, the block is executed till its execution
fails to modify any variable. The frequently occuring case of
he general form '

: o {Yx€8 | C(x))
block
end Yx; |
end Y;
will be abbreviated " {cf. Newsletter 133A) as

(V¥xes | cix))

bloek

end YY; ' : (:)

If the bloek in (1) consists of a single assignment statement
& = ezpn, we shall abbreviate (1) simply as

{23 X = : expn;

3 converge lterator of the form (2) will often be preceeded Lbv
#rn assighment initialising x. Accordingly, we write

£2) X % 33 EXpPn, 0D eXpn,;

&2 an esbbhreviation for



€ETL~133B~12

For saccinctness, we allow the 'iterating assignments' (2) and (3}
to be used as expressions also, their value being that of x
when iteration ceases.

As a first example, note that these conventions enanle us to
write a quite succinct transitive closure routine:
definef tranc (f,8); return x = :; s + £{x]; end tranc;

Especially in using condensed dictions such as (2) or (3},
but also in SETL programs more generally, the syntactic overhead
associated with a subfunction definition and call may be bigger
than the function body itself. Wwith this in mind, we introduce
an abbreviated function-~call style. Functions are called in
this abbreviated style simply by writing their names, with no
parameters; (in effect, parameters are transmitted globally.)

The function body of an ‘'abbreviated form' function is introduced
by the keyword where, which must be followed immediately by

a token identical with the name fname of the function being called.
This may either be a label, or (for brevity) an assignment

target. The abbreviated function body is terminated by

end where;

. A1 variables occuring in the body of an abbreviated function-are

glcbal to the ordinary function or subroutine containing its

body; and the function itself has this same scope. The value
returned is the value of the variable frname at the momeunt of
return, which is the first moment when either a ‘return' statement
or an ‘end where'is encountered.

The following example illustrates these conventions,
(ahd ziso assumes, for convenience, that operators sending a
SETL map into its domain and range respectively have been defined;
‘range' is also assume to apply to a tuple, and give the set
of its components.}



SETL-1338-13

It is a program which solves the combinatorial 'matching’
problier described on pp. 122~125 of 0P II. I.e., a map with
disjoint domain and range are giveh, and the alcgorithm extracts
& maximal 1-1 submapping of the given map. This procedure used
is adapted from the maxflov algorithm of CP II, p. 123,

definef maxmatch(map);
<gource, sink> = <newat, newat>-'

‘graph = map + {<source, x >, x € domain(map)}

o | + {<x, sink>, x € range (map) };
graph = : graph - (path is p) + {<x(2), x(1)>, x € p};
where nath = :: nf + {<pred(z), z>, z €(domain(path) + {sink}) |

' predf{z) rz 0}
vhere pred = :: nf + (<x(2),x(1)>, x € graph | sink nov € domain poo

‘ ~and x(1) € domaln(pred) + {source} and x(2) nct € domain(prad)
- end vwhere; end where; .

1

return map-graph; . N . : : .
end maxmatch; ' <Q

‘We ghall convert this 'high SETL' program to an eguivalent

iow SETL' form, simply in order to illustrate the transcription
process involved. Studying the preceedlng cede, we note tnat
path is used only to support an iteration, sc that its explicit
formation can be suppressed. Moreover, the map pred and its
domain can be formed differentially; and the two successivea
tterations used in the initial formation of graph can ke
amalgamated. The inner program loop ig tha* which forms pred.
Yhese observations lead us to the following ‘low SETL' cods:

A
iR

finel maxmatch(map);

tacurce, sink* = <newat, newat>:
arapn = nlk;
{Yx€ map)



—
<

P ——

5ETL~133B-14

¥ in graph; <source, x(1)> in graph;- <x(2), sink> in gxraph;

and ¥

{while true) /* loop till return is made */
/* build up pred */
reached = {source}; new = {zource}; pred = nk;
{while new ne nf) ' '

point'gzgg new;

newest = graph {point} - reached;

(Y np € newest)
pred {np) = point;
np in new;
np in reached;

end Vnp;

end while; /* now pred is built up */
if sink not € reached then

return map-graph;

else /* replace path edges by their reverses */
point = sink; '

(while pred(point) is predp ne )
<predp, point> ' out graph; |
<point, predp> in graph;

end while; '

end if;
end while;
end maxmatch;



EETL-133B-35

™90 other SETL extensions are worth suggestings

&. “The very restrictive way in which 0 is presently
treated in SETL has the advantage of exposing program faults
rapidly at run time,but in some cases it forces longish
circumlocutions to be used where the programmer would find it
more convenient to use an 0 or illegal operation as a termination
g#ional of some kind. For use in such cases, the following device
is suggested. If e¢rpn is an ‘elementary’ SETL expression, i.e.,
an expression involving only primitive SETL operations without
emhedded function calls, the expression '

{1) ' expn ort expn,

nas the fcllowing’seméntics: if evaluation of expn leads either
to an Q result or to a run~time error, (1) has the same value
A8 expn,; otherwise it has the same value as ezpn.

b. The conventions for tuple component naming describad
in 0.7. II. page 94, are still too primitive and clumsy. The
following revised conventions are suggested.

i. If e is not an integer constant, and in particular
if e is an'expression'with a tuple, map, or string valve, wnilc

n is an integer-valued expression, then e.n is synonymous with e{un}.

ii. By writing .
gname has cnl,..,,cnk:

>ne dafines Chy ye..,CHy, &S MACros for the integers 1,....k
respectively. Of course, it is intended tha® these integare
shovld be used to designate tuple components. The tokea grung

is senantically insicenificant. and hes mnencnic value onliv: it

servas to remind cone of the cobjacts whose conmponents are naivo

samed. The related morz general jorm

.
o
~

me has on_ and Cn. ceae Sl o
gname A o ordant 1 # IK

7



vhere c¢p is an integexr, and which designates cn,,...,cn, . as
preros for ong, + lra..,eng + k respectively, might also be

‘useful.

Once this macro facility is introduced, the following
edditional notational forms will probably bs convenient:

(?} . 43 ny e n, @y oMy ek>.

for the tuple whose ny - th component is e 1 <3<k, and
whose other components are Q. Moreover,

a. n1’ nz,...nk = expn;

can usefully stand for the multiple assignment
<a. Ry, &. Nyree.le nk> = expn.

iii. As an aside, we note a few notational possibilities
suggested by (3). It would not be unreasonable to introduce
‘naned rarameter' procedures and functions introduced by header
iinez of such forms as

‘(4} definef procname parlist1 parname, parlistz,..parnamek par}igtk;

z‘vw'J»

definef swivaled body distance x angle theta;
tere proencme names the procedure, parname,, ...,parname,; names
its parameter subgroups, and each parlistj is a comma-scr - .ted
list of parameters. Then, when precname is called, we allow
the parameter subgroups to appear in any order, each preceeded
by its name; but within a group arguments must be given in the
wrder in which the corresponding parameters appear in the

corresponding pariltet of (4).



SETL-133R8-07 ' » -

This allows calls to have the pleasing form exemplified by (ﬁ}
swivel body2 distance x2 anglé theta2;

which can equiﬁalently be written
swivel body2 gngle theta2 distance x2;

Cmission of designated 'optional’éarameter groups can be allowel.,

Named parameter functions can be allowesd also, but since
functions nest some system of parenthesising delimiters isg
called for. One possibility is to call the function introcducss

by a declaration such as (4) by writing
(¢ procname arglist1 parnéme2 arglistz-.,.[)arnamek arglistk),
where the named-argument groups can be optional. An examéle might bgjx
{: swiveled body distance x angle y).

As a final example illustrating some of the conventiwag
suggyested apove, we give 'high SETL' conde for the Cocke~kllen
program ¢raph aralysis process described on pp. 26%-272 of G.R. 1X.
Note that the code which follows combines the four routines
interval, intervels dg, dseq of those pages.

definef dsegivraphusdes, grapheesor, graphead):

(o]

<nodes, cesor, neadr= <graphnodes, graphcesor, graphead>;
A

intov = ni; /* map each node into its interval */
dseg = :: <nodes> + if §{intervals i5 ints) =g % dseg§ 4 =7)

nhervals = 12

Jee

yhere




Where interval = :: < 3followersy

———
dm

cescy [nodes-xr

‘where followers =

{headl) +

ort nult/+

Wttt rtr v o

= nd € {cesorirangalintervalli-

™eve s

4.». N

]

ntervalill)?

{cesor [range glntervali " is intneodes)
end ghggg; ¢nd where:; end where:

e ———a

return <dseg, cesor, intov>:

end dseq:

Concerning the abOVe,
the foilevers function is

note that it

18

sumed,

nternal to the code

3

that each occurence of the token ntery

refers simply to the current valiue of the wvariable

and dnps not cause a re

alve call.

7%

with b 81

.
L N T
s

sinacea

.
for intern

falln

L I )
LME oy

“nd

nEnod

-
[ Jy »

™



