L -,_,;ﬂf—'ﬁ}.—

| ‘ SETL Newsletter # 141 ' J.T. Schwartz
. ' January 16, 1975

-‘?ﬁfléﬁtidﬁs on some very-high level

Dictions having an English / "Automatic Programmin

1. ~Conventicns which make 'implicit references

Nouns appearing in English-language discourse are typically
very highly 'typed', i.e., are known to refer to objects of
known 'types' and thus to appear only in certain argument
positions in the family of semantic relationships around which
a given discourse is structured; conversely, each of the

. arguments of a relationship (or function) appearing in a typical

discourse is known to have some speéific type, and the type
of the output of éach function which appears is known. 1In
carrying a structure of this kind over to a programming .

<:J ' language we may assume that basic set—theoretic. relationships,
and their connection with object types, are also understood,
e.g. assume that & set s can be known to be "Sset-of-elements
of type t". In addition to this, the basic facts that objects
have attributes; that particular attributes of objects of a
given type may themselves have known type; and that an object
(which is really a vector) will frequently be defined when
the value of all its attributes is known, can all be understood.

If available in a particular semantic environment, these
facts can be vsed systsmatically (as indeed they are used in
ratural language discourse) tc elide patterns of reference
and to make them flexible. Specifically:

(i) If the arguments of a function or relaticn have known

.types, all of which are distinct, then when the function is
invoked its arguments may be written iniarbitrary order (since

the correct order can be deduced from the known argument types.)

SETL-141-2

(14) Generalising rule(i), suppose that we extend a device
_ inherent in the ‘expression' construct and agree that in each
local context C of any program P, the last referenced object
Of each of the types declared relevant to P is implicitly
available in C. Then a function afgument can he omitted. if
its type is known and if the argument value desired is the
implicit value of this type, in the sense just explained.
(11i) Generalising rule (i%1), suppose that we keep the
last k objects of each relevent type implicitly available.
Then several function arguments of equal known types may
be omitted if it is known that they must all be distinct, if
Moreover, all these arguments play equivalent roles (so that
they may be permuted), and if the k argument values desired
- are the last k obiects‘of the relevant type, in the sense just
- explained. Moreover, dictions such as 'the former’, 'the first’,
etc., can be provided, to distinguish between these implicit (T?
quantities when necessary. Finally, otherwise uninitialised B

variables of types deducible from syntactic context can be
taken as references to the ‘implicit' values of the type or
types required.

Note that the convention just suggested serves as a
partial replacement for the ordinary use of variable names
in programminrg languages. From the point of view suggested

'by this conventicn, variable names can be understcocod simply
as éefining zn indefinite variety of object tyces, each of
which is the type of unigue object in the program, namely
the current value of the variable. .

{iv} If an operation (e.g. a SETL primitivs) admits arguments
of a varieti of types, we.can specify the type of argument
‘required at a given operatoxr occurence by writing the name
of the type in an argument position.

SETI~141-3

Note that, when taken together with rule (iii), this
convention may suffice tc define the arguments of an operator
‘completely. For example, in a context in which two items x;,x,

of type widget are implicitly available,the notation eq widget
clearly means *x, eg X,'. |
(v) The functions and mappings known in a given program
context will often return resuits and accept arguments of
known type. The comnstraints which knowledge of this type
implies can be used to allow one or more function arguments
to stand for the function value required in a given context.
We may even allow several functions to be involved, if the -
type relationships are sufficient to disalbiguate the sequence
of mappings which must be applied. Syntactically, we can
allow 2 single argument to stand for itself, and use the
notaticn .(al, az,...,an) when a few. of the arguments, to one
or more nested functions, are presented explicitly. For
example, suppose & context in which an object of type t; is
required, and where functions £ and g, with arguments
respectively of distinct types €, ety and tyetse and returning
values of respective types tl and t2 are available. Let x
and y be variablese of types t, and ty respectively. Then the
notation .{(x,y) {or more specifically t, (x,y)) can serve as
an”abbreviation for f(x,g{y,z)), where z is an 'implicit'
value of type t., assumed to be available. We also allow an
object with several declared attributes (see below) to be
transformed automatically into some one if its attributes,
provided that the particular attributé raequired is determined
by the attribute's type. Another example is this: X can stand
for «x> in a context in which a vector with components of a
given type t is required, and where x is known to be of type
.t', or for the set {x} when a set of elements of 'type t is
required.

SETL-141-4

(vi) If applied to a language L, rules (i-~v) above impose
a kind of ‘case structure' on L, and allow abbreviations which
exploit what can be thought of as principles of ‘case agreeméﬁf*.

It may be worth extending this idea by using syntactic‘devicés

which are modeled aven more directly after some of the case rules

6f natural language. For eiample; if a type name 'typn' is

introduced, we can agree that variable name of the form 'typnx',
Ytypny!, 'typnxy', 'xtypn' etc., will denote quantities of

type 'typn'. Moresover, we can agree that 'typns' denotes the

*plural’ form of 'typn', i.e., the type whose members are

sets, all of whose elements are of one type 'typn'. For use

with SETL, it is also useful to introduce a 'sequence case',

‘i.e., to agree that 'typnseq' denotes the 'sequeﬁce form' of

‘typn', i.e., the type of tuple objects all of whose componénts

are of type 'typn'. We can alsc allow one variable of type 'typn',
with no letters appended, to denote the current:ly impiicit (j\
vajue of this type. ‘ '
) If a quantity ‘typnx' of known type 'typn' is seen to be

the value varied by a set-theoretic iterator, then it must

vary over some range, and the type of its range must be of

the plural type 'typns' or the sequence type 'typnseq'. If

the set *‘typnsy' over which the iteration is extended is implicit

ia the context of the iteration, we can allow YVitypnx € typney: to be
written. Much the same convention can be applied to iterations
cver the components_of a sequence.

(vii) Rule (v) can be regarded as a kind of 'coercion rule‘,
which calls for the replacement of one or more objects Opr+++e0p
of known kind by some other object o of a kind suiting the
context in which the object o appears; and where o is obtained
from ol,...pon(and from still other objects if required) by
application of available maps and functions. The maps and
functicns which can be used for this are in the first place
those available as values or declared attributes of program L
objects having declared type; built-in,single-valued SETL
operators raving known action on object types mav be used as
well.

SETL-141-5 ' ‘-

- Among the SETL operators of which this may be said are {x},
which converts ‘typn' to ‘typns’, <k>, which converts ttypn'
to 'typnseq!; and #x, which converts both typn and typnseq
to the built-in type integer. These last three constructions
willibe used only when no declared maps or functions producing
an object of the type required by context from a supplied set

" of arguments is available, and when no object of the required
type is implicitly available.

(viii) We can extend the coercion rules implicit in (v)
and (vii) above by 'pluralising' it, i.e., by agreeing that
if a sequence x of elements of type t' is called for, and if

a'map f coercing elements of type t into elements of type t'

is available, then x may, be coerced to [+: y(n) € x] <f(y)>.

Under corresponding circumstances, we can also‘allow coercion

of sets of elements of type t to sets of elements of type t'.

(ix) A valuable principle, which disambiguates texts

that would otherwise remain ambiguous, is the principle of 'knitting’

whichbrequires that all the elements specifically mentioned

in a local or global context play some role in the text's _
- @isambiguated form. (This is a principle suggested by Jerry Hobbs in 2
study of the semantics of natural language.) A local variant
of this principle requires that all the arguments supplied to
a functional construct actually be used in the constructs
disambiguated form; a global variant requires that, in deciding
between two possible disambiguations of an entire subprocedure
" or program, we will prefer that which does not fail to reference
any of the objects or object attributes declared with a program,
In this same sense,; a proposed disambiguation of a text is
suspect if it implies that any computation is deliberately
performed without its result ever being used.
(x} Xf a subfunrction returns as value an object having
as attributes several objects of various types, we can use an
= explicit or implicit call to the function solely for the value
<; of some one of the attributes of the object it returns.

SETL-141-6

In this case, the other attributes of the object become
implicitly available values of their several types. This

remark applies in particular to iterators over objects ftypnseqéh
of sequence type. If such an iteration is written in its e
nost abbreviated form, which is simply Ytypn (rather than the
fuller Ytypn(k)), the index K becomes an implicitly available
value (of the system type integer).

(xi) If an object x of type t is declared to have attributes
atl,...,atk (See Section 2 for the forms of declaration provided)
then its several attributes can be referenced as x.atl,...,x.atk,
This notation can be used in either dexter or sinister
position. As noted above (see(v)) we allow ‘x' to be used
-.insteadAof 'x. atj' when the context is dexter and a value
of the type of x. atj rgther than x is required in context.

It is cgpyenient to allow a similar, and indeed a more general,
abbreviation on the left. Specifically, we allow

(1) X. =y
to abbreviate
(2} ' X. atj =y

When y has a type suitable for assignment to the attribute

F g8 atj of x (or when y may be coerced to a value suitable in
this sense); provided, of course, that the resolution of (1)
to (2) can be disambiguated. We also allow the multiple forms

1" i X. = Yll y2I'°°l’ Yp
for '
] _ - .
(2Y) x.atjl Yy
L1 t' = :
X.a 32 Y2

when the types of Yyre-er¥, are such as to dictate the

individual assignments of {2') in a sufficiently unambiguous manner.

SETL~141~7

2, Specific syntactic conventions -

Xt is now time to suggest specific syntactic conventions
allowing the introduction of families of object types of the
sort anticipated in the preceeding discussion. For this
parpose, we introduce a number of declaration forms and linguistic
conventions supplementing the existing rules of SETL. ‘the
first of these declaration forms is

(1) = tnamea has aname 4 : tnamez, aname o tnamez,...,anamek: tnamen;

Here, tnameo,..;,tnamen are type name (or somewhat more general

constructs; 'see ktelow) . Moreover,_anamez,...,anamek are

attribute names, which name attributes of objects of type tnameo.
The name tname, without parameters, can_élsp function as

an object name, and can be cast into the plural case and the

seqguence case. Objects x of type tnameo are declared by (1)

to_have attributes anamej of respective types tnamej, and can

be coerced by extraction of an attribute to an object cf one

of these types when context requires that this be done.

In the presence of the declaration (1), the type name tnameo,

supplied with appropriate parameters (some of which may be

implicit) can function as an object-former for objects of

this type. We also provide (1) in the modified fornm

(2) tnameo'has'identity, aname, : tnamel,...,anamek: tnamek;

LY

This declaration has a significance somewhat like that of (1),
but the semantics of (2) differs in one essential regard from
that of (1). Wheresas an object of a type declared by (1) is
essentially a SETL tuple, an object of a type declared by (2)
is a SETL blank atom mapped onto a tuplce by a behind-the~scenes

system mappinc value.

SETL-141-8

We allow declared 'attributes attr of an.object x to be
extracted by writing z.qttr. In the case of an object x

whose type is declared as (1), x. attr identifies a;domponent v
of xf'if the type of x is declared as (2), x. attr identifies

a component of value(x). The creation of an object x of

type, (1) merely involves the formation of a tuple t; the
creation of an object x of type (2) involves both the formation
of a tuple & and a call on -the SETL operation newat to generate
the value of x, with t then becoming vaZue?x). Similarly,
ingertion of x intoc a set means tuplé insertion of x if of a

" type declared as (2). '

In (1) ana (2), inamej can be type names, but for tname
we also allow somewhat more general SETL-related type describing
constructs, called type deseriptors. These constructs can
be built from type names tname in the following Way: we can form

.

(3a) 3 ' {tnamel,

deéiqnating the type of a set whose elements are of type tname;
and can form

(3b) . | [tname]
designating the tyve of a sequence whose elements are all of

type tname. If tnz,...,tnk are a sequence of type names, then
wi?r also allow

. ;
2e) SEga.e.sting>,

which denotes the type of a tuple whose components are of types
th""stnk respectively,

(3d) ;{tml,..c,tnk + tnamel,

SETL-141-9

denoting the type of a programmed function whose arguments
are of types tn ,...,tn, respectively and whose result is
of type tname, and

(3e} . [+ tnl;.;.,tnn]

denoting the type of & subroutine with arguments of the
designated types. .

0y

These constructs can be compounded; e.g., we may write

tnz,‘{tn3}>}

(4 | {<tn,,

to describe a SETL map of two parameters with respective types
tnz, tnzy-which provides values which are sets of elements of
types t"3~
Note that {¢m} can also be written as #ns, and [tn] as tnsegq.

If we wish t¢ introduce a type which has only one attribute
(whose nemne we need not distinguish from the type name), we
can write

(5) ' tname 1is: tdesc;

where tdesc is a iype descriptor of one of the forms (3).

"We allow a new type name tnameo toc be declared by

Pty
o
R ad

tnameo'either tnamel,...,tnamek;

where tnamez,..‘,tnamek are type names or type descriptors. This
states that an object of any of the types or descriptions tnamej
may be taken as an object of type tname in a context requiring
such an object. {(i.e., coerced to an object of type tnameo

*by genera.isation®.)

SETL~141-10

3, ' A few examples.

- It is now time to illustrate the conventions which we

have proposed by applying these conventions to a number of

examples. In our examples, we will also make use of the

'converge iterators' and related abbreviations described in

SETL Newsletter 133B. As a first exanple, we shall give a

code rebresenting the basic LR(k) ~parsing algorithm. In this

code, we assume as usual that a finite-state automaton defined

by a transition function ¢rans 1is given, and that the states

a of this automaton are arguments to a function ecanfollow(a: string),
where string is an (k+1) tuple of symbels of the language
‘being parsed. Written in a manner illustrating the conventions

which have been described, this code is;

inpﬁt'ig: tsymbseq; |)

prod has left:intsymb, right:intsmbseq; _
symbol elther intsymb, tsymb; 4 (vf
automatcon has inistate: state, trans: {<state, symbol, state>};
canfollow is: {<state, symbolseq, boolean>};

node either inode, tsymb:

inode has'idmntity,kina:ﬁintsymb, descs: nodeseq;

definef lrparse (input, automaton, prods, canfollow);
nodeseq = input;
'stateseq = jnistate;
¥
if Jstatelm), prod | nodeseq(m:n) is part eq prod and
canfollow{left + nodeseq(m + n: k)) then
nodeseq = nodeseq (l:m-l) + node(part) + nodeseg(m+n:);
stateseq = stateseqi{l:m); '
else if # stateseg is nss‘&i nodeseg then
‘ _ stateseg(nss + 1) = trans(nss,nss);
end if; |
end Y;
return if nodeseq eq 1 then nodeseqg else Q; V .
end lrparse;

"

SETL-141~-11

This code, at first sight enigmatic or even erroneous, is

’ijﬁstified by the following reflections:

i. (Line 3 of the subroutine.) Since ¢nistate is a state,
the line is corrected to stateseq = <inistate> by rule (v).

14, (Line 5.) The range of variation of state is clearly
stateseq, and of pred is ciearly prods. The equality operator
must compare objects of equal types, which must be obtained
from objects of type nodeseq and prod respectively. Clearly
then both must be coerced to eymbolseq, prod by taking its
riyht, and nodzseqg by ccercing each of its node components to
symbol, which means using: the kind field in the case of inode
components. The uninitialised integer n is determined by length

 coercion. The field-name left is corrected to <prod, left>

by the implicit reference rule and using the fact that context
requires ‘a symbolseq; and nodeseq(m + n:k)is also coerced
(by application of the pluralised coercion rule) to an object
of type symbtoleeq. The implicit argument of canfollow is
clearly state. All in all, lines 5 and 6 of the preceeding
code are corrected to :
if Hstate(m) €stateseq, prod € prods |
[n = # (prod. right); part = nodeseq(m:n);
symbseq = [+: 1<j<n] (if type (nodeseq{m+j-1) is nd} ‘eq tsymb
A then nd else nd. kind):;
return symbseq;] eq prod. right and
canfollow(state,
[+:1<3<k] if type (nodeseq(m+n+j-1) is nd eq tsymb then
‘ nd else nd. kind)
then ...
iii. (Line 7.) node{part) is coerced, by the rule of
Implicit arguments and since a node when created must have a

- new identity, into <node(kind:prdd.right,descs:part,neWat)>.

(Note that the context requires coercion of node(...J)into nodeseq).

Ly

SETL-141-12

o

iv.(Line 8) nodeseq must clearly be coerced into # nodeseq.
v. (Line 9) the first argument of trans must clearly be
 coerced into stateseq{nss), and the second argument into nodeseq(nss).

A few instructive observations concerning this example
‘can be made. Most of the transfotmations which take the Irparse
routine.shéwn'above into its SETL form are harmless from the
point of view of efficiency. Applications of the pluralised
coercion rule are exceptions; this rule introduces additional
itératicns whose subsequent removal by an optimiser may be
difficult. In casting the process described by the above algorithm
manually into am acceptable SETL form one will want to remove
.these'troublesome'iterations by applying strength reduction;
i.e., one will choose to keep the s8tring of symbols
(+: nd(3) € nodeseq] if type nd eq tsymbol then nd else nd. kind
available. These remarks bring us easily to the following (:7
manually transposed form 6f our algorithm. '

definef lrparse (input, automaton, prods, canfollow);
<inistate, trans> = automaton;
String = input; nodeseq = [+: ¢ (n) €input] node(kind:c, descs:Q, newat);
stateseq = <inistate>; | ’
)] :
if Jstate(m) € stateseg, prod € prodns]|
string(m: #{procd.right)) is stringpart and
canfollow(state, <prod.left> + string(m+n:k)) then
nodegeqg = nodeseq(l:m-1) .
+ node(kind:prod.left,descsinodeseq(m+n:k), newat)
+ nodeseé(m+m:)g
stringseq = stringseqg(l:m-l) + <prod.left> + stringseq(mtn:;;
else if # stateseq is nss %t # nodeseqg then
Stateseg{nss + 1) = trans(stateseq(nss),stringseq(nss));
end if; (;.
end Y; _
return if # nodeseg eg 1 then nodeseq else Q;

end lrparse;

SETL~141~13

'Confirmihg a2 general obseryaticn made earlier, we see that the
original form of our code isru: shorter than its manually
transposed form; but it is closer to a rubble of losely related
fragments, and this is both psychologically more transparent
and a more suitable.ta:get for some future automatic programming
. system.
‘. .

Note that the second form of our algorithm can be optimised
significantly by working with initial sequments of partseq
and nodeseq, rather than with the whole of these vectors; this
is the observaticn which eventually leads to an efficient
code.

A8 a secend'example, we consider the Cocke-Younger-Earley
'nodal spans' parsing method. This is described by the
following code-text: |

gram has root: 1ntsymb,syntypes. {<tsymb,1ntsymbs>} prods:

) ' "{<intsymb,intsymb, intsymbs>};
span has _g;x start. integer, end: 1nteger, kind: intsymb;
input is: tsymbseq;

definef nodeparse(inputseq, gram) ;

span = ::{span(end:n+l), Vinput,intsymb(input)} +
'{prodspan;quana spanb. pfodspapl spana. end mg spanb. , start}:

divlis = {<prodspan, spana,spanb>}, Y spana,spanb,prodspan};

where prodspans = {span(spana.start, spanb, end, intsymb) ,
Vintsymb (spana,spanb) }; end where;
if span(l,root,input + i) not € spans then return Q;;)

_ spans = ::{span} + [+: span,pair € divlis {span}] pair;

return <spans, {<span, divlis{span}>, Vspan}, 7span |divlis{span} gt 2>;
end nodeparse; i

SETL-141-14

- &
Reduction of this text to standard SETL involves the '
ﬁollawing observations~ . .
L. (Lina 2 of the subroutine). thput becomes Yinput(n)€ znputscqp
qu'the two integers required for the start and end of the
‘? apan formﬁd in Line Z are then identified with m. To obtain an
.uintaymb witb input as parameter, we must apply the map
_eynfypea; chus zntsymb(input) becomes intsymb € symtypes (input).
. ‘Moreover, Vépana, spanb, prodspan becomes ¥Yspana € spans,
spanb € spans, prospan €. prospans. This same transformation
- occurs in Line 4.

"if;(Liﬁesé'and 6). To form a set of objects of type intesymb
- from spana and spandp we extract the kind fields from both
 spans; since both spana.kind and spanb.kind must be knit into
the set,heing formed, Vinteymb(epana,spanb) is converted into
Vintsymb € gram.prods. (spana.kind, spanb.kind) Note that this
relolution of the original intsymb(spanarspanb) is also (:‘
supported by the principle of *‘'knitting'; if it is rejected,
there will be no cher’?rogfam point at which gram.prods is used.

iii.(Line 8,9). ‘The span implicitly referenced in {span}
clearly span(l,root, (#input) + 1) (note that input + 1 is
also converted intc #imput + 1 in Line 7). In the iterator
which follows, [+: span;...] clearly abbreviates [+: span € spansS;...].
This same transformation is applied to the Yspan and Fspan
iterators which appear in Line 9.

4, Reflections on the foreqoing.

Can a pxogrammlngplanguage in order to reach a very high
dictional level,reasonably allow free use of a system of
implicit dictions like that described in the preceeding pages?

" For the following reasons, probably not. To attain significant
compression of program text, one must skirt the border of
ambiguity. |

SETL-141-15

Therefore, logical mistranslations may result from the
conversion of text containing implicit‘references to fully
explicit SETL text. Consequently, the programmer who writes
a text'containihg implicit references will generally have

to check its transformed explicit version to assure himself
that his logical intent has been correctly understood. Just
as high a degree of skill will be required for this as for
the manual generation of a fully explicit SETL text., Note
however that text contining impiicit references can in scme
cases give a better description of the underlying psychological
process of program generation than fully explicit text will
give, and ‘'implicit' text may therefore be preferable as a
medium for initial proéram specification, and also for
explanation of algorithms, especially since the system of
impltcit reference we have proposed resemebles that employed
in natural language. Since certain types of common errors
should be catchable by ciecss-checking two texts, one of
which is machinz-generated, and where both texts arz supposed
to represent the same process, it may also be valuable to
generate an explicit SETL text méchanically from an implicit
SETL text, and then to work with and debug the explicit
rather than the original text. Another approach,which may

be more practical,is to work always with fully explicit text,
but to check for errors using a type analysis likce that needed
to resnlve implicit references.

The preceeding femarks suggest that an interactive
'‘semi-automatic programming' system might be structured as
follows. As source text, it could admit programs like that
described in the preceeding paragraphs. Type declarations
could be entered first, followed by the imperative parts of
a program text. As each small grdup of imperative statements
was entered, the system could emit a serices of yes/no quuastions
intended to cornfirm the manner in which the system intended

to resolve implicit references,

SETL-111-16

At each logical point where such a resolution was required,
a reasonably small number, say a half-dozen or a dozen

..~ possible resolutions, might be generated internally, in order
~of diminishing plausibility. If what the system took to be
the most plausible resolution was ‘ateractively rejected by
the user, these other resolutions might be displayed for
his choice. Finally, overall consistency checks, such as
the principle of ‘knitting', could be applied.

For the number of mistaken interpretations generated
during the resolution of implicit references to be kept
minimal, and for confidence in the overall result of such
a transformation to be justified, formal principles which
somewhat ‘overdetermine' the transformation may have to
b2 found. Superficial, essentially linguistic principles
like those sketched in Sections 1 and 2 may be insufficient, (f
in which case we may need rules which rest on a deeper
analysis of the mathematical structure of a program and on’

 some inkling of the informal correctness proof which
underlies it. Information of this depth is not easy to
come by, and if it turns out of be necessary to penetrate
to this depth the development of highly automatic versions
"of the techniques which have been suggested in the preceeding
pages may slow down to match the development of automatic
proof techniques and of automatic teciiniques for analysing
the correctness of programs. Note however that by adding
assertions to be checked at run~time to a program text
containing implicit references, we can increase its
redundancy significantly, and have considerably more confidence

in~the explicit text which results from it by transformation.

Fully automatic programming systems intended to work
from natural language source text face heavier sledding
Yet. They must first analyse their natural language input and
transform it sucessfully into a collectioun of declarativc

and imperative formal statements like thosec envisaged in

VN

SETL~-141~17

Section 1 and 2 above. They must be able to transpose
requests for confirmation of an interpretation into
acceptable natural language output forms. They must
probably be able to prepare an overall natural-language
document surmmarising the information gathered in

5. ' A few remarks on verifving assertions.

As noted in Newsletter 135A, loops in programs will,
when they are not driven by the repetitive structure cf some
intenal or external data object, often arise from the
transformation into fixed-point form of an underlying
mathematical specification which in its pure form refers to
a set S too vast to be searched explicitly. That is, within
the(very large)set S defined by a predicate C, the loop
cohstructs an element x having some defining property Cl by
using an initial element x, €8 and a transformation ¢ such
that the iteration X4l
to the desired x. 8Suppose tht such an iteration has been

= ¢(xn) eventually leads from X

programmed, and has produced an x. We can often test the
correctness of our program by checking that x has both
properties C and Cl. If evaluation of the predicate Cl

is impossibly expensive, for example if C, asserts that x
has some extremal property, we can in place of Cl(x) check
some mathematically equivalent property of x. CSuppose that,
to allow demahds for verification to be inserted into a code,

we introduce an assert statement of the form

(L) o ‘assert C;

where € is some boolean valued expression. If such a
statement can be seen to be true by static program analysis,
our program will have been verified mathematically. Even
where this is infeasible, we may imagine (1) to be checked
dynamically; a checking operation of this sort can be regarded

SETL-141-18

as a gubstitute for some of the manual examination of
intermediate data that would. otherwise have to be performed

-~ during program debugging. 8ince it is the predicates C and C;
- which define the purpose of an algorithm, verifying assertions
:dre.géherally~ﬁqt-tpo hard to formulate (if assertions are
requiréd oﬁly‘fox dynamic. checking, and not for static

_ﬁw,vexifiggtiggf) . Por example, the point of the Irparse code
_shown in section 3 is to form a parse tree; thus we can

check "“the correctness of this code by dec¢laring that
tnodsunderlgg}{<node, symbolseq>]

and by interpolating the following calculations immediately
prior to the penvitimate 1line of the code: ,
if nodeseq eq 1 then /* check will be performed */
nodes = :: nodeseq + [+: nodel™descs;
~asgert VYnode | if type eg inode then prod(node,descs) € prods;
tnodsunder = :: {<node, kind>, Ynode | type node eq tsymb}
+'{<noée, [+: desc] tnodsunder (desc)>
| tnodsunder (node) eg @ and Ydesc|tnodsunder (desc)ne 0};
" assert tnodsunder (nodeseq) eq input;
end if;

Note however that a rather more sophisticated assertion is
required if we mean to check that the code also performs
properly in cases when @ is returned.

The ncdal spans algorithm given toward the end of section 3
may be checked ir a rather similiar way.

