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J.T. Schwartz 
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Dlc•tio•ns. having· ·an Eng"lish / ·11A\1toma:ti'c ·Prt>g'r'antrn:ing II F'lavor o 

l c · Conve·ntlon1:r which· ma·k~'impl~cd·t references ,. avail.able. 

Nouns appearing in English-language d1scourse are typically 

very highly 'typed', iae., are known to refer to objects of 

known 'types' and thus to appear only in certain argument 

positions in the fami.ly of semantic relationships around which 

a given discourse is structured; conversely, each of the 

arguments of a relationship (or function) appearing in~ typical 

discourse is known to have some specific type, and the type 
. . 

of the output of each function which appears is known. In 
carrying a structure of this kind over to a programming. 

language we may assume that basic set-theoretic. relationships, 

and their connection with object types, are also understood, 

e.g. assume that a sets can be known to be "set-of-elements 

c>f type ~". In addition to this, the basic facts that objects 

have attributes: that particular attributes of objects of a 

given type may themselves have known type; and that an object 

(which is really a vector) will frequently be defined when 

the value of all its attributes is known, can all be understood. 

If available in. a pa1:ticular semantic environment, these 

facts can be used systematically (as indeed they are used in 

natural language discourse) to elide patterns of reference 
a.nd to make them fle>dblf:!~ Specifically: 

(i) If the arguments of a function or relation have known 

. types, all of which are dif;tinct, then when the function is 

invoked its arguments may be written in arbitrc:,ry order (since 

the correct order can be deduced from the known argument types.) 



SETL-141-2 

(ii) .Generalising rule(i), suppose that 

inherent in the 'expression•· construct and. 
local context c of. any pr~gram P, the last 

we·extend a device 

agree that i~ each 
. . 

referenced object 

of each of the ~ypes declared relevant to P is implicitly 
available in c. Then a function argument can he omitted. if 

its type is, .known an~ if the argument value desired is the 

implicit value of this type, in the sense just explained4 

(iii) Generalising rule (ii), suppose that we keep the 

last k objects of each relevent type implicitly available. 

Then several function arguments·of equal known types may 

be omit·ted if it is known that they must all be distinct, if 

Moreover, all these arguments play equivalent roles (so that 

they may be permuted), and if the k argument values desired 
· are the last k objects of the relevant type, in the sense just 

explained. Moreover, dictions such as •·the fo"J::-mer' , 'tJ1e ~irst', 

etc., can be provided, to distinguish between these implicit 

quantities when necessary. Finally, otherwise uninitialised 

variables of types deducible from syntactic context can be 

taken as references to the 'implicit' values of the type or 

types required. 

Note that the convention just suggested. serves as a 

partial replacemer~t fc,r the ordinary use of variable names 

in programmir!.g language~;. From the point of view suggested 

. by ~is conv~mtic.n, variable names can be understood simply 
as defini~g an indefinite variety of object types, each of 

which is the: type of unique object in the program, namely 

th.e curre,'lt value V 
... ,:;:. 

J. the variable. 

(iv) If a.n ope:ration (e.g. a SETL primitiv2) admits arguments 

of a variet':· of types, we.·.can specify the type of argument 

·required at a given operator occurence by writing the name 

of the type in an ar:gument position 6 

C 
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Not~ that, '11ben taken together with rule {iii), this 

convention may_suffice to def!ne the a~guments of an operator 

completely. For example, in a context in which two items x1 ,x2 
of type flltdg•t are.implicitly available,the notation ·5 1Nidget 
clearly means ·:'x1 !,g_ ·x2 '. 

(v) The functions and mappi~gs known in a given program 

context will often return results and accept arguments of 

known type·. The constraints which knowledge of this type 

implies can be used to allow one or more function arguments 

to stand. for the function value required in a given context. 

We may even allow several functions to be involved, if the 

type relationships are sufficient to disambiguate the sequence 

of mappings which must be applied. Syntactically, we can 

allow a single argument to stand for itself, and use the 

notatic,n • (a1 , a2 , ••• ,an) when a few.. of the arguments, t.o one 
or morfi1 nested functions, are presented explicitly. For 

examplt!!, suppose a context in which an opject of type t 1 is 

requir13d, and where f\inctions f and g, with arguments 

respectively of distinct types t 2 ,t3 and t 4 ,t5-, and returning 

values of respective types t 1 and t 2 are available. Let x 

and y be variablee of types t 2 and t 4 respectively. Then the 
notat:1.on • (x,y) · (or more specifically t 1 (x,y)) can serve as 

anr-ab'.breviation for f (x,g(y,z)), where z is an 'implicit' 
value of type t 5 , assumed to be available. We also allow an 

object with sev~ral declared attributes (see below) to be 
trans:formed automatically into some one if its attributes, 

prov:i.ded that the particular attribute required is determined 
by tli.e attribute's ~ype.. Another example is this: x can stand 
for 1:x> in a context in which a vector with components 0£ a 

give:1 type t is required, and where x is known to be of type 

. t •, 1>r for· the set. {x} when a set of elements of 'type t is 

req,:rired. 
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(vi) If applied to a language L, rules (i-v) above impose 

a: kind of 'case structure' on L, and allow abbreviations which 

exploit what can be thought of as principles of 'case agreement~. 

It may be worth extending this idea by using syntactic devices 

which are mod.eled even 1nore directly after some of the case rules 

of natural language. For example, if a type name 'typn' is 

intro,juced, we can agree that variable name of the farm 'typnx' , 

•typny', 'typnxy', 'xtypn' etc., will denote quantities of 

.type 'typn' • Moreover, we can agree that 'typns ' denotes the 

~plu,:al' form of 'typn' , i.e. , the type whose members are 

sets, all of whose elements are of one type 'typn'. For use 
with SETL, it is also useful to introduce a 'sequence case', . 
i.e .. , to agree that 'typnseq' denotes the 'sequence form' of 

'typn', i .. e., the type of' tuple objects all of whose components 

are of type 'typn'. We can also a.llow one variable of type 'typn' J 

0 

wi t.il no letters appended, to denote the currently imp-licit c·, 
vaJue of this type • 
• 

If a quantity 'typnx' of known type 'typn 1 is seen to be 

the value varied by a set-theoretic iterator, then it must 

vary over some range, and the type of its range must be of 

tlae plural type 'typns' or the sequence type 'typnseq'. If 

the set 9 typnsy' over which the iteration is extended is implicit 

.:i.ri the context of the iteration, we can allow '/typnx E typnsy: to be 

~:-ritten.. Much the same convention can be applied to iterations 
ever the components of a sequence. 

(vii) Rule: (v) can: be regarded as a kind of 'coe1.cion rule', 

which calls for the replacement of one or more objects 0 1 , .•. ,on 

of known kind by some other object o of a kind suiting the 

context in which the obje.ct o appears; and where o is obtained 

:from o1 , a •• ,,on (and from still- other objects if required) by 

application of available maps and functions. The maps and 

functions which can be used for t,.1.is are in the first place 

those «vailable as values or declared attributes of program 

objects: having declared type; built-in,single·-valu2d SE'rL 

operat:.:irs i'.aving known action on object types may be used as 

well. 
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· among tlte SETL operators of wllich this may be said a;re. {x} , . . . 

which converts 'typn' to 'typns', <x>, which converts 'typn' 
to 'typnseq'; and ix, which converts both typn and typn~eq 
to the built-in type int!!ger. These ·1ast three· constructions 

willibe used only when no declared maps or functions producing 
an object of the type required by context from a supplied set 

· of arguments is available, and when no object of the required 

type is implicitly available. 
(viii) We can extend the coercion rules implicit in (v) 

and (vii) above by 'pluralising• it, i.e., by agreeing that 
_if a sequence x of elements of type t' is cailed for, and if 

a map f coercing elements of type t into elements of type t' 

~s available, then x may.be coerced to[+: y(n) Ex] <f(y)>. 
Under corresponding circumstances, we can also allow coercion 
of sets of elements of type t to sets of elements of type t'. 

(ix) A valuable principle, which disambiguates texts 

that would otherwise remain ambiguous, is the pPincipZe of 'knitting' 

which requires that all the elements specifically mentioned 
in a local or global context play some role in the text's 
dis~iguated form. {This is a principle suggested by Jerr.y Hobbs in a 

stu~y of the semantics of natural language.) A local variant 
of this principle requires that all the arguments supplied to 
a functional construct actually be used _in the constructs 

disambiguated formi a global variant requires that, in deciding 
between two possible di.aambiguations of an entire subprocedure 
or program, we will prefer that which does not fail to reference 
any of t.lte objects or object attributes declared with a programe 

In this same sense, a proposed disambiguation of a text is 

suspect if it implies that any computation is deliberately 

performed without its result ever being used. 

(x) If a subfunction returns as value an object having 
as attributes sever:al objects of various types, we can use an 

explicit or implicit call to the function solely for the value 

of some one of the attributes of the object it returns. 
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In this case, the ()ther attributes of the object become 

implicitly available values of their several types. This 
remark applies in particular to iterators over objects 'typnseq_', 

~-- ·'."!1 -!".• 

of sequence type. If such .an ~teration is written in its ·· ' 

most abbreviated form, which is simply Vtypn (rather than the 

fuller Vtypn (k)), the· in.dex ~ be?omes an im.plici tly available 

value (of· the system type in·teger} • 

(xi) If an object x of type t is declared to have attributes 

at1 , ••• ,atk (see Section 2 for the forms of declaration provided) 

then its several attributes can be referenced as x.at1 , ... ,x.atk. 
This notation can be used in either dexter or sinister 

position. As noted above (see(v)) we allow 'x' to be used 

.instead of 'x. atj' when the context is dexter and a value 

of the type of.x. atj rather than x is required in context. 

It is convenient to allow a similar, and indeed a more general, --~ ·• 

abbreviation on the left. Specifically, we allow 

(1) 

to abbreviate 

( 2-) 

x. = y 

x. at.= y 
J 

When y has a type suitable foz: assignment to the attribute 

x. atj of x (or when y may be coerced to a value suitable in 

this sense) r · pro,,ided e of course, that the resolution of ( 1.) 

to (2) can be dis:lIUbiguated. We also allow the multiple forms 

(l') 

for 
(2') x. at. 

J-, .,_ 

.x. atj
2 ... 

= y1 ; 

= y2; 

when the types. of y 1 , •.• rYp are such as to dictate the 

individual assign.11ents of (2 ') in a sufficiently unambi<Juous manner. 
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It is now time to s~9gest specific syntactic conventions 

allowi~g the introduction of families of object types of the 

sort anticipated in the preceeding discussion. For this 

p~pose, we introduce a number of declaration forms and linguistic 

conventions supplententing the existing rules of SETL. 'l'he 

first of these declaration forms is 

Here, tnan,e , ••• , tname are type name (or somewhat more general o n 
constructs 1 · see below} • Moreover, a name 

1
, ••• , aname k are 

attribute names, which name attributes of objects of type tname • 
0 

The name tname
0 

without parameters, can also function ~ls 

an object name, and can be cast into the plural case and the 

sequence case. Objects x of type tname are declared by (1) 
0 

to.have attributes anamej of respective types tnamej, and can 

be coerced by extraction of an attri.bute to an object of one 

of these types when context requires that this be done. 

In the presence of the declaration (1), the type name tname , 
0 

supplied with appropriate parameters (some of which may be 

implicit) can function as an object-former for objects of 

this type. We also ·provide (1} in the modified forr.1 

.... 

This declaration has a significance somewhat like that of (.l), 

but the semantics of (2) differs in one essential rcgu:cd from 

-that of (1). Whereas an object of a type declared by (1) is 

essentially a·S~TL tuple, an object o:I: a type cleclc1rcd by (2) 

l_,, is a· SETL blank atom mapped onto a tuplc by <l behi:1<'t--the~sc0ncs 

system mappinc; value. 
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We allow declared 'attributes attr of an.object x to :be 

extracted by writing x.attr. In the ·case of an object x 

wllose type is declared as (1) , :,;. attr identifies a _component ';c, 

of x; if the type of x is declared as (2), ~. attr identifies 

a canponent of i1atue(x). The creation of an object x of 

type
1
_ (1) m1?rely involves the. _format.ion of a tuple t; . the 

creation·of an object x of type (2) involves both the formation 

of a tupl,1 t and a call on ·the SETL operation· newat to generate 

the value of x, with t then becoming vaZue(x). Similarly, 

insertion of x into a set means tuple insertion of x if of a 

type declared as (2). 

In (1) and (2), tname. can be type names, but for tname. • . . J . J 
we also allow somewhat more general SETL-related type describing 

construc-ts, called type descriptors. These constructs can 

be built from type names tname in the following way: we can form 

(Ja) ·{tname}, 

. 
desi~1nating the type of a .set whose elements are of type tname; 

and can form 

(3bJ [tname] 

de3ignating the type ·of a sequence whose elements are all of 

type tname. If tn1 , ••• jtnk are a sequence of type names, then 
W·H also allow 

.3c) 

which denotes the type c,f a tuple whose components arc of types 

tn 1 , •• ,,tnk respectively) 

(3d) 
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denoting ti.~e type of a programmed function whose ar-gwnents 

are of types tn
1

, .•• _, tnk res·pectively and whose result is 

of type tname, and 

(3e) 

denoting·the type of a subroutine with argwnents of the 
designated types. 

These constructs can be compounded; e.g., we may write 

(4) 

·• 
to describe a SETL map of two parameters with respective types 

tn1 , tn8~ which provides values which are sets of elements of 

types tn3 • 

Note '\:hat {tn} can also be written as tna, and [tn] as tnseq. 

If w~ wish. t<J introduce a type which has only one attribute 

(whose name we need not distinguish from the type name), we 

can write 

(5) tname is: tdesc; 

where t,iesc? is a. type descriptor of one of t.he forms (3). 

· We allow a new type name tname
0 

to be declared by 

(6} tname 
0

· either tname 1 .,. ••• , tname k; 

where. tname1 , ••• , t:namek are type names or type descriptor.s. This 

stab!~S that an ob:]cct of any of t!:-te types or descriptions tname . 
J 

may be taken as an object of type tname in a context requiring 
0 

:!:mcl:. an ob:iect. {i.e.,, coerc~d to an objGct of type tname 
0 

1b . . t· ,. ) · y genera ... isa ion· . 
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It is now time to illustrate the conventions which we 

have proposed by applying these conventions to.a nwnber of 

examples. In our. examples, we will also make use of the 

'converge iterators' and related abbreviations described in 
SETL Newsletter 133B. As a first example, we shall give a 

code representing the basic LR(k)-parsing algorithm. In this 
code, we assume as usual that a finite-state automaton defined 

by a transition function trans is given, and that the states 

a of this automaton are aliguments to a function aanfoZZow(a: et1,ing), 

where string is an (k+l)-tuple of symbols of the language 

being parsed. Written in a manner illustrating the convention~ 

which have been describedf this code is; 
input'·!!_: tsymbseq; 

prod has left:intsymb, z:·ight:intsrnbseq; 

symbol either intsymb, tsymb; (' 

automaton has inistate~ state, trans: {<state, symbol, state>}; 

canfollot1 is_: { <state,, symbolseq, boolean>}; 

nqde ei the,!_ inode, tsymb ·; 

inode has ·~entity,kind: intsymb, descs: nodeseq; 

de.finef lrparse (input, automaton, prods, canfollow); 
nodeseq = in.put; 

stateseq = inistate; 

<Y> 
if ;J st:ate (m) ; prt:>d I nodeseq (m:n) · i~ part ~ prod and 

ccmfollow(left + nodeseq(m·+ n: k)) then 

nodei;eq = nodeseq (1:m-1) + node(part) + nodeseq(m+n:); 
stateseq = stateseq(l:m)i 

else if I stateseq is nss ·tt nodeseq then 

stateseq(nss + 1) == trans(nss,nss); 
end if; 

end V; 
return.if 

end lrpars(i; 
nodeseq ~ l then nodeseq else O; 
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This code, at first sight enigmatic or even erroneous, is 
-~ ·. jqstif ied by the following reflections: 

i. (Line 3 ·of the subroutine.) Since in.iatate is a state, 
the line is corrected to stateseq = <inistate> by rule (v). 

li. (Line 5.) The ra?ge ·of variation of state is clearly 

statsssq, and of p~od is clearly prods. The equality operator 
must compare objects of equal types, which must be obtained 

from objects of type nodeseq and pPod respectively. Clearly 

then both must be coerced to eymbotseq~ p~od by taking its 
Pight, and nodeeeq by coercing each of its node components to 

symboZ., which-means using·the kind field in the case of inode 

components. The uninitialised integer n·is determined by length 

coercion. The field-name left is corrected to <prod, left> 

by the implicit reference rule and using the fact that context 
requires ·a BJ,Jmbolseq; and nodeseq(m + n:k)is also coerced 

(by application of the pluralised coercion rule) to an object 

of type eymbotseq. The implicit argument of canfoZlow is 
clearly state. All in all, lines 5 and 6 of the preceeding 

c9(ie are corrected to 
if ;I state (m) Esta teseq, prod E prods I 

[n = t (prod.right): part= nodeseq(m:n); 
symbseq = [+: l~j<n] (if·-~ (nodeseq(rn+j-1) is nd) -~ tsymb 

then nd else nd. kind); 
return symbseq;] ~prod.right and 

canf ollow ( s·ta te, 

(+:l.<j~k] if ~ (nodeseq(rn+n+j-1) is nd eq tsyrnb then. 

nd else nd. kind) 

then .... 
iii. ~ine 7.) node(part) is coercedt by the rule of 

UI\plicit argumen":.s and since a node when created must have a 

new identity, into <node(kind:prod.right,descs:part,newat)>. 

(Note that the context requires coercion of node( .• . )i.nt.o nodeseq) . 

.... 
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iv~(Line 8) nodoseq must clearly be coerced into# nodeseq. 

v, (Line 9) the first argument of trans must clearly be 

·. coerced into staj;eaeq (nss) , and the second argwnent into nodeseq (nss) • 

A. ·few instructive observations concerning this example 

can be made. Mos·.t of· the tr·cUtsformations which take the lrparee 
. . . 

routine shown above into its SETL form are hannless from the 

point of view of efficiency_ Applications of the pluralised 

coercion rule are exceptions; this rule introduces additional 

iterations whose subsequent removal by an optimiser may be 

difficult. In casting the process described by the above algorithm 
manually into ~n acceptable SETL form one will want to remove 

these troublesome iterations by applying strength reduction; 

i.e., one will choose to keep the string of symbols 

[+: n,d(jf e nodeseq} if~ nd ~ tsymbol then nd else nd. kind 

available. These remarks b1dng us easily to the following · C 
manually transposed form·of our algorithm. 

define£ lrparse (input, automaton, prods, canfollow): 

<inistater trans> = automaton; 

string = input; nodeseq = [+: c (n) Einput] node(kind:c, descs:n, ~~}; 

stateseq = <inistate>; 

<V> 
if 3 state (ro) E stateseq, prod E prodns I 

at.ring (m:: #°(prod. right)) is stringpart · and 

canfollo,-1 (state, <prod. left> + string (m+n :k)) then 
nodee:eq""' nodeseq(l::m-1) 

+ t1od.e(Jcind:prod.lt~ft,descs:.nodeseq(m+n:k) ,· ~~) 

+ nodeseq(m+n:)1 
stri~gseq: = stringseq(l:rn-1) +<prod.left>+ stringseq(m+n:); 

else if i sta.teseq is_ nss tt t1 nodeseq then 

$tateseq{nss + 1) = trans(stateseq(nss) ,stringscq(nss)); 

end if; 

end V; 
return if# .nodeseq ~- l then nodeseq else rt; 

end lrparse1 
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Confirming a. general obse1:vation made earlier, we see that the 
original f~rm of our code i_s no shorter than its _manually 
transposed fomJ but it is closer to a rubble of losely_related 
fragments, and this is both psychologically more transparent 
an4 a 1119re suitable ~get for some future automatic programming 

. system. 

Note that the second form of our algorithm can be optimised 
significantly by working with initial sequments of partseq 
and nodeaeq, rather than with the whole pf these vectors; this 

is the observation which eventually leads to an efficient 

code • 

. All a second example, we consider the Cocke-Younger-Earley 
'nodal .spans' parsing method. This is described by the 

. following code-text: 

gram has ·root: intsymb,syntypes:.{<tsymb,intsymbs>}, prods: -
·{<intsymb,intsymb,intsymbs>}; 

span has only start: integer, end: ·integer, kind: intsymb; 
input is: tsymbaeq1 

definef nodeparse(inputseq, gram); 
span = : :{span{end:_n+l), \finput,intsymb(input)} + 

·{prodspan,Vspana,spanb.prodspanl spana. end !:.9, spanb.~start}; 

divlis :: {<prodspan, sp2na,spa.nb>}, V spana,spanb,prodspan}; 

where prodspans =·{span{spana~start,sp~nb~end,intsymb), 

'fintsymb(spana,spanb)}; end whe'i::-~; 

if span ( 1, root, input + l} · ~- E spans then return Q; ; 

spans= ::{span}+ [+: spa.n,pair E dtvlis{span}] pair; 

retlu-n <spans, {<span, divlis{ span}>, \fspan}, :j span I divlis{ span} 

en~ n<:><Ieparse; 
Gt 2>; .. _,, 
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Reduction of this text to standard SETL involves the 
. · followi~g observations: .. , 

. ·i. (Line 2 of the subroutine). ¥input becomes 'fi,nput (n )E · ~,pute•q, 

· .. ~ ,pld ~. two integers required for the sta1't and end of the 
'••·. ., . •• ,. :,, .' io • 

•• ✓ •• _a~ ~ormid i~ ?tin~ 2- are then ~deritified with m. To obtain an 

.J.'ntsymli with i.nput as parameter, we must apply the map 

. SJlnt.11.es 1 ·thus intsymb (i.npttt) becomes intsymb E symtypes (input). -· 

·Moreover, Jfspana, spe.nb, prodspan .becomes 't/spana E spans, . 
~-- ' ... 

-~ ' .spanb E spans, pro span e . pros pans. This same transformation 
ooc:n.1ra ·1n- -Line 4 • 

. . it.(Luie·s and 6). To form a set of objects of type intsymb 

from apana and apanb we extract the kind fields from both 

spans; since both epana.ki.nd and spanb.kind must be knit into 

the set.~eing formed, Vintsymb(spana,spanb) is converted into 

Vintsymb e gram.prcde.(spana.klnd,spanb.kind) Note that this 
relolution of the original intsymb(spana,spanb) is also 
supported by the principle of •'knitting'; if it is rejected, 

. .. . 

there will be no other program point at which gPam.pPoda is used. 

iii.(Line 8,9). The span implicitly referenced in {span} 

clearly epan(l,root,(finput) + l) (note that input+ 1 is 
also converted into #input+ 1 in Line 7). In the iterator 

C 

whic!h follows, [+: span., .... ] clearly abbreviates [ +: span E spans, ..... j e 

This same transformat:i.on is applied to· the \/apan and 3 span 

iterators which· a.ppear in Line 9. 

4" Re·f1ectio1~ ·or:i_:_the f orego'inq. 

Can a programnring,language in order to reach a very high 

dic'.:'.ional level,rHasonably allow free use of a system of 

:impl.i.cit dictions l:i.ke that described in the preceeding pages? 
For the following reasons,· probably no~.- To attain significant 

compression of program text, one must skirt the border of 

ambiguity. 



G 

SETL-141-15 

Therefore, l~gical mistranslations may result from the 

conversion of text containing implicit references to fully 

explicit SETL text. Consequently, the programmer who writes 

a text·containing implicit references will generally have 

to check its transformed explicit version to assure himself 

that his logical intent has been correctly understood. Just 

as high a degree of skill wili be required for this as for 

the manual generation of a fully explicit SETL text. Note 

howeve~ that text contining implicit references can in some 

cases give a better description of the underlying psychological 

process of program generation than fully explicit text will 

give, and 'implicit' text may therefore be preferable as a 

medium for initial program specification, ana also for 

explanation of.algorithms, especially since the system of 

impli'cit reference we have proposed resemebles· that employed 

in natural language. Since certain types of common errors 

should be catchable by cross-checking two texts, one of 

which is machine-generated, and where both texts D.r~ supposed 

to represent the same process, it may also be valuable to 

genera~e an explicit SETL text mechanically from an implicit 

SETL text, and then to work with and debug the explicit 

rather than the original text. Another approach,which may 

be more practic.:11,is to work always with fully explicit text, 

but to check fm~ errors using a type analysis like that needed 

to resolve implicit references. 

The preceeding remarks suggest that an interactive 

•semi-automatic progra..'l\Illing' system might be structured as 

follows. As· source text, it could admit programs like that 

described in tlie preceeding paragraphs. Type declarations 

could be entered f.ir.st, followed by the imperative parts c,f 

a program text. As each small grd'tlp·of imperative statements 

C was entered, the system could emit a series of yes/no quc::stions 

intenaed to confinn the manner in which the system inten=J2d 

to resolve implicit references. 
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At each logical point where such a resolution was required, 

a reasonably small number, say a halfpdozen or a dozen 

. · p:>ssible resolutions, rn~ght be generated internally, in order 

of diminishing plausibility. If what the system took to be 

the most plauaible .resolution was · nteractively rejected by 

the user, these other resolutions might be displayed for 

his choice. Finally, overall consistency checks, such as 

the principle of 'knitting', could be applied. 

For the number of mistaken interpretations generated 

during the resolution of implicit references to be kept 

minimal, and for confidence in the overall result of such 

a transformation to be justified, formal principles which 

s1,mewhat 'overdetennine' the transformation may have to 

be found. Superficial~ essentially linguistic principles 

like those $ketched in Sections 1 and 2 may be insufficient, 

in which case we may need rules which rest on a deeper 

analysis of the mathematical structure of a program and on 
some inkling of the informal correctness proof which 

underlies it. Information of this depth is not easy to 

come by, and if it turns out of be necessary to penetrate 

to this depth the development of highly automatic versions 
· of the techniques which have been suggested in the preceeding 

pages may slow down to match the development of automatic 

proof techniques and of automatic techniques for analysing 

the correctness of programs. Note however that by adding 

assertions to be checked at run-time to a program text 

containing impLi.ci. t references, we can increase its 

redundancy sign:Lf i.cantly; and have considerably more confidence 

in-the explicit text which results from it by transfon1.ation. 

Fully automatic programming systems intended to work 

from natural language source text face heavier sledding 

yet. They must first analyse their natun1.l Lmguage input and 
transform it sucessfully into a collectioi1 of dec~.ar,~t:i.vc 

and imperative formal statements like those envisaged in 

C 
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Section land 2 above~ They must be able to transpose 

requests for confirmation of an interpretation into 

acceptable natural language output forms. They must 

probably be able to prepare an overall natural-language 

document su:anmarising the information gathered in 

5.. · A few remarks ·on veri•fying ·asse·rtions. 

As noted in Newsletter 135A, loops in prQqrams will, 
when they are not driven by the repetitive structure of some 

intenal or external data object, often arise from the 

transformation into fixed-point form of an underlying 

mathematical specification which in its pure form refers to 

a set S too vast to be searched explicitly. That is, within 

the(v.ery large)aet S defined by a predicate c, the loop 

constructs an element x having some defining property c1 by 

using an initial element x1 ES and a transformation~ such 

t..."1-iat the iteration x +l = ~ (x ) eventually leads from x . n n o 
to the desired x. Suppose tht such an iteration has been 

programmed, and has produced an x. We can often test the 

correctness of our program by checking that x has both 

properties C and c1 • If evaluation of the predicate c1 
is impossibly expensive, for example if c1 asserts that x 

has some ext:remal. property, we can in place of c1 (x) check 
some mathematically equivalent pr.operty of x. f:uppose that, 
to allow demand;.; for verification to be inserted into a code, 

we introduce a1t ·asse·:ct statement of the form 

(1) 

where C is some boolean valued expression. If such a 

s·tatement can be seen to be true by static program analysis, 

o:1r program will have been verified mathematically~ Even 

where this i.s infeasible, we may imagine (1) to be checked 

dynamically; a checking operation of this sort can be rcqa.n1ed 
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as a substitute for s<:,me of the manual examination of 

intermediate data that would.otherwise have tq be performed 

· during __ program debugg~g. Since it is the predicates C and .c:1 
which ·definet:he purpose of an algorithm, verifyi~g assertions 

ar~. genera~ly_not-too hard to formulate (if assertions are 

required only"fo.r dynamic-checking, and not for static 
v~if~0,ati.op.41·) .. !l'or example, the point of the lrparse code 

. ~ ' ·- \ ~~,. .. ...... ,,.· ~ -~ . . 

_ahown·in section 3 is to form a parse tree; thus we can 
check~the correctness of this code by declaring that 

tnodaunder· -~:{<node, symbolseq>) 

and by interpolating the following calculations immediately 

prior to the penu.1 t.imate line. of the code: 

if nodeeeq ·5 1 then /* check will be performed*/ 

nodes = : : ~1odes~q + [+: no~e~descs; Q 
· a·ssert Vnoc:e I J.f type· ~ 1node then prod (node,descs) E prods; 

tnod:sunder :,, : : ·_{<node, kind>, Vnode I ~ node ~ tsymb} 

+ {<node, [+: desc] tnodsunder{desc)> 

.·I tnodsunder (node} 5 n and \ldesc I tnodsunder (desc) ne O}; 

· assert. tnodsunder {nodeseq) ~ input; 

end if; 

Note however that a rather more sophisticated assertion is 

required if we mean to check that the code also perfonus 

properly in cases when n is returned. 

The nodal spans algorithm given toward. the end of section 3 
may be checked ir:. a rather similc.1r way. 


