
J 

C\ 
..,.) 

' SETL Newsletter 142 January 29, 19 75 

What Programmers Should Know J. T. Schwartz 

In this short sermon, I will summarize some of the views 
concerning the programming process to which I have been led by 

my SETL project involvement, formulating these views as 

recoDll\endations concerning the intellectual equipment and 

Qaat of mind which a creative, high level programmer should 
atten;>t to acquire. I have in mind here progrannners (or 

-designers) who originate programs, rather than programmers 
(alasl the vastly more numerous group) whose work is the 

extension and repair of programs poorly done and documented 

in the first place, and the adaptation of these programs to 

ahifting system interfaces. And I will stress the 'higher' 

rather than the commonplace aspects of the programmers' 

intellectual armament. 
A programmer should llllderstand: 
l. A'tgorithms., i.e. various important algorithmic 

inventions using which significant processes can be performed 
with special efficiency. Examples are heapsort, fast Fourier 
transform, parsing techniques, fast polynomial factorization 

methods, etc. He should tmderstand that a formal concept of 

frogram performance exists, and have some familiarity with 

the combinatorial techniques used to analyze algorithm perfor

mance. In this con.nection, it is also important to understand 
that there exist processes which no program can carry out 

rapidly, and others which no program can carry out at all. 
2. Semantia frame~o~ks, which allow individual algo

rithms to be organized into large program structures. He 

should understand the use and significance of such fundamental 
semc"Ultic inventions as subroutine linkages, space allocation, 
garbage collection, recursion, coroutines, n.nd various struc
tures useful for ~rganizfng processes acting in parallel. 

He should be familiar with object/operator algebras which 
are of general significance or which play an important role . . . 

(_,_ in significant application areas:· sets and mappings, strings 



SE'l'L 142-2 

and patterns, Curry combinator and lambda calculus, etc. 

ne should _understand the way in whici1- sem?11tically signi

ficant languages make these frameworks and algebras available, 
·,. 

and the way in which the syntactic features of a lang~age . . + 
facilitate the use of its underlying semanµc capabili t~s. 

3. The programmer should have a conscious view of the 
. ' 

p11ogramming· process, understand the way in which programs/ in 

their earliest origins, _ coalesce out of less organized 

intellectual structures, and understand the .Objective/ 

psychological influences which can either facilitate the 

development. of a final, efficient and reliable program version 

or abort this development. Accumulating complexity should be 
understood as a central peril to successful- program construc

tion, and techniques for managing and minimizing this 

accumulation should be appreciated. Particularly important 

among· these techniq\19s are the orderly multilevel development 

of .more and more efficient program versions through a sequence 

of progressively less high language levels, and also pre- c· 
specification, for each major application, of a well-tailored 

set of application-specific primitives, expressed as macros, 

structure declarations, or auxiliary subroutine definitions. 

Si111>le _clean logical structure should be perceived as a central goitl 

of programming; and each simplification seen as a victory, each 

co~lication as a defeat. The programmer should leai--n to 

structure hiu programs in spare, logically clean ways which 

keep open the possibility of subsequent functional expansion. 

4. The step which leads· from a high-level program represen-, 

tation to a lower level and more efficient version of the same 

program should be seen and approached as a process of 

manual optimization to be carried out in a mechanical spirit. 

For use in this process I the programmer should have knowledge 

of a wide variety of optimization approaches and optimizing 

t..x:-ansfo:cmations, adapted to the various language levels at 
. -

which optimization will be directed, and ranging from high 

level global program restt·ucturings to machine level inner-loop 

bit-tricks. 



0 

SETL 142-3 

S. The manner in which the global properties of an 

algorithm determine the data ,tPuctures 
appropriate for the representation of the objects which it 

manipulates should be understood. The programmer should have 
a wide variety of data structures at his disposa~ and under

stand the efficiency with which these structures 
can represent more abstract data objects and operations. 

6. 'l'he fact that very small inne~ loops are often 

critical ~or program efficiency, and that conversely most 

of a program lies outside its efficiency critical paths, 

ahould be understood, which implies that it is important to 
muure actual program behavior before committing to the 
optimization of any particular section of code. (Note that 
the optimization of large noncritical program sections 
represents an unwarranted expenditure of program resource.) 
Be should be familia~ with the tools for measuring program 
behavior, which various languages, operating systems, 
preprocessors,and program editors provide. 

7. The programmer should understand the techniques which 
can be uaed to adapt programs to run well in specific 
op•rating snvironmsnts1 this implies knowledge of data 
staging, overlay, paging, and virtual memory techniques. 

'l'he principal factors which affect:. program performance in 
these enviratments should be unders~ood, as shoul~ the way 
in which programs can be structured to isolate environment 
dependencies and preserve inter-environment portability. 

8. The correctn~ss of a program rests on a web of logicA1 

relations, implicit in and guiding the program's development; 

this set of relationships, if made manifest and formally 

complete, would constitute a foX'll\al proof of the program's 
correctness. An essential part of program development is to 
guard the integrity of this web as successively more specific 

~rogram versions are· developed, to structure programs so that 



SETL 142-4 

the logical assumptions on which it rests do not become 

unmanageably complex, and to check the logical integrity 
,· ' ··:, ... ·· 

of the program systematically and repeatedly as it is 

~velopell. '!'he fact that sonte programming -.J.anguag~~- ~~sl{ucts 
aid in the preservation of logical ·integrity, whir~· othel~ 

more_: dangerous tools tend to tear a program's underlying web , 
. . " -~, 

should be appreciated. 
The process of debugging is that of searching, in the 

possibly very large execution-event space of an ill-behaved 
. . 

program, for pr-ima-:ry anomaZies, i.e.,· places at wh:i.ch_ good input 

leads immediately to bad output; these are the 

events which point to program errors. The debug-

ging tools which make it possible for·this large space to 
be searched should be mastered; bugs should be recognized 

u inevitable and programs prepared in ways which facilitate 

their detection and removal; but debugging should be seen · 

. u a process for repair of . a relatively small number 

of tears in an extended and delicate logical fabric, rather 

than a process which can bring order into a heap of discon

nected strands. During program debuggingc the programmer 

should always understand the degree to which the tests ~hich 

he has administered 'cover' all the possible lurking-places 
of b~ga, and should design tests systematically for maximum 

cov,ira9-e. The types of program constructs likely to give 
rise to bugs, and the types of bugs·typically to be expected, 

should be understood, and the kinds of static and dynamic 

consistency-checking likely to W1cover bugs rapidly understood also, 
- -

Finally, t..he several techniques of form~l program-

correctness proof should be known, :and the implications 

of these techniques for the construction of relatively 
bug-·free programs and for bug detection -comprehended. 

9. Finally, we list various important hand-skills and 

habits of an elerrentafy-but important sort which the programmer. 

should have. Be should know the interactive, editing, and program 

maintenance aids available to him; program carefully, check 

conscienticn1sly, and document scrupulously, alw::iys remaining 



C 

SE'!'L 142-5 

aware of himself as a team member whose expensive product 
. . 

must reliably serve others. He must realize that programming 

is a highly unstable process, in which a disorganized effort 

can consume ten times, or even a hundred times., more resource 

than _a_ well-devised effort _with the same goal,· and that 

especially in programming,work is a signed quantity, and 

mere activity, n~ matter how energetic, no proof of signifi

cant contribution to a goal. 


