SETL Newsletter # 143

f‘

. Technical and Human Facto: improvements Ed Schonberxg, A. Stein
for the Fully Compiled SE1T System. April 21, 1975 <f\

SETLL, the first fully compiled implemeutaticn of SETI, is
nearing completion. This system uses a BAIM-to-LITTLE traaslator,
wrxitten in BALM, to produce LITILE source code, which is then
compiled as a LITTLE program and executed in the environment of
the run-time library. The translator is itself interpreted by
the BAIM interpreter, writtin in LITTLE, which alsc utilizes the
SRTL., The full system consigts of the following modules:

a} SETLA: A lexical scanner and syntactic analyzer. 3SEVLL
is written in LITTLE. Its output consists of vaxious
toker tables and a sequence of cazlls to generators.

b) TREEWLX: 2 series of treewalking routines, written in
BAIM, which build BALM parse-trees using the output fror al.

c) TRANS: The translator proper, which replaces the c¢ode
generators of the BAIMSETL system, so that LITTLE code
is emitted {instead of extended MBALM code}. : (fi

d) BALMINT: A Bald interpreter, which uses a portion of
SRTL, and execuzcs ) and ¢j.

e) The LITTLE compilex,

£} SRTL.

As it stands, the system i3 unwieldy both in terms of storage
requiraments and execution time. This is due to the structure of
TRANS, and to scme exteni to the presence of LITITLE as the trnrget
language for TRANS. This later constraint is likely to be with
us for some time. We will consider in what follows some ways of
streamiining TRANS to remove some of its more glaring bottlenecks.
In particular, the interface beitween TRANS and LITTLE will be
modified and made more modulsr. This should simplify addition of
further SETL features, and eventual nmodification of the target
ianguace.

The procedures in YRANS are fopr {he most part in 1-1 cox-
respondence with the code-~generating provszdures of the BALM com-
piler. For example to the procedure GAJILE, which emits code for .



S

(‘\

i
&
3
o
i
ok
2
{0

a while~loop, corresponds in TRANS the preoesduice LOGWHILE, whose
strncture is virtually identical {in terms of g:2nerxation of labels,

tests &end junps). The code being generated (g first assembled

irto & list (the glehzi variable LISTZ im both cases). In the
BANY compiler, procedure ASS. keops track of the last element of
LI8%2 and appends to it zuccessive MREATM opoodes. In TRANS this
role is taken by procedure ENCUDE, However, the arguments of
ENCODE srve not simple <pcodes imt nmay be constants, variable namss,
addrasses (in the form of stack locations, global identifiers or
compiler-yenerated temporaries) or code fraguments in thae form of
lists of any of the abowe. In order te linearize this code strazam,
ENCODE must be recuvsive. When the code for & full SETL procedu.ss
has hean generated, procedure FORMAT processes LIST2, replaces
identifiers by their namzs, constants by their external reprasen
tations, etc. and outputs the LITTLE source tc an intermediate
file, ready for input into the LITTLE comullier. ,

The above desoription sheuld make the following inefficiencies

aprarent:

aj LIST2 must b» kept in core until 2 £ull procedure 38
processad. The siorage recujcements for compllaticn of
the simple SETL progyams thus become comparable with thase
of executiny very substantial programs or the current
integpretive gsyctenm {1LO0CK of dynawic storage or moxre}.

b} EHCODE :must process every single token of the LITTIY cnds
being produced. 4 is called repeatedly with long lists
of gtercotynad argurents (parenthasesn, separators, key-
words?! with the corrvesponding expinse ju stack mau i?u;a'

1]
}3.

s generated piecoens

pese

tion;: because the LITILE code
evursive to be able Lo

()

through TRANS, EMNCODY nush be
process ilsts and Lo,
c) Formatting is aiss donpe in dynawis guorage, inlervre-
- tively, and wmakes Litile use of th: existing SRYL 1-0,
The following modifications suvywast cthamssives:
14 ENCODE, which is thsz bouzfioe-lsvael proocadurs of TRANS, will be

coded in LITELE and madz into a BALM primltive,



C EETL~14€3

4} LIST2 will be formatted on the fiy by ENCODE, and written
directly to an intermediate file,
3) TRANS will not assemble any code fragments. All string mani-~
pulation will take place within ENCODE. The only objects manipu-
lzted by TRANS will be BALM identifiers, integyers, and addresses.
Thase will be created as objects of special typesz within SRTL, and
recognized by ENCODE, which will emit the correst LITTLE form.
4) 'The FORMAT procedure will be eliminated altogether.
5} The code produced by ENCODE will be a series of macro invoca-
tions, that will e expanded by the LITTLE front-end in the usual
fashion. The first argument in every call to ENCODE will be a
macro name. The required macro definitions will be added to the
MACRC deck of SRTL.
63 Variable addresses will he encoded ag SRTL h.ank atoms. They
are generated internally as indices, and expanded as offsets Lrom
global pointers. The value field of esach blank atom will contain
two subfields: omne will hoid the value of the-index; the second
{a 3-bit fleld) will specify the type of address being encoded.
{Note that the remaining 30 bits should bhe sufficient to encode
any conceivable compiler-generatad cffset.)

The types reguired correspond to:

2} global variables, i.¢. syrbol table entries
b) stack varlables

¢) stack temporaries

d) procedure arguménts

2) generated labels.
7) Finzlly, one additional tyre must be added to SRTL to handle
SBTL integers. This is due to *he fact thac the output of TRANS
contains both SETL integers {generated by corstants in the SETL
source program) and LITTLE integers, used in loops, address off-
sets, etc.; however, botl types are represented internally {(i.e.
in the interpreter) as SETL integers. "True” 58TL integers will
therefore be flagged as a separate type. ENCODE will generate the
necessary call o GENINT to rebuild thaese initegers at execation

Lime.



This underlinesg the very inafficiani bul currently unavoidabl:x
way in which constants are handled: any SEYL atom is scanned and
roaszogiaiied by SETLAE, transformed inls its EETL internal form for
TREEWLK, then convexted back to its external yreprasentation,
ririnted, rescanned and reconvertad alt execution ziwme. A more
rational scheme would involve scme sharing »f dynamic storage
between TRANS and the execution time enviromment.

8} Some savings can easily be achieved for shost oblects. For
these {(integers and strings) ENCODE will producs directly the
60~bit constant representing the iten. As set listg are never
created during compilation, the link-field of such items will
zlyaye ke biank, and the use of the bit-reprasentation is safe

Incrementality

Lxperience +o date with the SEVLA interpretive system {and
previous experience with SETLE) indicate that the incrementality
provided by the SAVESETL procedare is extrancly useful, and most
ugers avail themseslves of it as seom as thelr srograms grow beyond
a certalnr size (say 200 source lines). We propose to create a
zimlilar feature for the SETLA transiatoxr sveltem, As deascribed
here, it will provide mosi of the ssrvicegs of the BALM save-~
resume oparation, withouwt its full elsgance and flexibility however.

{a thae iatevpretivse system, exsuution of the SAVESETL pro-
cedure produces a SAVEFILE which holds the contents of heap, stack;
aud svebol tablae. A48 the heap eontaing all ~onpi1e code {including
he trgewalk roatines and zode ganeratovs)! ond the stack conteias
21! pointers associated with linksger zctive at the time SAVESETL

b}

a5 exeauvted, the SAVEFILE can suppori &ny sguent compilation

and erecution {indsed, hoth of these are idesticel dn BALM.

in the translator systen, eowpllation ard ran-time envircnmsnt
ane distinct. Duzing the latter, dyanamlc sitcvaye conitains only
the vser's symbol fable snd asgsciatad veiner . Oode (produced oy

and does

“he LIPTLE compilerx) is cow loadad by e hoot
not reside in dvnemic stoxage. 4 nashine Leoguage pateb uust be

uszd o iink it 4o the stack (Zo inplswent parasehber passing and



SETL~146~5

recursion-~see LITTLE newsletter no. 31). The symbkel table entrics
corresponding to user procedures now hold abhsolute machine addresses
{entry points to executable code; instead of heap pointers to
garbage~collectible blocks.
By conitrast, the compile-time environment contains a standaxd
BAIM savefile, whose heap holds the packed MBALM ccde for compiler,
treewalk routines and medified generators. Its symbol table links
to all of tiese, and holds in addition the us¢r’'s variables. It
is only this latter portion of the symbol table which is shared
by the compile~and execution time environmests. Incrementality
reguires that this portion of the symbol table, and the compiled
coda, be traunsmitted across jobs. Incrementality of compilation
can therefore be insured as follows:
a) By saving the binary cutput of the LITTLE compiler, in
the form of a usexr library {in KRONDS, by LEFINE-ing the
LGO file as a permanent file)

b} By saving in addition the user's sywmbol table, simply
as a list of nanmes.

When compiling a subsequent program, this syribel table will
be read-in by the initialization procedure of the translatoxr, so
that the ixvecation of precompiled user procedures can bha recog-
nized, and name~rasclution accomplished. (Note that this schame
will be compatible with the full SETL namescoping scheme, or the
subset proposed in newsletter 128.)

The translator will add to this symlol zable the new usar
variakles, and transmit this extended list to the execution-tlme
‘environment. The user ilbrary will be loaded together with SRTL,
and the initialization pinase of SRTL will link the symbol table
entrxies to the new user code, the user library and SRTL.

- Incrementality of execation can be obtained by & simple
modification of thiz scheaeme. Instead of saviuy the user's symbol
table, we can save the full state of dynamic storage: heap.
stack and gymbol table. The compilation phaze will collect the
information it needs from the save-Tile, expand the symbonl table,
and rewrite into the savefile, which will thap bLe copiled into

o



)

o
<

RS S
IR 4 PEE

dvnamic storage at the keginning of svecwtion. This scheme of
course requires that the expansion of the symbol table should not
alter the organization of dynamic stcrage. 7This means that the
symbel. table will now have a maximum Ffixed zize, and a fixed loca-
tiorn (at the base of the heap). (See Fig.)

An additional constraint (frxom the point of view of 2 user
familiar with the current SAVESETL fzaturc} is that o gave will
only be allowed from the main program, i.e. when no user procedures
zre active. This insures that no machine addresses need he saved,
a5 the stack will contain only the base-~enviromuent blocks of =zach

naer procedure.



NOFMAL EXECUWION

stack

heap
&4
symtab
(BALM
compilex
+
treewalk
routines)

g,
e user variasbles
\“

Compilation with
system savefile

stack

oo -

hoon o re

heap

available

symtab _
{vser variables:

.
B N s

exzcution

3
”

L.
\

M.& bl s T S

P

2 TERPRE NP

R R N T

zvailahle

i

LRI

syamtab

A P15 T 2N

LR B

:
H
. N
¥ e T
~- i heap

user savefile

EXECUTION WITH USER SAVEFILE

EUT S P e

-

syntab

R

B P T T

s

Ektiimtmdindher SR e TR S PR T
é

stack ;

BT e £ B e S o A e 5 ‘,.%
!

3.

heap !

s

[

3

|

i

L‘"-“Na"’m»‘-sn-‘a-smur.-.mrn:-;n,,. ]
available ;

v L %

aew :I

Lo § 9_,

symiabh ]

i

[

execution

laysiem savefile



