
SETL Newsletter t 149 J. T. Schwartz
April 20, 1975

Conventions allowing other lan·gua9es to be used within GYVE;

Files; Memory hierarc.hy questi'o_!!,!; · Some ·suggestions for ·GYVE

extensions.

1. Use of other ·1anguages.

GYVE as presently specified pretends to be a monolanguage

system, though of course as a practical matter this restriction

against using other languages is unacceptable. The following

quite simple suggestion removes this restriction, making other

languages, and as a matter of fact machine language, available.

i. two new types of GYVE objects, the binary program and

the binary program pointer, and a new statement

(1)

or

FORMPROG{bits) IN(account) SET(bpointer)

<parameter-list>

(1'} FORMREN'I'RANTPROG (bits) IN (account) SET (bpointer)

<parameter-list>

will be introduced. Here, bits designates an array of bits,

giving the machine (or other interpretable) code constituting
the program, plus appropriate areas for any static local ·aata

associated with this code. The <parameter-list> appearing in

{1) consists of consecutive parameter-declarations, each having

the form

(2) NAME(parameter-descriptor} AT(n).

0

SE~L~-149-2

In (2), parameter-descriptor is much the same a.s a GYVE

parameter descriptor, except that only integers and specified-·

size bitst.rings, character strings, and arrays of these objects,

but not.pointers, may appear in (2); and n is an integer.

The clause (2) informs the GYVE system that a binary repre

sentation of the parameter described by (2) appears, in a

·standard (but implementation-dependent) form, in the data

area of the binary program B declared by (1), stating at

data address n. (if the prog;-am is not RENTRANT, data addresses are

the same as binary addresses. The binary program Bis free to

read and to modify all of its OW? data area any time it is

executed1 in accessing one of the parameter areas defined by (2) _,

B may of course wish_to m~ke use of standardised 'library routines'.

ii. Binary program pointers (and poi_nters to processes

formed using binary programs, _see below) satisfy the normal

GYVE rule that an object O may only be assigned to a variable

giving no more privilege in the use of O than the variable

from which O is retrieved. Note that by omitting parameters

of a binary program we diminish privilege.

iii. A process PR (known by the GYVE system to incor

portate 'foreign' code) can be formed from the program PG

declared by (1) using the ordinary GYVE 'create' mechanism.

The INITCALI, statement which is then required before PR can

execute is then used, i~ much the ordinary way, to initialise

the parametezs ~ppearing 'in the <parameter-list> of (1). If

PG has beEJ.n declared RENTRANT, then PG need not be copied when

PR is created; otherwise, creation of PR will involve the for

mation of a f.r.esh copy of PG.

SETJ.,-149-3

PR will always execute under hardware constraints which

prevent it from writing outside the memory area allocated to

it. Within this area it may of course write arbitrarily and

unpredictably.

Given a pointer PPR to PR, we can write i11to a parameter

. called NAME of PR by writing SE~fARM(PPR.NAME)TO(expn)RESULT(R);

if NAME is an array, this should be

SETPARM(PPR.NAME(index)) RESULT(R). This sa~e parameter can be

read by writing

FE.TCHPARM(PPR, NAME (index)) SET (V) RESULT (R).

iv. A period of execution of PR can terminate in one of

_three ways: by timeout, by error signal, or by service request

(perhaps finish request). The type of termination that occurs

will be signalled in the normal way in the RESULT parameter of
•

the EXECUTE statement which activated PR. (

Termination by error wiil occur if fault is detected

during execution of PR. Faults can be either out of range

faults, or other hardware-detected faults such a_divide-by

zero. The detailed consequences of a fault are implementation
dependent, but will generally be recorded in bits of an obli
gatory parameter of PR named FAULT: this parameter, since it

is obligatoryi should not be described in the <parameter-list>

of (1). The precise layout of the FAULT parameter is implementa

tion dependent; information in rationalised form can of course

be retrieved by calling appropriate implementation-dependent

routines and transmitting the FAULT parameter.

C

Termination by service request will be available through

some type of emulated or hardware supervisor call instruction.

The precise service be:i.ng requested will signalled by the set

tingn of conventional parameters of PR. Service routines may

then modify· ·the valuee of' ·other para.meters of PR, signalling

the outcome of .the ~e~e~ted service in some other agreed-upon

w~y, which will leave Pit in a self-consistent state, ready
to resume or continue execution.

2.

a.· Treatment of ·'RESERVE'.

The GYVE 'reserve' construction, needed on the one hand

to prevent important global instances from becoming inadventently

or maliciously blocked, can lead on the other hand to an

unfortunate accumulation of time granularities, which can

ultimately destroy the ability of GYVE-written systems to

respond rapidly in real time. The following suggestion, which

d9es not violate the principle of 'nesting' implicit in GYVE,

is intended to alleviate this difficulty.

i~ Each process will carry an additional parameter called its
rlevei, which will be assigned·to the process at ·the time of its

creation. This value can be supplied as an additional argument

n in the basic process create statement; n must be non-negative,

and the process being created will_ have an rlevel n more than

the rlevel of the process creating it. If n is not explicitly

supplied, it defaults too.

ii. If an instance I carries a RESERVE clause, this clause

will carry an rlevel parameter RL in addition to the 'time'

parameter TR presently specified. The parameter RL will
be assigned at the time thut the instance is created; the rule
just explained in connection with process creation will apply.

....

SETL-149-5

The additional parameter RL will be used as follows: if

a process Pk sitting at the end of a chain P1 , P2 ,~ •• ,Pk ·
of executes attempts to enter I, entrance will be refused

unless the process p; in the chain which will time out first . J
has an rlevel parameter smaller than or equal to RL. But then·

Pj is allowed to time out in the normal way even before return

from I is made.

iii. After _I has been entered, before TR time-units have

expired, and before return is made from it, no process P.
. J

in the chain P1 , P2 , ••• ,Pk which has an rlevel parameter

larger than RL can gain control through the receipt of a

signal at a port. Signals which would have this effect are
merely stacked at their ports of receipt.

Note that the mechanism which has been described allows

• a high-level initiat~r process P1 to regain control immediately

on the occurence of certain real-time-significant events,

even if a process direct~y or indirectly executed by P1 has

entered an instance for which a RESERVE is posted.

An example of the use of the mechanisms just described
will clarify their intent. Suppose that a p~ocess P

0
is

scheduling the execution of other processes P1 ,.;.,Pn. P
0

may want to allow P1 , ••. ,Pn to communicate via some instance

I, accessible to all of them, but created by P. The instance
0

I may also be accessed by processes created and scheduled
by any Pj. Now, I can be coded to protect itself from all
misuse, except that if I is entered by·a process PS subordinate
to P. which then times-out,returning control to P., then P.

. J J J
can inadvertently or maliciously refuse to reschedule PS,
thus hanging I.

'l'o prevent this r P
O

must be able to prevent control returning

to Pj, either on a timeout. or through an interrupt, after PS

has entered I and bf.!fore it has returned from I. The existing

reserve mechanism will do th:l.s, but at the cost of making it
impossible for P to t:~e' out. or :cecei1i~ an interrupt while

. 0 .
PS is executing I .. · The rnechanifflm :ht~1t · described relaxes this

unduly severe restriction, by allow.:i.ng P
O

t.o give I a reserve

level of n, while all the pr·octJ:r;se:\, P ... have reserve levels
j

of n + l at leasto

b. -, Inspect' Ent1~}e5.

GYVE presently d.istingui:::he;:; between 'reader' and 'writer'

e:rltries to an instance I; when I has bNm entered at a 'writer'

entry by a process P, no othet· process is allowed to enter I,
even to read values of its iaterally stored variables. The

rationale for this rigorous 1all:clusiou is that these variables

wo~ld be _changing in ways ccmfusing to otheY'. readers as P

executes. However, there do exist certain types of secondary

processes for which this argument is irrelevant, e.g., 'spy'

or 'monitoring' routines which wish to .inspect P's environment

periodically to estimate P's progress and/or statistical

behavior. For this reason, it 1t1.ay be worth introducing a

third class of in.stance entry, t.he 'inspect' entry,. Which

gives read-only access to the instance's internal dati, but

which can be entered even if a write entry to the same in-

has already been invoked.

3. Memb!'.:Y Hi_~rarchy Questt~

GYVE as presently defined incorporates no mechani~ms fc,r
manipulating the residence level of co<le or data; a 'single level'
store is assumed. This approach is valuable for the conceptt..aJ.

simplifications which it affords; at the same time, however, i.t

can create practical difficulties for GYVE-written systems.

r

(

SETL-149-~7

a. A 'single memory level' system will rest, at the implement

tation lavel, on some pagi~g scheme. GYVE does not provide

any means for responding to the 'page~thrashing' situations

which can ar-ise in- paging systems.

b'.' If a GYVE system is to be supported by hardware

which does not include any memory mapping scheme, support

.of a 'single level' store model may make it necessary to

use software paging schemes. Schemes of this kind may be

inefficient: still worse, if foreign software products are

to be made available using a method like that suggested in
Section 1 above, they may be impossible.

c. Global objects, especially files, which have remained
inactive for substantial periods of time should either be·

pushed to archival storage levels or purged. GYVE does not

provide any mechanisms either for locating or for unloading

such objects.

Note also that we will want to use the GYVE coordination

and exolusion mechanisms to organise both highly dynamic

collections of interacting processes and slower-moving files,

which may be large and resident principally on secondary
storage devices. It is of course lmportant that the.heuristic

notion of file be modeled in a way which is both helpful· and

_rather directly based on the mechanisms presently available

in GYVE~ since if this is not the case·it will become necessary
to invent entirely new file management mechanisms, which would
force one both to rethink some of the central problems

of coordination and control which GYVE already addresses,

and to accomodate, to the existing GYVE framework, whatever

solutions were found.

Found with the problem listed above, we make the following

suggestions for adapting GYVE to a hardware situation in which

a fast central memory is backed up by several large storage

disks (and possibly by some amount of 'bulk electronic memory'

also.)

i, e In addi~.ion to GYVE 'accounts' of the present tzye,

central memory accounts I which will be called cmaccoun ta·' will
be introduced. (If several levels of memory hierarchy were
to be distinguished, then account types corresponding to each

~uch level might be introduced. However, we shall for simplicity

begun by ignoring this extra possibility). cmaccounts cart,

like ordinary GYVE accounts, be allocated within each other;

·collectively, cmaccounts form a tree. Essentially, a cmaccount

represents a Qlpck of central memory, available as'paging space'

to processes which have a pointer to it.

_ii~ A process P which is to be executed must always be

'attached' to some cmaccount. This 'attachment' will be set

up by a statement

ATTACH{P) TO (CMACT);

which must always be invoked before P is first executed. Then
some suitable 'topmost' portion of P's invocation record stack,

plus all instances paged in by P, will be held in the cmaccount

to which P is attached.· The essential rules governing paging

are as follows: if an object which P attempts to use is al-

ready in central memory, it will be used no matter what cmaccount

contains it; but if it is initially present in central memory

so that paging is necessary, the cmaccount A to which P is
· attached will be used, which may mean that some other data

object is paged out of A. Note that only a process which is

attached to a crnaccount A can cause anything to be paged out

of A (by calling for something else to be paged in.)

SETL·-l.49-9

iii. Pages of some nominal size will be provided. The
whole of an instance may be resident on one ·•1ogical' page

LP (so that if the instance is large LP may be many times
the minaa; page .size.) It ·is also possible for an instance
to be 'internally pageable', allowing it to be entered and
to execute even if all of its parts are not physically

present in central memory (conventions supporting this extended

facility will be described in more detail later.)

iv. When a page fault occurs, a paging operation will be
initiatedo This situation will be seen by the GYVE system
as a 'block' (of the instance ex~cuting at the moment the
page fault occurs}, followed by a 'wakeup',·whlch.will occur
when the required page has been brought in. Responsibility

for scheduling other work during the paging operation belongs

to the process to which the block gives control.
v. If the·cmaccount to which a process P is attached is

erased, the process will not be able to ~xecute; and will
experi~nce a fault. We.allow several processes to be attached

s.imul taneously to one single cmaccount. A process P can be
detached from its cmaccount- A by executing the statement

DETACH(P).

Such a detach does not destroy P, but merely 'rolls it out•

to secondary memory; the same rule applies if A is erased

while P is executing. If P is detached while executing, a

fault will be experienced. If P attempts to page in an object

which is too large for its cmaccount, a fault will also be
experienced.

In a hardware enviromnent not providing hardware paging,

the GYVE compiler will probably support soft.ware paging. This

1 will make it unnecessary for the whole of a large instance
'-...___

to be brought into core before the instance can begin to execute.

Some suggestions concerning software pag,i.ng techniques which

might be.used wil.l be f.Qµnd at the en.d of the present newsletter.

Note however that the whole body of o. process incorporating

non-GYVE bi.nary code may_have to be brought in before the
•;, 'J • ••'

process can b~9in to ex~ute.
• ~\ - I

vi·., If a process P a_r.!cesses a reqord of a. FILE aggregate F
• .4 ' ,. ~ ..

(see section 4, below) ~hen either the reco~d as a whole or
S<:>me paged subpart of it will have to be brought into the ·

portion of central ~e.tn\':>T."l' belon~ring to t..he cmaccount to which
P is attached. Fragments of the indax through which F·is
addressed may have to b1u brought in also" These index fr~gments

will be retained aud uaetl to expedite reference to successive

recor~ of F.
vii. Certain important schedulin~f decisions, including , a

scheduler's decision as to whether to increase the number

of programs among which.it ia multiprocessing, will depend

on the paging rate axperienced by the various central memory

accourits which P is supervi.sing. To make this available, we

. provide each cmaccount A with an entry called PAGERATE. The

call A.PAGERATE(R) sets R to some fair representation of the

paging rate rece~tly experienced within A.

viii. If available memory actually consists of several

hierarchical levels of storage through which information must

be paged, then the 'cmaccount' concept described in the preceeding

pages can be generalised to provide accounts at different

levels. To execute, a process would then.have to be attached·

to ~n account at sach hierarchical level; when an account

at one level was destroyed, the global objec·t~ in it would

automatically be rolled out to the next lower level of memory_

Note that an account at any but the bottom memory level

would always be part of a larger, lower-level account.

(~
\, ___ .,,:

SE~l'L-14 9·-11

4. Files.

GYVE presently treats the semantic notion of 'file' as
being identical with that of 'array of (fixed format) records'.

Several objections can be raised to this model of the 'file'

concept:
a. It is not uncommon for the records of files to differ·

widely. For example, files whose records can in principle hold

dozeris of different information fields,.but where in practice

almost all of these fields are missing, often occur.

b. One will often want to keep files in a sorted order
permitting fast binary search. One wants it to be ·possible
for new records to be inserted into the file, and for old

records to be deleted, without extensive physical reorganiza

~ion becoming necessary, and without old record indices

becoming invalid •

. c. The fields on which the records comprising a file

are sorted and searched deserve to be treated somewhat

differently from the other fields of the file's records; in
particular these 'key' fields should for fast search be held

in physical proximity to the actual indices which locate the

records of the file.

do 'Key' fields of files need not be unique.
For all of these reasons, it is suggested that a more

appropriate ioodel of~ the concept of 'file' is that ·of a
(possibly multiple-valued) function f defined (perhaps

sparsely) on a totally ordered sets'.

It may of course be undesirable to introduce any

specific features into GYVE simply in order to model some

specific file concept. It could be argued that no one

'access method' will be entirely satisfactory, so that file
models, like scheduling algorithms, should simply be left
open 'for programming'. Against this, several points can
be argued. First of all, the progrrunming needed to support
an effective file system is not simple. Multi-way balanced

SB'IT, .. ·L 1.9-12

trees are an attractive implementation-level structural

form; these are compl~x enough so that a prog-rammer, left

to his own devices and unable to get at the lowest-level

mechanisms of an implementation, could easily come up with

a personal file system that was both slightly misconceived

and considerably short of best attainable efficiency.

Secondly, the present versiC1n of GYVE provides no easy way

in which multiple parts of a data aggregate of dynamically

variable structure, held together by auxiliary indices,

can be used simultaneously by independent processes. For

1. both these reasons, we shall go ahead to propose particular

file mechanisms for GYVE. Of course, a more general solution

to the linked problems of data aggregation and parallel u.se

of aggregate subparts,based perhaps on some notion of
'programmable' as ~stinct from merely 'static' pointers

·(of the kind now provided by GYVE) might be more desirable

over the long term, and might make it possible to avoid

commitment to any one particular file model.

But to proceed:. The general approach to the 'file'

concept·suggested by our earlier paragraphs leads to the

~ following linguistic conventions and implementation techniques.

i. An a·ggregate mode of type file is declared as

(1) modename: FILE keyfieids-decZaration-part

RECORDS ~ecord-decZaration-part.

Here the keyfields-declaration-part is a list of variable
declarations, each variable being either an integer, a

bitstring, or a character string. Variables declared in

the keyfields-deciaration-part of.Cl) will be used to

sequence the file, and will be held in appropriate physical

proximity to the master index through which the file is

accessed. The file will always be sorted into the

(lexicographic) order determined by these variables (whose
lexicographic priority is determined by their order of

declaration) .

0

SETL-149-13

ii. As a nicety, we allow the record-declaration-part

of a file declaration to consist either of a single record

declaratlon or of a sequence of record declarations, each

prefixed by a kind-name. Examples would be

-a. single record declaration.

WEIGHT:INT

AGE:INT

a. sequence of record declaz:-ations:

· KIND (FARM}

ACRES:INT
INBABITANTS:INT
TOWNSHIP:CHAR(SO)

KIND {APARTMENTBUILDIHG)

INHABITANTS: INT

TOWNSHIP:CHAR(SO)

ADDRESS :CHAR (50)

FAMILIES:INT , etc.

iii. As seen in the preceding example, the record

declarations occurring in a record-declaration part consist

of a sequence of variable declarations of the kind already

provided in GYVE. As an additional nicety allowing

compression, we allO'i.<i a list of 'likely' values to }?e
appended to any one of these variables. This list· is

preceded by the keyword LIKELY; for example, we may write

COLOR:CHAR(l0) LIKELY(RED,GREEN,BLUE)

Likely values will be encoded using compressed bit patterns,

making it unnecessary to store the full representation of a

likely value, which can achieve significant data compression.

LIKELY values can also be stated for an array of scalar

quantities, in which case every array component having a
likely value can be represented by just a few bits, aliowing

even more significant compression. St.ill rnore general

mechanisms allowing likely values for structures, and for

the components of arrays of structures,can he defined and

will allow files to be compressed still further.

iv. As noted above, we allow any number of records

within a file to have their key fi.eld(s) in common.

To make record references unique, we therefore attach

an additional, implementation-level field to each record
of a file; we call this its eupp Zemen tary f-ie Z.d. The
contents of this field are generated by the GYVE system

at the time that the record in question is inserted into

the file; certain of the. file access primitives to be

descriped below will require, and others will supply,

a supplementary field value.
v. Access to the records of a file Fis tained

by an instance call whose basic form is illustrated by

(2) F(K) .FARM. ACRES SET (XACRES) [RESULT (R)] [NEXTK (K 1 ,XK}]

Here, K is a key to the file F (which for simplicity we

suppose to have only one single key field) ; FARM makes df.i'f ini t~i

the class of record expect~d, and ~CRES extracts a field

of that record; and XACRES is a variable into which the

value retrieved by (2) is to be placed. If the optional

result parameter R is supplied, then 'no record with this

key' may be signalled through it.

If in F ·there exist several records with the key K,

then the call (2) will access that one of these records

which is 'first' (in an implementation-defined sense).

If the optional parameters K' and XK' are supplied, then

on return from the call (2) they will respectively have

been set equal to the key and the supplementary field value

which locate t..he neY.t record (in logical file sequence)

after the field addressed by (2). To .make it possible to

call, us:i.ng this supplementary field value, for some

particular one of a group of records all of which share

a common key, we allow (2) to appear in the modified form

(2') F(K,XK) .FARM.ACRES SET(XACRES) [RESULT(R)] [NEXTK(K',XK')J,

SE'l'L·-149-15

The form (2') differs froro (2) only in that both the key

Kand the supplementary field XK appear in parentheses
following F; which singles out a particular one of the

records sharing the key K.

vi. One of the entries E which can appear in a call

(2) or (2') is 'DELETE',which if available and invoked

. will qelete the record instance it references from the
file F. A related entry, INSERT, having the general form

(3) F. INSERT(K).RECORDRIND SET(XI<') [RESUI/l'(R)]
V

will be provided. This will insert a new record with key Kand

of the specified RECORDKIND into file. The field XK 1 will
be set equal to the supplementary field value which un_iquely

distinguishes t:he n~wly inserted record. ~his record will

be initialized in the manner specified in the declaration of

the file mode to which F belongs.
vii. Note, as an implementation-level matter, that the

supplementary field yalue XK' returned by a call (2') or (3)
can contain a pointer to the file index fragment through

which the record called for by (2') or (3) is accessed.

This information can then be used to minimize the number

of physical accesses required to access the records of a

file if the pattern of accesses is serial.
viii. It may be desirable to allow optional p~rameters

PREVK(K',XK') in a call (2'), making it possible for files

to be accessed in 'backwards sequential' order.

ix. •Some processes will only require exclusive access

to the individual records of a file; others will need to have

exclusive access to the file in toto. This can be handled

without introducing any new feature into GYVE. The
following approach, which is also valid for aggregates more

general than files, and which is of acceptable though not

excellent efficiency, can be used. If a file F may have to

be reserved in toto, pass the actual pointer PT to it through

SET:::,-14 9-16

a valve, and pass the resulting valved pointer VP'r, rather

than PT it.self, to processes which wi11 only need to access (''

individual records of F. Then give ·processes needing to

reserve all of F access to an instance I able to reference

the valv.e V through which PT has been paf.lsed. When I is

entered, it will shut the valve V~ Then, using a 'semaphore

instance' count~d up whenever access to a record of Fis

accessed and counted down whenever this access terminates,
; t' can ;waif for all in-:process accesses to terminate, and

can then go on to access F. After :return from I the valve V

should be opened again. (Means for ensuring that this will

be done are desirable.)

x. A process which enters a mode instance, and

especially one which enters a· rt'lcord wi thi. n a· file in order

to read or write part of the :intexnal data of the instance

may in some cases depend on the assumption that the data

passed satisfies certain consistency conditions. For this

reason, it may be unacceptable for this·data to be accessed

piecemeal via a series of separate entries. To make several (

successive accesses unnecessary, the ·following construction,

tentatively proposed,may be useful.

a. Introduce the notion of a 'substructure' or

'subrecord' SS of a GYVE structures. This ea~ be defined as

follows: If S is a record with named subfields, then SS

will have named subfields; the names used must be among those

which occur in S, and the items in SS which they name must

recursively be substructures of the identically named items

ins. If Sis a scalar item, then SS must be a scalar item

of the same kind., or be void. If s is an array, then SS must

be an array or an array component, and its declaration will

include a clause of one of the forms

(for subarrays}

or
(for compone:1 ts) .

Here, expn 1 and expn 2 are integer valued expressions, which

SE'l'L-14 9-17

delimit the subinterval (first case) or the component
(second case) of the array S to which SS refers.

b. If A and AA have been declared to be variables

of the types Sand SS respectively, permit assignments

AA= A and A• AA,

having something of the force of PL/I 'by name' assignments.

The first of these will extract all the fields, components,
and subarrays constituting AA from the s~ilarly named fields

and appropriately delimited subparts of A: the second will

set the fields of A named in AA and the parts of A delimited

in AA from the values which AA contains.

c. Permit assignments of the type just described,even

if AA, A or both are parameters of the instance in which _the

assignments occur. Moreover, do this dynamically, in the
following sense: allow the actual parameters with which an

instance entry is called to be either substructures of the
correspondi~g formal parameter of the entry,or to be super

structures of the entry. When this occurs, make up a

'dope vector' giving all actual details of the a~gument-to

parameter correspondence which prevalls for a given call.
Then· assignments to a formal parameter can be used to charge

only s01ne part of the actual argument, and formal parameter

retrievals may fetch only some relevant subpart of an actual
argument.

Note in connection with all of this that the features
just describ~d are harmless, in that they can be implemented,

albeit with considerable extra user-level programming, in
the existing GYVE system. (To do this in the case of instance
arguments for which assignments A.= AA etc., must be handled
dynamically, it would be necessary to make up a 'dope vector'

of appropriate form, and to pass this as a parameter along

with A or AA.) However, the features described can be quite

useful, in tha they may make it convenient to trigger actions

whose description would otherwise be long and clumsy.

!"'

5. Detecting and eras'ing ·or·~atchi'V'i'nDl'lactive obje·cts.

If some global object of a GYVE system remains inactive

for a s~bstantial period. of. time, it may be desirable to erase

it, or perhaps to move

such as magnetic tape.
are proposed.

it to some •archival' storage medium

To this end, the following mechanisms

a. A proccess having a pointer to an account A (and·

hence able to destroy the account in toto) will be able to ·

execute a call

(*) A. INACTIVE (date) NUMBER {n) [ARRAY (ar)] ~

In this call, date is an integer representing some prior

calendar date; it is objects belonging to the accou~t A, and
not accessed since date· that the ca~l (*) is to return. Pointers

to up ton of these objects are to be placed in the array a~;

if· fewer than n inactive objects are found in A, then n, which

is an integer variable, is to be set equal to the number of

these inactive objects. If_more than inactive objects are

found, then n can be changed to n + 1.

b. Once pointers to the inactive objects of A have been

collected in ar, these ·pointers can be used to er~se any or all

of these objects. Alternatively, all or some o~ these objects

can be packeted, and the resulting packet archived, perhaps

by being written to tape.

c. In a system providing for the archiving of inactive

objects, such objects will generally be archived without the

knowledge or intent of their would-be users, who may appear

at a later date, discover that these objects have been removed
from the system, and wish to restore them. To this end, we

propose the following mechanisms.

SETL--149-19

i.If a process blocks because it tries to invoke an
erased or archived instance, make some appropriate external

symbolic form of the pointer' instance available, say via an

auxiliary process entry called

BLOCKREASON.

ii. Make ·the function which converts a pointer to its

external symbolic form independently available. Then, when

objects are purged or archived, add the symboli.c forms of their
pointers to overall system lists of purged and/or archived objects.

iii. Provide an operation which can read an archive tape
and restore a copy·of an object with (symbolically) specified

pointer to any account which is large enough to hold this object.

Note however that no operation converting a symbolically
specified pointer to an actual GYVE pointer will be provided.

Thus pointers remain 'unfo_rgeable ,. , and in particular no
process not able to access an instance originally can access
the object after it has been archived and restored.

SETL-149--20

6. Prelimtn·a·ry ·r~ma·rks ·o·n· :_reliability and recovery issues.

Perhaps the worst exposure of the GYVE system lies in

;.ta assumption that its hardware and software will always

work as specified, and in the lack of any attention to the

problem of recovery from dynamically detected errors or· after

system crash. In the present section, we will try to say

something about these important issues.

We model the problem of recovery after crash as follows:

The state of a GYVE system is unpredictably modified by sub

jecting the implementation-level bit patterns representing

_some small fraction of the many global objects which the

system contains to random change, and by destroying all or

part of the master index which locates global objects given

their pointers. However, the bulk of the large data base .
stored by the GYVE system survives. The problem is then to

restore GYVE to a 'runnable' state, with automatic rebuilding

of as many global objects as possible, and to facilitate the

restoration,perhaps from backup copies, of objects hopelessly

destroyed. In this latter connection, some systematic way

of archiving backup copies of newly created or modified objects,

and of journaling important symbolic input, may be desirable.

Note that a recovery procedure will, generally speaking,

resemble a startup procedu~e, except that a startup procedure

will set up an initially empty family of accounts, whereas

a recovery procedure will be confronted with some pre-existing

collection of accounts, and will be concerned to preserve all
,objects held in these accounts.

In overall outline, we propose the following approach

to the problem of post-crash recovery.

SBTL·-149-21

I
.I

a. The physical representation of each global object O
consists of some collection of physical 'pages'. Each such

page will be checksummed, probably when the page is written

out to central memory; enough different checksums will be
used to make it ·highly unlikely that a page with valid checksums.
actually contains a fault. Ea~h page p of O will also carry
a page number, which locates·p-within the group of pages re

presenting·O, a copy of the global pointer which identifies .
O, and a field def~ning the account to which· p helongs.

b. l:f the object o is a file, its records will be laid

out on page.a in a way penni t~ing the reconstruction of every
record not stored in whole or part on a corrupted page, even
if some of the pages used to represent the file are lost.

. .
This allows the file to be reconstructed, with loss of only

a few records, even if a few of the files pages are ··1ost.
c. Recovery, in as complete a· form as possible, of

cer.tain particular types of objects is particularly important_

.Am~ng the items whose recovery_is critical, we note the following:

i. Most or all of the tree of accounts needs to be re-
covered. Recovered global objects need where possible to be

assigned to the same accounts which held them before crash.

ii. User 'personal catalogs' or 'holder instances' need
to be recovered where possible. It is through these catalogs

that a user is able to connect to .his programs· and files.
•user table' entries containing user passwords, pointers to

personal catalogs, and possibly also some small amount of
accounting and user profiie information, also need to be :!:'escued.

d. To pre_serve particularly significant global objects

we propose to create multiple copies of them at physically

different storage locations. For this, we propose to allow
a clause

INSURE(n)

SE'I'L•· 14 9-2 2

to be attached as a qualifier to the definition of a mode.

When return is made from a non-reader entry of an instance

of t..he mode, n cop~es of the instance will be created, all
in diffei:ent storage lo~tions. These copies will be chained . ., ,,

together by pointers, s~ that·when one is destroyed all will
be reclaimed.

e. Account objects will be classified as 'scratch'
accounts and 'insured' accounts. These two types of accounts
will behave in exactly the same way in regard to all GYVE operations,

but will be handled somewhat differently at the implementation

level, in ways which have conse~ences for effic~ency, and
which will. also have some significance during post-crash

recovery. Relevant details are as follows.

i. Any 'insured' account IA can contain subaccounts,

which can either be 'insured' or 'scratch'. The total number

of scratch accounts which IA can hold is limited, e.g. , to c·
not more than 63. The reason for this limitation is that the

account-subaccount relationship which holds between IA and one

o.f its scratch subaccounts . SA is intended to be recoverable

simply from the identifiers· of IA and SA without any additional

table entries being necessary. . For example, IA mi.ght have an
identifier xxxxoo·, while each scratch account subordinate to

it had one of the identifiers XXXXOl thru XXXX77. ·

i.Whenever an account Bis created within an account A,

except in the case described. just above, some standard number
of copies of an'account sribordination record'specifying the

sizes of both Band A will be created and stored in physically

distinct locations.

ii.i. It is· suggested that the following conventions be

adhered to in setting up 'u.ser ·tables' which the system will

want to recover after a crash. In the first place, only one

such table should be established within any account (which

means simply that an account should be created for each such table.) (,_

Second, the table ahould consist simply of a sequence of

entries, each consisting of a character field holding a user

name, and a pointer field which locates a standardised user

information item. These user information items should be

mult:icopied,. usi~9'- the:· 'INSURE' primitive, by the operating

system procedure which sets th~ up. We then propose to make

a primitive

COLLECT(ACCT) MODE(M) INTO(A) SET{N)

avaliable. Here, ACCT is an acc9unt, Mis a mode, A is· an·

array whose entries are of type !M, and N is an integer. This

primitive will search among all the global objects contained

in ACCT;pointers to the objects of mode M which are found will

be placed in A. The integer N determines ~he maximum number

of items which'is desired, and. is set to the number actually

, found; if more than N are found, N is incre.mented by 1.

By using this primitive one can reconstruct a 'user table'

from the collection of user table items which this table

originally referenced, even if-the table itself fs destroyed.

After a crash, a master recovery routine wil·l be ca.lled.
This will validate as many global objects as it· can (by

examining checksums). Objects of type 'file' will be partially
reconstructed if their complete reconstruction is impossible,

and some indication of the. number of records lost, possibly

with the keys of these fields, may be collected and perhaps

spooled out to ·an auxiliary medium. The account tree will

be reconstructedi and objects assigned to their accounts.

,

Nc.,te that this m:iy ;f.nvol ve a reductic:m in the size of scratch

accounts from which objects have been lost. Those hopefully .
very few accounts whose ancestry i.s irrecoverably lost during

the crash will be made immediate parts of a 'recovered_scra.ps'
account, which is itself an immediate part of the 'universal,

account•· which stands at the root of the account tree. The

recovered scraps a~count will be kept for_some period of time,

·at the end of which it will be destroyed by master console

command. Users will be supplied with a list of the accounts

which have become part of the recovered scraps account, and

perhaps also of the objects contained in this account; which

will give them period of grace in which to form a copy of an

object in the recovered scraps account in an account not

scheduled for destruction. A 'lost and found user' will be

created, and unrestricted pointers to all objects belonging

Gto the recovered scraps account entered into the personal

catalog of this user. By consulting the lost and found user

and ·securing her· cooperation,users will be able to recover

items not otherwise available to them.

The 'logon' procedure, iee., the procedure which validates

user identifiers,will contain code allowing a user's holder

ihstance to be called, and an account pointer ·AP passed back.

·Moreover, it will allow a user to request that the external

symbolic form SYMBAPX of an account pointer be converted into

the pointer APX itself, provided that the account in question

is a subpart of the recovered scraps_ account" After APX is

obtained, the account to which it points can be moved into

AP, using the'move' primitive described just below.

But when this i.s do!le, the identification of the
user issuing the •move request will be written to some system

file, and later printed-, as a precaution against the 'theft'

of items from the recovered scraps file.

(

I

.I

,

In support of the operat~ons described above, we propose

the following primitives:

MOVE(APX) TO(AP) RESULT(R)

takes two account pointers APX and AP as arguments, moves APX
•1 to make it a subaccount of AP, and credits the parent account

of APX with an appropriate amount of space.

FIND(SYMBPT) IN(A) SET(PT) RESULT(R}

takes a character string SYMBP.T, considers it to be the external

symbolic representation of a pointer p, searches in the account
A for an object with this pointer and, if.it is found, returns
pas an unconstrained pointer to the variable PT.

Note that the FIND.and MOVE primitives which have just

been described can be used t~gether to simulate the effect

of a crash within an imbedded system running in some programmed

'virtual mode' within GYVE. Such a ·subsystem will have its

own 'top level I process P, which schedules the activity of.
the topmost processes of the subsystem. The crash action
can be programmed as a subroutine called by Pon signal. It
~ill erase some global objects, including some small number

· of accounts, move other accounts to a virtual recovered scraps

account, and then create a post-crash recovery instance and

transfer control to it. The post-crash recovery instance will
then take whatever additional steps are necessary for system

rebuilding. Users attached to the virtual system will ex
perience what appears to be a rBal crash, and can exercise

their personal recovery procedures.

Software paging will always be less efficient than

hardware! .. SUpported paging; nevertheless, we shall suggest
a compiler-suppor_table sche::ne which should avoid some. of

the very worst inefficiencies which incautious software

paging might imply. The scheme to be suggested will apply

to multiregister machines, for which we make the 'worst case'

assumption that recovery from an address-out-of-range fault

is impossible.

i~ A certain number of the 'index' or 'base' registers

which the hardware provides will be reserved for use as

'page registers'. Every address not translated by the

hardware will have to be translated using one of these registers;

which means that an indexed load will be treated essentially

as 'load K + XR + PR', where K is a constant, XR an index

register, and PR a page-register. Stores will be treated

similarly.
iiw A process P will never be run unless the pages re

ferenced by it.s page registers have loaded into central

memory. As P runs, other pages than those referenced by its

page registers can have been loaded into central memory as well,

while still other pages may only be available on secondary

memory. All page locations will be held in a centralised
· page table, from where· the:'J~ will be loadec into the page

registers of running processes as necessary. When a load-page

register operation being attempted is four.d to reference a

page no~ physically present in central merr.ory, then a paging

operation will be set in motion; this may involve unloading

a page from the central memory area (acco~nt) to which the

pr0cess making the page request is attached.

iii, If a pro(.::ess is interrupted and tr<?.n resumed after a

paging operation is perfonned, it is ncce~sary that the contents

of its page registers should be properly 't:.pdated.

C

0

J'

•

SE'TL-J-49-27

1

./

To ensure this, the following technique can be used:

a. The code which a process uses· to search the page

table can be a fixed sequence of.instructions, held at a

fixed ~ocation within the process. The code G should be

written so th~t if its execution is bxoken off at any point

and then started again from the beginning, the effect is the

same as if G executes without: interruption. Moreover, before
it is exited, G should enter, into one or more cells associated

with the page register R being loaded, a copy of the global

(and hen~e invariant) pointer which defines the object which

R will address. We shall call the cells used for this purpose

'page reg1ster content cells'.

Whenever CPU control is. being restored to a process P

(other than the implementation-level paging process) a check

will be made to see if P was inte~rupted during the execution

of the code G. (This only requires examination of an in

s·truction location counter value.} If so, then P will be

restarted at the begi?ning of G.

The paging program should adjust the contents of the page
registers of any p~ocess which might be referencing a central
memory area within which pages have been moved .. It should be

possibl.e to do thi~ efficiently using the page_ register content

cells.

The following convention will allow page register contents

to be moved from one page register to another without entering
either system-code or disabled mode: To move PR1 to PR2 , first

transfer the complement. of PRi to PR2 , then move the global

quantity held in the page register content cells associated

with PR1 to the corresponding cells associated with PR2 , and

then (to signal completion of the transfer operation) complenent

PR2 •

,

This ensures that if a paging operation transpires while page
r~gister content cells are being transfered, then the code AC

•· which adjusts. the contents of page registers will recognise

that the page.· register content cells of PR2 are in an ~n~1alid

condition. In this case, by comparing the contents of PR2
with.the·contents of the.other page registers, AC can determine

.that PR2 is the complement of PR1 , and can therefore adjust

PR2 properly.

, • r

C

