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v, and its Cost.

The .significance of 1Buektrgckp

It is noted in NL 135A thut, as a program evolves from.its
underlying ‘yubble' or 'proto-program’ toward efficiency,
special data arrangements and combinatorial structures which
support efficient processing will commonly be introduced.
These structures may initially be defined by logical predicates
which single them out from some extremely large collection of
related structures. To actually build these structures some
procedure is needed, and this will generally take one of twe
forms, a logically efficient form when available, a less
efficient form otherwise.

To construct a structured object x efficiently. some
variant of the following paradigm, which leads ultimately to
procedures consisting of nests and sequences of while-loops,
will be used. Invent a set s containing x and a mapping £

of & into itself such that the equation f(x') = x' implies

tha’ x' satisfies the predicate C(x) defining x. Then pick
some X, € g, and it exatively form the seguence Xy ,f(x Y, f (x ) B
until it stabilizes, and which point an element satisfylng the
target predicate will have been constructed.

If in a particular case a desired structure x cannot ke
found using this kind of ‘step to the goal’ approach, scme much
less efficient search technique has to be used. To locate x

‘within s in such cases, one typicelly starts with some X, and

with a family of mappings fl""’fn having the property that
by applying the fj to x,
will eventually generate the whole of s. Then generation begins,
and continues till x is found. Various well-known methods to
improve the efficiency of such a search exist. For example,

repeatedly is 21l possible ways one

" whenever a new elesment y = fi1(f1 (...(fiy(xo))...)) is
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generated, one can '

2. Make some calculation which determines whether the
d&sired x is zaachable from y by the maps‘af and, if not,
- suppress Y. _

b. Detexrmine by calculatiou that particular maps fj
carnot usefully be applied to y, and suppress the formaticn
of fj(y) vhen this is true.

¢. In some way, estimate the number of mapping steps
that separate y from the desired x, and always work forward
from the 'most promising? vy.

Procedures based on such a ‘guided and pruned search®
approach may be said, irrespective of the particular details
~of their construction, to employ ‘backtracking'. (In connection
wvith applications having a numerical flavor,this is sometimes
called 'branch and bound' instead.) A ‘backtracking' approach
is generally much less efficient than procedures of 'step to
the goal'® type, and for this reason backtracking techniques are
aveided when possible; hence in applications they occur less
frequently than ‘step to the goal' constructions. Nevertheless
the vse of backtracking will sometimes be unavoidable, for whick
reason methods for efficient implementation of backtrack, and
for the optimization of backtrack programa are of interest.

We first considexr the question of efficient implementation
of backtrack, and focus first of all on 'strict backtrack’
programs, i.e., programs which progress through a tree of data
environments, occasicnally *failing' and returning to continue
from the immediate ancestor environment of the environment in
which failure has occured. To implement. this restricted form
of backtracking, one logically keeps a stack of environments,
saving an environment on it each time the program being run makes
& nodeterministic choice, and pcpping one off each time executicn
resumes after & fallure. |
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To assess the efficiency of any. backtrack .implementation,
wa will compare it to an *ideal’ implementaticn in which
whole data environments can samechow be saved and restored

~-ingtantaneously. - Note that it is desirable that a backtrack
_system should perform well even if new environments are frequently

created, and- then quickly found to f=zil.
The complexity of the prublems which will arise in im-
plementing backtracking depends on the characteristics of the

- language into which backtracking is to he installed. As

a first case for study, let us consider a lanquage, somethlng
like ALGOL 68, which supports recursion using a stack, and
which alisc provides a garbage collected heap ¥, holding vectors.
We assume that the size of these vectors does not change from
the time at which they are allocated up to the time at which
éhay are garbage collected.

A possible implementation of this semantics is as follows:
In addition to the main stack MS, keep an auxiliary stack AS.
When a new environment 13 orened, a changed_stack_part pointex

.CSPP is set to point to the top of M3. Whenever an item of MS

is popped or changed for the first time after opening a new
environment (which is shown by the position of CSPP), CSPP is
lowered to point to this ltem, and the 0ld value of the item
transferred to AS.

To each vector .V stored in ¥ we can attach a chain VCH
of auxiliary aress ARV of size proportional tc that of V.
Whenever a new environment NE is opened, and V changed for
the first time in this environment, a new block CAAV can be
attached tc the chain VCH., Then, whenever.s component V{ij
of V is changed, and provided thazt it is the first change to Vii}
af zex the opening of NE, the +1d value of ¥{i) can be recordec
in CAAV. (With each wvoctor compaonent V{i) we 2ssociate an
auxiliary field giving the sexlial number of the last environ-
ment for which the wvalue of V{i} has been storad in an auxilisrv
area, and with V ag a whole we zssociate a Ffield defining <he
»

bl

last enviroament in which anv component of V wes changec
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Subsequently, when an old environment OE is restored after
& failure, and V first accessed in this 0ld environment, the
1 ﬂ : former value of V can be restored uging this saved information.
A data structure built up according to these rules can be

garbage collected; however, no items reachable from either the
"main stack MS, the auxiliary stack AS, or thiu either a reaclable
vector V or thru any block AAV of its auxiliary chain can be |
destroyed. Because of this, data will tend to accumulate as

one progresses into a deep nest of environments, and therefore

a garbage collector routine may find itself unable toc recover
; any significant amount of space. When this happens, the
] -following technique for spilling excess data to secondary
_ memory might be used.
1 . {a) The total amount of memory occupied by auxiliary
' blocks generated within each ancestor enviromment of the current
environment CE will always be known. Using this information,
one can locate an ancestor environment E, of CE, where E '
ghould have the following property: a substantial amount of
memory is occupied by auxiliary areas associated with environments
AE ancestral to both Eo and CE.

(b} Once the environment Eo iz defined, the data state

belonging to Eo can be rebuilt and written ocut to secondary
memory (after a suitable compacting garbage collection). Then

the set PRIORAAV of all auxiliary hlocks belonging either to
the environment E, or to enviromeents ancestral to E, can be
erased, following which we caxry out a final garbage collection,
which may be able to drop blcecks which a garbage collection
carried out before erasure of the members of PRIORAAYV would

[ESUE

have had to retain.
Note however that when one uses the 'strict' backtracking
mechanism that has been under consideration is used deep sequences
of environments should rarelv develop, since search
of deep trees of choices is likely to be unfeasible. ‘z::
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reguired for ssxc%onﬁarg meaory spill rru;ﬁiu*‘;.;, and asynms
that garbage coll ection ir a becktrask’ ing environment will
not be substantially WOre expensive than garbage collsction
in a conventional environment, it follows that wost of the
efficiency impact of backiracking comes from the way that

vector ccmponent load and store operalions are affected.

In the backtracking iwglgﬁzentati »n sketched above, re-
trieval of a vestor component V(i) 11 performed in exactly
the same vey as if no backtracking wire irvolved. However,
indexed store opesrationg are move conpilicated, and are im-

‘plemented ag follows:

‘{a) Befors performing s store n,.«eraticn V(i) = ...
check the auxiliary field associated with the compoment V{i).
The value 2 found ir this field defiies the last data en-
viropment within which V(i) was chanjed. If A eguals the

index CE of the current data envircament, perform the store

operation in the ordinory way. |

{b) Otherwise save the old vaues of V(i), A, and the
index i, ail in the auxil iary area AV aszociated with vV, and
replace A Ly CE. Woreover, check e V-associated fizld walue
which gives the sarizal meaber of the last environment in
which any coaporent of ¥ was chmxgmd'. If A° is different
from C8, save 2" in RAV, put 2V o1 & resiore Iict associated
vith the cuvrront enviroenment, and replace A' vy CB. Wﬁ.eig 3
failure ocourz in & given envizorient JE, we consult the
yestore 1ist of CE, and walny it estere zach vector ¥
Wwhich chaznged since CF was openwd retarning it to the conditi
in which V wag before CE was oper:d. This is dons simply by
replacing the current value of ewry component V(i) of ¢ Jor
which a sralue VPRIOR{L) has been saved ip BBV V(i tzkes on
the savel walue VPRIOR{L)

Rﬁ
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indexed lcad oper&tiaua, end mighi approximately double the
time requixeﬂ to p&rf@rm indexsd store ospeorations (which will
require range-checlhing whather or not backtracking is supportaed. }
Reckoning stores as 174 of all operations performed, we see

that ko provide 'strict® bzokiracking in the assumed semantic
snvironment {i. e,, reoursion and fixkedsize vectors in a heap)

should . . apprsxlmﬁtely douhlm run times, {Garbage collection
Aifficulties could chings ihis metimate.) |

Next we consider & scnmevihat wore challenging semantic
enavironment like that of (gopy opitimized) SETL, in which vectors

care ueed o store Jetwrepsteﬂtéug hashtebles ocecasicnally

- requiring rehashing, and in which vectors are allowed to gnow

dynamically. However, we 8! £311 continue to assume that only
strict backtracking, and not nere ccmraicated forms of en-
viraﬁmeqt manipulafionf are allowed. First consider vectors,

whch cap gréw by eonoatenation operations

“
9w o o
{1} Yo W O Lud,

If ir & particular case & logicel copy Of ¥ needs to be formed

to parform this operaiticy, preparing for backtrack is no

problen, since tie new copy of Vo is alloceted within the current
oy

f"

ol

'LJ

eavironment. Suppose on the other hand that 1 be performed

destructively. An implementation supporting variable tength
vectors will store the lencth of = wector ¥V with V in sone
wtiliary corponant which for notationz}l convenience we shall
writae as V{0). The concatenation operstios {15 ¢an tha bz
fiandled Iin the manmer sucgested v whe cods seguence V(GY =V{3i +1;
VIVIGY) = x and by our sariier Siscwseion.  Waen 8 vectoe ased A
dastructively evpauds bevond the gpace allcceated forz ik and
el Lo recoyied; the pointax in ale {neczzzarily unigue) ze-

ferance o 11 can sikply b2 chanoed to point to the longszr copy. (:;'
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1# aftar backtracking this copy of V turus cat to De un-
nescessarily long (which might be discovered either during
garbage coliection or when, after hadhivacking tc @ priox ?Qf
vironment, a component 18 concatensted to V) then gonme
appropriate part of the superflucous space ozcupiad by V can
be released to the space allocator.

Next we shall describe & way in which sets can bg treated
in an implementation which supports strict backtracking. For

setgs not used as maps, the crucial operation are

(2) | s with x
and '
{2} ' s legs X.

A reasonable way to proceed is s3 follows, With each set.s
sssociate an auxdiiiary chain having one node for each en-
vircmnent., To each node, attach an ‘'additions set' sa and a
‘detetion sat' &d (if both these sets zre null, the ncde te
which they would be attached can be comitted.) All nodesy be-
’Gnging to an environment e are liaked together in an associated
vestore list RL{e). To perform the operation s with x, we
first make the test x€z; if thig vields true, nothing remains

to he dose. Otherwise we insert ¥ in =, and make the {est

x€sdl, If x€sd, wo dalete x from sd; ontherw

[
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To perform € lass x, we make the test x€s; if false,

aothiing remsins te he done. Otherwise we delete x from s, and

mase the tezt x€sa. 1€ xEsa, we delete x Ffrow za; otherwisa, we

[N

assrt x into sd.

Y

These operations siculd be no worze than fwice as siow &

the same operations as performed by non-backirvacking SETL.

Howaover, backtracking should not sericusly hamper cur abilizy

©h perfovm operations destructively {i.e., withouvt making full

s2opieg of large compound objects).
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Hext consider the case of a set 8 used as a map, for
vhich the crucial operationz ars ' '

(4) X)) =y
and more generally : S
(S) . 8(31'696‘]‘!1‘1) = }'3

- wn handle (4),we first test to see if <x,y> €smd also if s{x}
contains only a single element; in this case, there is nothing
to do. Otherwise, if <x,y> not €s then we remove <x,z> from

& for each z € s8{x)} and <x> + z from s for each tuple z € s{x}.

Then we test each element t removed from 8 to see if t € sa;
'{f so,we remove:it from sa, if not, we add it to sd. Finally,
we insert t=<x,y> into 8, and test t to see if t€sd; if so,
we remove it from sd, otherwise add it to sa. If <x,y> €s
but s{x} contains elements z different from y, we remove <x,z>
from s, and also <x> + 2z from s if z is a tuple, Ve test each
element t removed from s to see if t€sa; if so,we remove it
from sa, if not, add it to sd. The operation (5) iz handled .
in a vexy similar way.

These cperations also should be no more than twice as

slow as the same operatiocns in non-backtracking SETL. Overall then,
‘we estimate that a version of SETL supporting 'strict' backtracking
can run at approximately one half to one third the speed Of
determiniztic SETL. Note that in backing out of an environment
e we examnine all the items on the restore list RL(e); using
the information which these items recoréy we restore every
data object to the condition which it hzd in the parent en-
vironment of e. ,

Generalised backtracking. Next we consider the implementaticn
impacs 65 'generalised’ backtracking, 4i.2., the overhead cost
of a system which adrits data enviromments as semantic cbjects
that can be manipulated explicitly. (Ar example of a language
whi:h allows this is G. Sussman's CONNIVER.) Since for reasons
alveady explained a 'differential’ implementation is desired, (::;
we assume that the data environments to be manipulated form a tree.
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Lat e be the parant node of e’ in this tree; then the iogical
gsituation which pravails in e i3, with the exception ot
changes explicitly recofded in the implementation level
repregentation of e°, exactly that which prevails in e.
Inter-environment transition is assumed to bz accomplished

by use of the following corcutine-call like primitive:
valuereturned = cocall {newenvironment, valuesent).

This cocall exita from the current environmeat ce, enters
newenvironment,and leaves ce suspended ‘halfway thru' the
conall, resdy to receivae 3 value back when and if contrel is
eventually returned to cve. Note accordingly that with the
exception of the one envircrmment that is curxrently running

all other envircnments will represent processes which have

loet control by executing some cocall from which they are
swalting a value. The value transmitted by e to newvenvizonmant

when the cocall shown above is executed ie the palr <ce, waluesanil

A cmaplete data environmant consists of a control stack,
a logical sddresa structurs which changss dynamically as
recursive calls and returns are made, a map whichhinds program
variahles to addresses, and a map binding addiresses to valiuves,
Lf actions taking place in one environment e are allowed %o
have side effects on the values which the Maps
have in any other environment a‘,th@n one must define rules go-
texmining the way in which 211 these masps and struchures are
affected. To aveid the issuas in which this would invelve us,
wa shall simply rule out inter-envivonment side effects oy

Lnainuxng *ﬁat contrel can only pass to an environment e
{by 2 cocall} if in the tree of all envirornmznts e hzs no
dzgcendants.

Ve assume two mechanizms for oreating new envivonments.

The fiyvst, which we will writa in the form

eny’ = oopy fenvironment) .
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‘gaperates an exact copy of savironment and assigns it to env’,
The newly created env’ is an imnediata descendant of anvirvonment
in the tree of all environments. The second way of creating

& nev environment is toc make the cocall

cocall (2, valuesent).

This ggner&tea copy ernv of the currently running environment
env; snv! becomes an immediate descendent of env in the en-
vironment tree, and control passes to gnv’.

A primitive which allows environments tc be destroyed is
algo required. We shall assume that this is written

destroy(env),

and thgt it destréys grnv and all its descendants in the en-
vironmegt tree. Note that by destroying env we can make its
parent environment executable again. ‘

Now suppose that the generalised backtracking primitives
that have just been described are to be supported in a language
providing both recursion and a garbage collected heap H. We
£irat assume that the heap H holds vectors whose size does
not change frem the time at which they are allocated up to tha
time at which they are garbage collected. We shall describe
an implementation of this semantics, and first discuss the
way in which vectors V stored in H are to be represented. A
possible approach is this: .nuwober environments as they are
.generated, and with each envircnment e record both its serial
number nie) and a bit-vector b(e} which shows  (the serial
rumber of) all environments ancestral to e. With sach component
V(i) of each vector V, associate a bitstring b(V,i) showing
{th: sexial numbers of) all enviionments in which V(i) has
been changed, and a hash tahle B{V}! in which all these changes
are recorded (as triples <e,i, value_assigned_to_V (i)_in_e>).

¢
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1f these conventiong are wsaed, retrvieval of a vector
momponent 1s performed by forming the bitvector ble) biV,i;,
losating the position e! of its nost sgignificant nonzero bit,

_and locating a triple <e',i,x> in ths hash table R{V); x glves

the value of V(i) in the enviromment e. HNote that if not more
than 32 or so environments are being manipulated at any one
time (which should genexally be the case} the bitvectors b{e)
and b can be held in a single word. When more environments
than this mu2t be managad, sections of these bhitvectors can
be held in a 1list of words (words which consist exclusively

of zeroes being skipped)}. '

To perform the storage operation V(i) = y in an envircmment
e, one first checks the appropriate bit of b(V,i) to see if
V{i) has yvet been changed in e. If not, this bit is set, and
an entry <e,i,v> made in h{V)., Otherwise an existing entry
<e,i,x» ig located in h{V}), and x changed to v.

When and if environments are degtroyed in an order differing
fromr the inverse of theixr creation order, geps will appear in
the sequance of identifying serial numbers assigned to en~
vironments, which means that some bit-vector positions will
temporarily fall cut of use. However, the next ollowing garhage
coliection will examine all accessible vectors V, and after
this can repack all bit-vectors b(V,i), eliminatirg unused bit
positions; at the same time, enviromment serial numbers e
appearing in triples <e,i,x> can be changed to their new values.

A acheme for handling recurzion in languages providing

generalised backtracking has been described by Bobrow and

Weghzeit. The following is 2lso a plaugible stack managameni
scheme: With esch environment e, maintain a stack secticn
veoltny SSi{e), representing the condition of the stack, in
the environment <, batween an uosper limit U(e) and lower
limit L(e).
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then the environment e ls firut created; SS{e) will be null

‘and U(e) will egual Lie). Sﬁ&ck locations between U(e) and

L{e) will be read from and written to $S{e); whenever a
stack lecation £ be1ow U(e) is consulted,all stack locaticns
from U(e) to £ will be copied from the stack section SS{e')
asgociated with an appropriate ancestor e' of @ to SS(e).,
and U{e) will be lowered to &. .

Data will tend to accuwmuliate 28 mwltiple coexisting

environments are built up, increasing the cost of garbage

collection and making it impossible for the garbage collector
to revover any significant amount of sgpace. This weans that

it is important to develop some technique allowing excess data

tc be spilled to secondary memory. However, we shall not
attempt to discuss this problem now.
The implementation scheme which we have just outlined
retrieves vector components V(i) by haghing. This should be
gbout 20 times slower than a machine level indexing operation, Q

_and about 7 times siower than a range-checked indexing operation.

About the same figures should apply to indexed store operations.
Thus an ALGOL 68 variant providing generalised backtracking
should run approximately 7 times slower than normal ALGOL 68.
{(Note however that this estimate ignores garbage collection
difficulties which may develop for programs manipulating large
numbers of eavironments.)

Next we consider the sdditicnal problems which arise in
a SETL - like semantic millien which provides vectors that can

.grow dynamically and also provides set-representing hashtables.

Vectors V of dynamically variable length do raise some
problems, but none terribly severe. The vector cof bitstrings
b{V,i) associated with V must always ke maintained for all i
from 1 to the greatest length which V has in any existing en-
vironment. A nominal component V(0) wiil then store V's actual
length {in each particular enviromment.} During garbage collectio:
all the entries in the V~associated hash table h(V) will be ‘;::
examined, and this will reveal the actual length which V has

inr any currently ervisting envirsnment, after which any
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suparfiuocus bitstrings B(V .1} carn be handed back to the

.,cpace allocatoer.

‘Faxt let us consider the wey in’ which sets, both sets
used 148 collections and sets of tnples used 23 mapplngs, can
‘be hendled, Here more &ifficulties seem to be encountered,
and’ wonsid&xably moze thought in naedad; but the following

© remacks will begin to suggest the cutlinas of one possible
. appaoach, Lat & be a set, apd first suppose that a does not

contain any tupies. W& can represent ®, or more precisely

the various different valuee that s will have in different
environments e, by uslng twc mappings fs and‘gs. The mapping
'fs is defined for every element x that belongs to s in any
environment e, and maps x into a pair of bitstrings bl and bz,
whose individual bit positions refer to particular environments.
(e continue to assume that serial numbers are assigned to

- anvironments e as they are generated.) The e~th bit of by

#7111l be nonzero of and only if x was either added to or
deleted from 3 in the environment e, and the e~th bit of b
will distinguish the ‘'sddition' from the 'deletion’ case.
Using the map fs, & membership test y € 8 is perforred as
follows: Celculate fs(y); if it is undefined then v € s
is false. Otherwise f {x) gives two bitvectors b, and b
form b* =~ bhia). b 1¢ dhere as befora ble) is a bitvector
showing (the serial numbhers of) all environments ancestral

to e; and let &' be the positicn of the most significant nonzerc
bit of b'. Then y € 8 is true if and only if bit e’ of

b2 is nonzerco. |

2

2f

Thg wap g, sends each environment e into a list of all
the elements added to s in the environment e, and is used to
expedite iterstions over . Let €5l be the cnvirormentis
ancestral to e (we include e itgslf as e, = e). 1T0 carxry out
the iteration ‘bQGs, wa let x vary over the list gﬂ(ej) for
all § = l;..0,.n in turn.
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For each x on any of these llstz, we make the test x€s in (,}
the menner sxplained in the preceeding parzagraph; if it suc-

ceeds {end if x iz not a member of the set avx{e} introduced
belew) <then x legitimetely belongs to the renge of the
iteration v;es; otherwise not. Whan, during the iteration
V&GS. a particular element x is reached, we add x to an
auxiliary set auxie) assovisted with the iteration V&Gs and
with the current environment e {(the set aux(e) Is initialdised
to null at the start of the ilteration V;Ga}, As elements
x€s are reached in the course of itearaticn the test xaux(el
ig made, and x is bypassed if this test succeeds since x wilil have
been reached at least once before in the same iteration.

.We shall call the representation of s that has just
been described its standard multienvironment representation.
Additicnal czomplications arise in connection with sets con~
taining tuples, since these sets can be used as maps, and
therefore operations like s{x} and s{xlge..,xn} nust ke “
supported efficiently. 5Suppose, to begun with, that such
a set s contains ordered peirs but no' ordered triples, so
that only the operation si{x} comes in guestion. Then we can
keep 8 (or rather that part of it consisting of ordersd poeirs)

43
5]

as a hash-table-based wapping 3, where, for each x, 5{x)

n
ey
e
-

"

-exactly the standard multienvironment representation of

3

Then s{x}, «{x), etc., can zasily be calculated from 3({x) in
any given environment; and the mambership test <x,x'> €s

can be executed as x'€S(x} {which of course is exscuted in the
manner appropriate for sets having standard multienvircnment
raﬁresentntion,which we‘have dust explained). In corder to
expedite the iteration Vyéa we will pyxobkakly also want the
representation ¢f 5 to inzlude an auvxiliary mapping hs which

sends each envircoment e into +he Fist af 211 x whicen first

123

enter tha domaina of & ip tha sovoronment e.
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Note however that if it is known a-piiori that s will never be

- iterated over, then we uan suppresshpart of the representaticn

that hae just been described, thus saving both time and space.

Other facts’ deducibla by global
program analysis will aleo nake significant efficency im

provements possible even in a genaraliaed backtrackinq
envircnment. Suppose, tor example, that s iz known to ke

a set of ordered pairs used only as a map, and that s is

also known to be gingle-valued (in every environment.) Then

& can be represented in a manner resembling the representation
of vectors suggested a few paragraphs above. Sbecificallyr

- with each x which belongs to the domain of s in any en-

vironment, we associate & bitstring b(s,x) showing the serial
nunbers of all anvironments in which s(x) has been changed;

" we also store & map h(s) in which all these changes are

recorded (as triples <e x, value-of-s(x)-in-e>}. Then to
retrieve or to modify the value 8(x) we proceed in much tre
same way as for vectors. Observe that when this representaticn
is used, the time requirad to retrieve or store s(x) should
not be more than three times the time required for these wame
operations in & nondeterministic SETL environment.

However, let us return tc our discussion of set representations
in the general case. We have described a way in which seis
congisting of non-tuple elements, plus tuples of length at
most 2, can be represented. We shall continue to call the
representation that was described for these sets their‘standard
multienvironment representationt, To handle sets s containing
tuples of more general type, we can simply proceed inductively,
associating with 8 a map & such that, for each %, S{x) gives
the standard multienvironment representation of s{x} Then to
evaluate s{x;,s,}, one calculates (Sx)) {x,), etc. If s
must support iteraticn, we may alsc want the representation of
§ to include an auxiliary mapping which sends each environment
@ into the list cf all x which enter the domain of s for the
first time in the environment e.
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The time required to calculate é{xl,...,xn} from the
multienvironment representation of s should stand in the

' same proportion to the time needed- for an ordinary SETL

calouletion of s{xl,...,xn} as the time needed for a multi-
enviromment calculation of s{xl}_stands to the time needed
for an ordinary calculation of &{x;}. A very crude estimate
of this latter time ratio can be obtained as follows. To
calculate B{xi} in an envivromment e, one will have to examine
all the elements y which belong to s{x} in any environment
ancestral tc e, and determine which of these y still belong
to 8{x} in e. To examine a single element y, and to insert
it inte a develeoping representation of s{x} if this is needed,
should take roughly twice as long as the like operations
would take in a non-backtracking environment. Thus to evaluate
s{x} in a generalised backtracking environment should be
roughly 2/P as expensive as it would be in a backtracking
environment, where P measures the probability that an element
x which belongs to s{x} in any environment ancestral to an
environment at e 1so belongs to. s{x} in e. The quantity
P can be regarded as a measure of the iate at which s{x}
changes as one passes between environments.

In a generalised backtracking environment, the membership
test x€s will involve a hashing operation followed by several
bit-string operations; it should therefore have roughly half
the speed of the corresponding non-backtracking test.

All in all, if we suppose that the number of environments
being manipulated never comes to exceed the nunber of bits
in 2 word by more than a small factor (a reasonable assumption
since the space cost of maintaining a large nunber of en-~
vironments will often be gonsiderable), than a SETL-1like
language.supporting generalised backtracking should run no
more than in order of magnitude slower than standard SETL.

.

@
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Global Optimization in Backtracking Eanvironments.

in both ‘strict' and 'generalised' backtracking snvironmenis
global analysis algorithms cuan be expectad to uncover many
optimization opportuniities. One such optimization has
already been sketched in an earlier discussion of the re-
presentation of single-valued maps in a generalised back-
tracking envoronment. Even though really accurate estimation
of the value of particular optimizations will depend on the

~accumulation of more experience with backtracking versions

of set-theoretic languages, we shall now list a few more
optimizations which should ba useful.

a) As already observed, each operation which a set x
must support in a backtracking environment will add substant-
ially to the size of x's representation and to the cost of
every other operation involving x. Thus precise determination
of the operations which will be applied to every individual
object in a program is particularly important.

b) Suppose that some vector 6: set y can be shown by
global analysig to be strictly ‘'local'! to a single environment
e, i.e., to be created within e, and to be dead at any program
point at which e splits itself into two environments or
passes control to another environment which might split e.
Then backtracking need not be supported for y, i.e., y can be
maintained in the same form that non-backtracking SETL would
use, which avoids all backtracking overhead when y is accessed.

c)Suppose next that y is a set or vector-valued varisble
whose value is never usad destructively, i.e., that whensves
¥ is changad its waluve is reassigned completely. Then ¥ can
be represented using a mapping y. where y{e) is either the
value of y in the enviromment e or is § if y has the same
value in e as in e's ancestor envircnment; and also using a
bit-string defining the environments e in which y has a valus
different from v's value in e's ancestor environment. If v
is represented in this way, the time required to verform an
operation on y im a backtracking envivonment will exceed its
nonbacktracking time requirement only by a single hash-access
time.
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Q) Next suppose that the set s 4is known to be a subset
of another set s8', i.e, that the relationship s C s' i3 |
known to hold in every environment. In the standard multienviron-
ment raepregentation described in the preceeding sectlon,
8 and s* will be represented by a pair of maps fs and f&.,
realised by hashtables ¥, H', and sending element each
into either a pair of bitstrings or into &. If s C s' in
known to hold, it can be useful to conglomerate these two
maps into one single hashtable A, whose individual entr.es
will then in effect be quintupies <x, bl’ bz, b{, bé >, where
x is any element belonging to s8' in some environment, and
where the bitstringg bl and bz.define x's relationship to s
every environment while by and b,
to 8 in every environment. - 'This joint representation becom:s
useful if, for example, we wish to perform the test y € s,
provided that y € 8' is known by global analysis, and that y
is represented ‘'as an element of s'‘', i.e., by a pointer to

the quintuple <x, by, by, bi b§7> which defines x's relation-

define x's relationship

'ship to s'. If y is represented in this way, then the test

Yy € s requires no hashing operation. Note also that if the
subset s'-s of s8' is known to be small in most environments,
ther we can suppress the lists that might otherwise have to
be maintained to expedite iterations over s.

O
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Appendix: Regrasentation'of'*stricﬁf backtracking in teims

of 'generaliged® backtrackiny .

In the present appendix we tie up an irritating loocse
end by 2xplaning how the generalised backtracking primitives
degcriled in the preceeding pages can be used to represent
‘strict’ backtrack.ing. The strict backtracking primitives
which reed to be reprasented are ok, which nondeterministically
return: t or £, and faill, which terminates an environment.

To make atrict backtracking available to a progranm »,
we compile it with the following prologque: '

: <otherenv, valret> = cocall (R,9);

/‘ the preceeding cocall operation forms a second copy of the */

_/* data environment of p, and returns it as otkerenv, The 7

/* environment otheremv will aposear to have just lost contrelt/

/% thru the cocall, and to be awziting a reply. In the environmern: =/
/* tree (vhich consists of precisely two nodes) the running #/

/* environment will be an immediate descentant of otherenv */

+f valrel ne @ then go to stariy;

/% in the originally running eawvironment, this branch will not ¢/
/* be: takxen. In the environmernt wiich we ghall now form, it will.¥/

otherenv = copy {otherenv):;
/% this oopy operation forms a copy e’ of the original othesreny *#/

/* which can run alternately with the initially running en- %/
/% vironment. After this, the ~riginal otherenv will mnever be #,/

/* uvused; but it remains as the oot node of the tres of envircnmerin:
envstack = nult; /* initialise envircnment stack */
valret = t; /% for use.in fcilowing eocall */

(vhile %) /% loep vriil explicit cuit */
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cotherany,valret> = coosll (‘%hba?'h,J(Lfﬂt};

/% this transfers control to e?., valret will always have the */

/* value t or £. The t passed originaily merely forces tha */
/* conditicnal jamp to start (see above) to be taken; L
/* subseguently vairet will be interpreted (in e') as the */
/* value returred by the function ok */

if valret then /* this is the code for a call to ok in =f #/
envetack (fenvstack + 1; = otherenv;
otherenv = agplit {otharenv):
/% the gplit anvironment copy will now he rTan #/
else /* the fail primitive has been called in e® %/
deatrayiotherenvf; /* delete the failed environmsnt #*/
if eavstack eq nult then guit while;; /* exit test */
otherenv = envstack{} eavstack); /* pop off 014 envirenmant #.
envgtack (£ envstack) = {;
end if valret;
end vhile; '
print ‘backtracking fails'; exity /* a complete backtracking feiluyrs ~,
/* entry will be made here when the alternats environment e »/
/* lor otherenw) rans, : : * f
+e:. (here follows a bkody of code using the *strict backtracking!
primitives)
1f every program begins with the proliogure shown abhove.
then the styict backtracking primitive ok can ke regarded
zimply as a macro for

£
i

-
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while the fail primitive zan be regarded as a macro for

juak = cocall (othevenv, £);



