
•
1

I
l

1

..

•

. •

SB'fL Newsletter t 153

l
....I

'l'he ,•aigeificanee ·of ·•-aaektr~dk!!N'·,· ·an:4 •its cos·t.

J.T. Schwartz
July 15, 1915 ·

It is noted in NL 135.A tluat, as a program evolves ·from.its
u.nd•lyin9 '-rubble• or 'proto-program•. toward efficiency,
special d~ta arrangements and combinatorial structures which
npport efficient processing will commonly be introducedo
These structures may initially bo defined by logical predicates
which single them out from some extremely large collection of
related structures. To actually build these structures some
procedure is needed, a11d thie will. ger,erally take one of twc
foxms, a l!'9'ically efficient form when available, a less
eff ic,f.ent form otherwise.

To cons1:,ruct a structured object x efficiently, some
vari~nt of the following paradigm, which leads ultimately to
procedures consisti~g of nests and sequences of while-loops,
will be used. Invent a sets containing x and a mapping f

of s into itself such that the equation f(x') • x' implies

tha~ x' satisfies the predicate C(x) defining x. Then pick
. 2

some x0 e s, and iteratively form the sequence x
0

,f(x
0
), f (x

0
)r•~·

unt.il it stabilizes, and which polnt an element satisfying the
target predicate will have been constructed.

If in a particular case a desired structure x cannot be
found using this kind of 'step to the goal' approach, some much
less efficient search technique has to be used. To locate x
within sin such cases, one typically starts with some x and

0

with a famity of mappings £1 , ••• ,fn having the property that
by applying the fj to x

0
repeatedly in all possible ways one

will eventually generate the whole of s. Then generation begins,

and continues till x is found. Various well-known methods to
improve the efficiency of such a search exist. For example,
whenever a new element y ~ fj (f, (••• (£

1
. (x

0
)) •••)) is

'1 ... 2 k

generated,. one can
\ ,, ...

a., Make :amae calculatio1i which determines whether the

desired x is reachable from y by the maps fj' and,. if not,

suppress y.
b. Determine_hy calculation that particular maps fj

cannot us~fu11y be applied toy, and suppress the formation

of fj(y) when this is true.
c. In some way, estimate the number of mapping steps

that separate y from th~ desired :x., and always work forward

from the 'most promising' y.
Procedures based on auch ·a 'guided a.nc.1 pruned search'

approach may be said~ irrespective of the par·ticular details
of their construction, to e.1nploy- 'backtr&cking ' • (In connectio11

rith applications having a n\Jl't\erical flavor,this is sometL~es

called 'branch and bound' instead.) A 'backtracking• approach

is generally nmch less efficient than procedures of 'step to
the goal' type, and for this reason backtrackingtechniques are
avoided when possibl81 hence in applications they occur less

frequently than 'step to the goal' constructions. Nevertheless
the use of backtracking will sometimes be unavoidable, for which

reason methods for efficient implementation of backtrack, and

for the optimization of backtrack programs are of interest.
We first consider the quection of efficient implementation

of backtrack, and focus first of all on 'strict backtrack'
p1~ograms, i.e.11 programs which progress through a tree of data
environments, occasioraa.lly 'falling' and returning to continue

from the immediate ancestor environment of the emd.ronment in

which failure has occured.. To implement. this restricted form

•=>f backtracking, one logically keeps a sta.ck of envi:.rorunents I'
sa,,ing an en"'.ri.ron."'llent on it each time the program bein9 run makes

.a nodeterministic choice, and pe-pping one off each time execution
resumes after a failure.

C

;i;:·~~i.
·, .. ,

• To assess the efficiency of any.backtrack.implementat.ion,

we v'il1 compare it to an i ide~:.' lmpleltler.tation in whicL

whole data environmen~s can smehow be saved and restored

•,: instantaneously;.· Note that it. is des.irable that a backtr~ck

...

•

•

. system should 'perform well even :i.f new environments are frequer1tly

created, and·then quickly found to fail.
'!'he complexity of. the· prtiblems which will arise in im

plementing backtracking depends on the characteristics of t.~e
language into which backtracking is to be installed. As

a first c:Ase for study, let us consid.er a language, something
like ALGOL 68, which supports recursion using a stack, and

which also provides a garbage collected heap H, holding vectors~
We assume th.at t-.he size of these vector::.1 does not change from

t:J1e time at which they are allocated up to the time at which

they are garb~ge collected.
A possible implementation of this semantics is as follows~

In addition to the main stack MS, keep an auxiliary stack AS •

When a new environment is or,ened., a changed stack part pointer
' - -

. CSPP is set to point to' the top of MS. Whenever an item cf MS

is popped or changed for the first time after opening a new

envix·onment (which j_s shown by the position of CSPPj, CSPP is

lowered to point. to this item, and the old ~alue of the :1.tem

'transferred to AS.
To each vector.v stored. in H we can attach a chain VCH

of auxiliary aren.s MV of size proportional to that of V.

Whenever a new envircmment NE .is opened, and V changed for

the first time in this environment, a new b}ock CAAV can be

attached to the chain. VCH. Then, whene~1e::. o component. V (i)

of V J.a changed, an~J provided that it is the fi.rst change tc VU.)

after the opening of NE, thi? •::ld value of ·v { i) can be recordec1

in CM,V. (With each v;3ctor compi'.lnen.t V{i) we ~ssociat.e an

auxilia:cy field giving the se!'.'ial nu:rni.~er of the last e:r1v·i.:ron

mellt for which tbe value of V {.i) has hee~1 sto'~•ad in an c:1.rn:Ui ,:;r~·

art~a" and with V as a whole we associate .1 fit:ld defir.in9 the

last en1ti.ro,1ment in which anv componerrt o1 V .,.:as changed.)
-~j,~

l
I

SETL-153-4

si,bsequently, when an old environment OE is restored aftt!r

a failure, and V first accessed in this old environment, the

former value of V can be restored usi.ng this saved information.

A data structure built up according to these rules can be
garbage collected1. however, no items reachable from either the

· aain stack MS, the auxiliary atack AS, or thru either a reachable

vector·V or thru any block AAV of its auxiliary chain can be
destroyed. Because of this, 4ata will tend to accumulate as
one progresses into a deep nest of environments, and therefore
a garbage collector routine may find itself unable to recover
any significant amount of space. When this happens, the

·following technique for spilling excess data to secondary

memory ~ght be used.

(a) The total amount of memory occupied by auxiliary

blocks generated within each ancestor environment of the current

e~vironment CE will always be known. Using this information,

one can locate an ancestor environment E of CE, where E
· 0 0

should have the following property: a substantial amount of •
memory is occupied by auxiliary areas associated with environments
AE ancestral to both E and CE.

. 0

(b) Once the environment E
0

is defin.ed, the data state
belonging to E

0
can be rebuilt and written out to secondary

me.mory (after a suitable compacting garbage collecti<:>n) • Then

the set PRIORAAV of al·l auxiliary blocks belonging either to

the environment E or to environments ancestral to E
0

can be . 0

erased, fol.lowing which we car·ry out a final garbage collection,
which may be able to drop blocks which a garbage collection

carried out before erasure of the members of PRIORAAV' would

have had to retain.

Note however that when one uses the 'strict' backtracking

mechanism that has been under consideration is used deep sequences

of environments should rarely develop, since ·search
of deep trees of choices is likely to be unfeasible.

•

/ ...

CD
' I
'

I
.J

ree;uired fo:t: sect.on.dary mcmo:r.·y· l?!pill cp1::,;;.'i,t..:i.c•ns" and asii·mn,s

that garbage collection. ir-. a ba.cktra:r,k:1' .. rts environment wil:t

not. bEl substantii1lly mor.e e.~ensl.ve tt.::u1 garbage colieci:ion

in a convamt.ional environment, it follows that most of th,~

efficiency impact of bi:1:.ckt.r~ck.f.ng comt,s from the way that.:.

vector -campc;.i1e11t load i!i.nd $"t,,cir~ O}?e't'-'.tt;ioni; ai:·e affected~

In t'.he ba.cltt.rack.i:ng implsentati.,n sketche-:! ahove, r,,

tri.eval of .?; ,ra;:;;·tor c~,pon\ll,n,t; V Ci) Lt per!o:rmt:ld in "-:!xactl!i'·

tne same 'ilajf' .. u, if no bac.ktr~cddng w::re in,rol ved.. EcJwe,ra1t,

hde..'Ced sto1·e il!)peratiori-a are iW1t\1:e ccx1.plicated, and are im· ..

· J?lemented ~.iii f ollo·$t'B:

· (a) B~f or;P.; per:fo:nn.ing- a atort, 1ip,er-a t:ion V (i.} = ~ ~ e ,

check the auxilla.ry field associated with the component VU..} ~

Tbe value 1'. found il'.\ ttds field defi:ies the last data en"'."

viromnent within which V(i) was chanJed. If A equals the

index CE of the ~rent data envir1:"ment, perform the sto:ce

operation i.n the ordinary wey.,

(b) Oth.:~:r.x':1.sf.! save the old va.:.ues of V (i) , A, and tfo.o2

index if all in the mndli.a:r.y area ;,.,"',.V associated with v~ ,:!nd
replace A '!.1y CE~ Moreover.1 chock 'ne V-associated field. value _Afi

which gives thrt s~ri,d nu .. ;iriber of the last environment in

which anv co,1r,.=>O!f.e?-:nt of V ~,as cha~c;,.d. !f AG .is dif feren.t
-~~ ~

wi t:h the · ctn.·r•;B'! t 1;::n<tJ:1.rorrn;.e:r, t, i:1.nd cepl ace JA' l-?,J' CE~ ·when a

failure 0ccurr1 ±.n .::.; qi·t,r::1,. ~~r.viz:,one.1:t. ~E, we coni~ul t the

which chc<nged since CE Wern cpen~d ret:.1.niing i. t t.o the cow:! i t:i,:n1

in which V W<21:s bf.,foi-:-e CE wa.s oper~d ~ •rh:h1 is don•?. rd.mply i>y

replacing the cu:t.·i.-i?nt value nf r:,,,:'lrf c::,mpo:r,1esnt v {i) c,f ,y J'c;:·

which a ·•ralu1::: \TP..IOR { i) has beeJ·1 savBd. ir, ."AAV: V (i} takes or,

thf:! :sa'i'i."e5. -;y,E;_lu.e 'VP!U'.C>:R { i) ,,

•

· ~hcmlf.S ~e f.mwll :1~~;,.z,ct Qn t.:J-:r.~ dr.iti :.ce.q-ui:ced ~o perf ort-1

indeili.:ed load opera:r:.ic .. r!.jS 6 rc:.:nd inight: npp.roxi'i.·nately double the

t:i.me :required to perform inde."~ ~t~.·rce op•?rations (whic.h ·will

require r.ange-checkin·;J \gh'<'i C.:her o:e :r:.ot backtracking is suppor.tead ~)

RecJr.('ming ~toree i:m .l/i! oi all opl!'.':t:ati.:,:ns pe:cft:>rmed, we see

that · to provide - :i st.r:lct ~ biE-..ck~1uc};.i~1g in tkte assumed sema11·ti,c

.!:n.vironment (i., e c ,, :c'(Hn".1;•sio1'.I. tuad f i.xadsi :ze vecto1:s in a heap)

-...... _._:!hould ... approxim~teiy doabl~ :run tbt,es.. {Garbage collectio:n

difficulties could el"Ling~; t.his c:1st:imat~ .. }

Ne.xt we consi.der et ~iCilK-!\:i'i.ett :moi-~ e..::h.a11enging semantic

envir.onmen-t. like that: ic)f (qopy opi'.::.i.mi.z,~d) SETL 6 in which vectc.r.n

. are used to et.ore set-.repr~st.nti11g hr1shtables occus:lcma1.ly

~squiring .rehashing,. ~.nd i1'l which vectors a:ce allowel to g:i::o;,.1

dynamically. However,., we still continue to a~sume thai: only
strict backtracking 6 and 11.ot 11~or{~ crnnp1icated fonmi of en

vixfJr.'!'.ment' manipuluf:iou r are ;;,J.lowed. First consider vectors i
"·$ •

whict:. ea.it grow by· ~nr::!.1.t.e:matio1:, «-,pe:r-at:ions

destructively.. An irople:sw~mt.at.icH·, m1pporting· va.1:iablE! lEmgth

vectors 'liill r:d;o:i::t" thP "..?!'"c.th o.f ;-;_ ·,,.,'l!nt:o:r· V -;;r:L t:11 V ir., r;nr,!~, . -· .Ii.-"... - _
,rnxiliary corq .. xman.t ·wll.Lch fm:- nota:t:i.tmcJ. ';.:;onvE,:'1.i.er~ce ,;,:--e ~h~:.u.
writ~'."ii as V {O) ,. 'l'he ,~o:r'.cate)1.aticn O:iJ€'iretior.: !)) c,:,,,:n -i.;_hea 1)(::

:H-an.d1t::•.d.. ir;. the n:ti'!mit.e:;:- t.tl~.;gasted ..,y ·che cud-::,: £.:2qua[1Ce V (01 -=V (:}) +1 ;c

destr·uctiv'=:ly m,:pa:w:l:i h2:yond ·U.,e ;g1rn.ce a.11,:rc.::it~d fi:n: i.r:. and

.it'll:.i,t L,1:: re.;;c•:r:~e~;.1. t:'tu:" po.~-nt..rn: .i.;:-1 ~:.:·,~,, {ne:c;;,.:sc;.,'.:ffily un:J .. q1.:c•} i:"°'"·

C

•

11 a.fti2tr :backtz:.i:icki.Y!g t:h.la ;;x,p1' ol. ~,;," turna:; oilt to b,.:i U.."'.!

nascessarily long (which mJ.ght be di5cover.ed either dLring

ga.r.bage collection 1::>r when, after bacld::.racking to a prior e1~

"'7i:ronment., a comP.onent is concatena.ted to V} then som~

appropriate part of the superfhtous space o~cupied by V can

be r~leased to the space allocator.
Next we sh~dl de1:1cribe a way in which sets can be treated

in an L'llplemantation which supports str:!.ct backtracking.. For

sets nc>t used as maps"' the crucial operation are

(2)

and
(3} s ·less x.

A reasonablt'i way to proceed is e;.a follows. With each set s

.i,.ssociate an auxiliary chain having o.ne node for each en-·

viromnent. To each node, attach m1 'ti.dcU.tions set' sa and a

'deletion s,;1t' sd (if both the~~e sets c;.re null, the node tc

which ·they would be attached can be omitted.) A.11 nodes be

longing to an enviroJ1lil.ent e are llnbed toget..h.er in an associated

1•esto1•e 1,·f,3t RL(e)" To pe:r:fo:t)"« the opera.tion s ~ith x, we

first makE'J the test :lef.:.s; if this yiel.dr:: -~u~.' nothing remains

to !),a d.oEe. Othe:r.wi.se we irrnert x i.n sf and make the te:3t

we rnake the +.:.est :;.-Es; .i.f

n.ot?1ing r:~ml::,ins to b~, done. Othei,·dse we c.,~lete x :'ro:n :a~ and

r.:u-1::,:{.~ thE, ·t.:"::Mt xEsa~ If xEs:a, we delete x fr.o,o saJ othar.'.•.·.\.f.s-?!, ~->t::

-;.nse.r.t x .i.nto sd.

•rnese operations should be no wcri:.e than twice a.s -s:1.0-,,: :;,; . ..s

the same c•peratione as perfo.t1ned by non~·backtr«cking SETL_.

("io~:-aove:.:v backtracking should ri<>t seric;,usly hamper cu:c ahiJit.y

~:<:. perform operations destructively {.Lr:::., with::mt .:na.kinq .fui.1

,::opies 1::if large compcmnd obJr:'.:Ct:is) •

•

SETL-153-0

Next. consid&E the caeetf'.lf a set·;B used as a mapt fox l ,

which the crucial operations are . .

(4)

.. and more generally
(5) s(x1,j •• ,~n) • y;

~ handle (4),we first test to see if <x,y> esmd also if s{x}

contains only a single element, in this case, there is nothing

to do. Otherwise, if <x,y> hOtEa then we remove <x,z> from --
IS for each z e s·{x} aT.td <x> + z from s for each tuple z e s{x}.

Then we test each element t removed from a to see if t E sa;

'if so~we remover:it from sa, if not, we add .it to sd. Finally,

ve insert t•<x,y> into s, and test t to see if tEsd; if so,
we remove it from ad, otherwise add i.t to sa4 If <x,y> Es

but she} contains elements z different ·from y, we remove <x,z>

from s, and also <x> + z from s if z is a tuple. Ne test each

element t removed from s to see if t.Esa1 if so,we remove it

from sa, if ·not, add :!.t to sd. The operation (5) is handled

in a very similar way.
These operations also should be no more than twice as

slow aa the same operations in non-backtracking SETL. Overall then,
··we estimate that a version of SETL sup~orting 'strict' backtracking

can run at approximately one half to on," third the speed of
determiniatic SETL. Note that in backi!·1g out of an environment

e we exaniine all the items on the restol:·e list FL (e); using

_the inf O:1:ma tion which these i ten1s re core.,. we res torie every

da·ta ob:iect to the condition which it hll.d ln tlie parent en

virorunent. of e.

G.aneraZ-lsed bcwktraaking.. Nexi: we consider the in:1pleruentation

ir.tpac~: of 'generalised' backtracking, i ,. e., the overhead .cost

of a s;ystero. which admits da.ta environments as semantic objects

that can be manipulated explicitly. (Ar: (3Xarnple of a language

wl'd.•;;h, allows this ia G. Sussman' s CONNIVER. } Since for reasons

al~:eady explained, a 'differential' impli:i:mentation is desired, C
we assume that the data environments to be m;,.nipulated form a tree.,

•

l ·

•

SETL-153-S,
./

tat €~ be the par1i!lt r..oo,n of a" in thtf; t.ree; -thi:-m U:1e 1·::.cgica:,

situation which prevails in et :i.3, 1tlit.11 the exception of

changes explicitly recorded in t.he implmnentati.on level

representatiqn of e' , exactly /~at which prevails ir1 e ..
lnter-envi:ronmen~ transition ill astJUmeid to ba accomplished

by use of the following oorouti.."le-eall like primitivea

valuerattu-nsd ~ cocall {neweir,viro:n.ment, val~esent).,

This cocall exi tl3 fx·om the cur.rt,nt envb:onro.e11t ce, enters

new•nui~onmsnt,and leaves ce m:ispended 1 haln1ay thru' the
ooaall.,, re~dy to rec~.iva & v~lue back when and if control 1s

eventually returned to ae. Note ~ccordingly that with t.he

exception of the one environment thnt is currently ru1ming

all oth.P.r environments will :represent processes which have

lost control by exGcuting smue cocall from which they· are,

await~g· a value. The value transmitted by oe to net-,env·l:..'.'.'onmerd;

w·hen the cocall shown above is executed ie: the pair <ce:, value:r-i.~1·:-."i::>.

A c.i:xmplete d.ata environment consists of a control stack,

a logical a.ddresa strti.cture which changes dynamlcally as

recursive calls a.nd returns are ma.de, a map which binds prc,g:ram

variables t.o addresses r and a map binding addresses to. Vctiues.

If actions taking place in one environment e are allO"wed to

have side effects on. the ~ralues which these maps

have in any other environment e ', thon orAe must define ruJ.t--w dt'J~

tezntining the way in which ~~11. th<ast-:i 111.a.ps and st:ru.ct:urer::. are

affected.. To avc1iil thr~ issu,~s in wbich this would involve us 1

we shall. simply rule out inter,-envi ·.:-omnt'!n.t side efft~cts :Oy

insisting that c,:.mtrol car.; only pass to an environment.: e

(by a cocall} i:f: in t ... 11.e tree •:>f all environm.ants e hi.a no

descendants.

We asm .. u:ne two mec~hanisms for ..-~reat.in.g new env.1.ro.r.-.inGnts.

Thi:! first, whh:h we will v?:~·ite ir~ the f.or!n

ge,arates an ~et ,;opy of amiironm,fnt and assigns it to e,n; '.

The newly cireated eriv r i.s an immediat-a descendant of ~nviPonmttnt

in,the tree of all environments. The second way of creating

a new environment is to make the cocall

cocall (0, valuesent).

This generates copy env of the currently running environment
s,iv; .tnv' be00Dll!a an immediate descendent of env in the en

v.i.ronment tree, anc! control passes to anv'.
A primitive which allows environ1nents to be destroyed is

also required. We shall assume that. this is written

d&stroy(Mv) ,

and that it destroys era, and all its descendants irt the er1-
·-~

vironment tree. Note t:hat by destroying ent:i we can make its

par$nt environment executable ~gain.
Now suppose that the generalised backtracking primitives

that pave just been described are to be supported in a language

pro-..riding both ree,1rslon and a ga.rbage collected heap H. We

first assume that the heap H holds ·vectors whose size does

not change from the time at which th-ey are allocated up to the

time at. which they are garbage ~ollected. We shall describe ,

an implementation of this se.~antics, and first discuss the

way in which vectors V stored J.n tt are to be represented • .A

possible approach i.s this: .. mnnbcr. environments as they are

generated, and with each ens:1ircn:merit e record both its serial

nwnber n·(e) and a bit•-vector b{e) which shows · (the serial

nu.mber of) all environments ancestra.l to e. With each compone;'),t

V(i) of each vector V, associate a bitatr,ing b(V,i) showing

(th~ serial nuJnbers of) all ~nvi~on.Tents in which V(i) has

been changed., and a. hash table h (V} in which all these chan~:res

are recorded (as triplen <e,i, v~lue ass:iqned to V (i) in e>). --... - -

C

•

•

•

.I

If th.ase conv,ent.ions Artt \lfiied ,- :cet~:t.ava1 t)f a vector

~ponen t iH p&rfor.msd lYt fo1t."Uf.i.;;;g th~ bH:·'l~ctor. b (e} ,., b (V, i; e

lo-ea.ting the posit.ior.1. e• of i-te :most. a:ignificant no11zero bi.t,

and locating a triple. <s 1 ,i,x> in t-.b.a hash table h {V) ; x g.tvea

th-a value of V (i) in the envirormient e. Note that: if not :m.ore
than 32 or so environments are bein9 manipulated at any one
time (which should ~enerally be the case) the bitvectors b(e)
ard b can be held in a mingle word. When :more environments

t.~an this must·be .managed~ Nations of these bitvectors cm1

be held in a list of words (llt>rdsi which consist exclusively
of zeroes being skipped}~

To perform the storage operation V (i) = y .i.n an enviror1.i-nent

e, one first checks the appropriate bi.t of b(V,i) to see if

V(i) has :ret been changed in e. If not, this bit is set, and

a..~ ent.:ry <e,i,y> made in h(V). Otherwise an existing entry

<e.,i,x> i.e located in h{V) i' and x changed b? y ..

When tmd if environments are destroyed in an order differing
fror.t the inverse of their creation order, gaps wlll appear in

the sequence of identifying serial numbers assigned to en-·

vironments, which means that some bi t.0 •,rector posi tione: will

temporarily fall out of use. However, the next fullowing garbagt'!

collection will examine all accessible v-ectors v, and after

this can repack a.11 bit-vectors b(V ,i), eliminating unused bit

positions; at the same time, environment. ser.i..a1 numbers e

nppearing in triples <e,.i rx> ,.:an be changed to their new values,

A a~heme for handling recursion in languages providin-3

generalised · backtra<":ldng has been described !.")y Bobrou and

Wegbreit. The following is a.lso .:1 plausi:::>1e stack rnanagem(mt

scheme; With e.3.Ch envirnnment e, maint&in a stack secticn

vectDr SS(e), representing t..he condition oft.he stack, in
the~ emd.ronmeut ':'"., bat.ween e:.r; u:;:;p(~r limit U (e} a.nd lower

limit L(e) •

'
l i ..

' . I

f j
i

j
'
'I
'I
. I
(!

Jfueu th.ei en.---~irorummt s is. xirut created, SS (e) will be null

and U(e) will equal L(e). St:ack locat.io11a between U(e) and
L(e) will be read from and written to SS {e) ; whenever a

stack location 1. below U(e) is consulted,all stack locations

from U(e) to I. will be copied fram the 11tack section SS(e')
aoaociatsd with an appropria~ ancestor e' of a to SS(e),
Md u {e) will be lo.v~red to .& •

Data will t:end to acm.muiate as 1ffll1.tiple coexisting
environments are built up, inc,T~easing the cost of garbage

cml.lection and m·aking it impossible for the garbage collector

to reuover any significant amount of space. This means that
it is important to develop some technique allowing exceaa data

to be spilled to secondary memory. However, we shall not
attempt to discuss this problem now.

The i.mp1ementation scheme which we have just outlined

retrieves vector components V(i) by hashing~ This should be

about 20 times slower than a machine level indexing operationr •
. and about 7 times slaifer than a range-checked indexing operation.
About the same figures should apply to indexed store operations.

Thus an ALGOL 68 variant providing generalised backtracking
should run approximately 7 times slower than normal ALGOL 68.
(Note however that this estimate ignores garbage collection
difficulties wh;~ch may develop for programs manipulating large

numbei:·s of environments.)

Next we consider the additional problems which arise in

a SETL - like se.mantic millieu which provides vec~ors that can

. 'J?.'OW dynamically and also provides set-representing .hashtables ..
Vectors V of dynamically 'ltariable length do raj_se some

problems r but none terribly severe. The vec:tr.>r of bi tstrings

b(V ,i) associated with V mu:st always be maintained for all i

f'rom 1 to the greatest length which V has in ~j~ existlng en

vironment: •• \ nominal component V(O) wLLl the::1 store V's actual

length (in each part.5.cular environment.) During garbage ~ollectiolW-:

all the entries in the V-associated ha.sh table h(V) will ce,

examined, aJ.1:d t.his will reveal the actual length which V has

j_n any cur:cently ~~.isting envirrmment., aftc~r which any

•
./

SB'l'L-153-13

nuperf1uous bitstrings b (V i-i.) can be h,~nded rnack to the

epace n.llocator.
·)isxt let us conllid.er the way· in" wbioh sets, both sets

ue4 ns collections and sets of _tuple& used as mappings, can
·be undled. Here more dif~icul~s · seem to be encountered,

. . "" -
an4 · r.10nsiderably more_ t:bought is· ·neede<h_ but the following

•r•zrka will begin to a~ggeat t.he outlines of one possible

approach. Lat e be a tBet, .tp.d_ lirat suppose that a doe11 not

c:oatain any tuples·. • can r~t 11, or more precisely
the various different valu$g that a will have in different
environments e, by using two mappings f s and g

8
• The mapping

·f
8

is defined for _every element x that belongs to s in any

<an"ironment e, and maps x into a pair of bitstrings b1 and b 2 ,

whose individual bit positions refer to particulai· environments.
(7/e continue to assume that serial. numbers are assigned to

• f111vironments e as they are generated.) 'l'he e~th bit of b 1
,rill be· nonzero of an.d only if x was either added to or

deleted fr.an a in ·the envi.ronment e, and the e-th bit of b 2
will distinguish the '~ddition' from the 'deletion' case.
Using thG map £

8
, a membership testy e s is performed as

follows: Calculate f
8

(y); if it is undefined then :re s
is false. Otherwise f

8
{x) gives two.bitvectors h1 and b2 ;

form b' o:a b(e),. bl" where as befora b(e) is a bitv-ecto~
showing {the serial nun1hers of) all environments artcestral

toe; and let a' be the position of the most significant :nonzerc

bit of 0 1
• Then yes is true if a.i"ld only if bite' of

b 2 is nonzero.
T-he map g 8 sends each environ11,ent e into a list of all

the elements added to s in the environment e, and is used tt:;

expedite iterations over s ... Let e 1 , en be the (:,nvirorunents

. ancest.ral to e (we include e itself as en = e). ?.o carry m1t

the iteration Vxes, we let x v:acy over the list g:~ (ej) for
all j mi: 1, ••• ,n in turn.

i.

•
./

For ~ach x on anir of t.hese 11at.?., we make 1:he test. xEs in

t.J~~ man11e::.:· :explt{.1.n~,d i11 ·t-b.$3 µi:ecG:eding pa::. c:.<.J :raph; if it Si;.C:=

ceeds {and if x :i.12 not a mm.J\bex of. the set au.x(e) introduced

below) then x legit:bne,.t.ely bel!mgf:l to th.E: rt1nqe of the

iteration 'ef.xesr ot."le:rwiuo not. Wh~n, during ti1e iteration
Vxes, a particular element x is reached, we add x to an
11uxiliar.{ set aux f.e.) amsor.:i.t'.t:-ed with the i tf.H:'ation V..xEs and

with the current environment e {the set a1.ndt?.) :i.s initialised

t<J !!!!!.! at the start of the i t(~J:ation Vx€s) . As elements

xEa are reached in the course of iteration the test
is made, arid x is bypassed if thin test succeeds since x wi 12. have:

been reached at least once before in the same it.erat:ion~
. Wt? shall call the repre:sentation c,f s that has just

been described its standard muZtienvironme~t repPesentation.

Additional complications arise in connection with sets con ..

taining tuples, since t:tase liets can be used as maps, and

therefore operations like s{x} and s{x1 , ••. ,x } Inust be n
supported efficiently. Suppose# to begun with, that such

~- set s contains ordered pair~ but ::.10·!· o:rde.red triples, so

that only the operation s{x} comes j_n question. Then we can

k<~ep s {or rather that po.rt. :::,f it consisting of ordered p~i:(SJ

as a hash-table-based mapping S, where, for each x, S(x) is

exactly the standard rnultienvircmment representation of
Then s{x},s(x), etc., can easily be calculated from S(x) 1n

a.ny given environment; and the !ih".mbership best <x,x'> t:s

can be executed as x 'ES (x} (which of cou:,::se is f.:.Xecut.•2:d i:1 '::.Le~

manner appropriate f,::,.x- set~. having standaYd multi"='nvi rcnr~1ent

n~preser:tation,which we h;s,ve just e:.<plaim:·d). In ordE.r to
~ . e. \J,_

expedite the 1.tt~rat1.on Vy,.::.r,; we will probi'lb1y also want the

:representation c,f s to in~lude an au.xil.tar.·t mapr.,irF1 h. which
,#,. •- :, s

se.nrls each envircnment e int.o ,:-.he : ist ,yt .,,~l x ~,,hid, first
ei1t.er th-:? dov.i.ai.:1 of f: iri th,:; f.;.,;;r:.:..n::nrr,ent: P.

•

0

• ..

•

0

SETL-153-15

Note however that if it is known a.p~ior1: that s will never be
iterated over, tl1en we can Kuppress part of. the representation

that hu just been described, thus saving both time and space:.

Other facta·deducible by global
program analyeis will aleo llake significant efficency im··

provementa possible even in a gen~alised backtracking
environment. Suppose, for exmiple, that sis known to be

a set of ordered pairs ueed only as a map, and that sis
also known i:o be single-valued (in every environment.) ~l'hen

a can be represented in a manner resembling the representation

of vectors suggested a few pn.1:agraphs above. SpecificallYr

with each x which belongs l:.o the domain of' sin any en
vironment, we associate a ·bitstring b(s,x) showing the serial
numbers of all environments in which s(x) has been changed;
we also store a map h(s) in which all these changes are
recorded (as triples <ex, value-of-s(x}-in-e>}. Then to

retrieve or to modify the value s (x) we proceed in much tie
same way as for vectorso Observe that when this representation

is used, the time required to retrieve or store s(x) should
not be more than three times the time required for these r;ame

operations in a nondeterministic SETL environment.

However, let u.s return to our discussion of set reprr::sentat:i.ons

in the general cane. We have described a way in which sets
consisting of non-tuple elements, plus tuples of length at
most 2, can be represented. We shall contJnue to call the

representation that was described for these sets their 4 sta~dard
mul tienvironment representation'. r.ro h;.;,.ndle sets s containi"lg

tuples of more general type, we can simply proceed induct:{:~reJ.y,

associating with s a map S such that 6 for each x, S(x) gives

the standard multienviron.ment representation of s{x} Tht?n to

evaluate s{x1 ,s2}, one calculates (S(x1)) (x 2), etc. Ifs

must support iteration, we may also want the representation of

s to includa an auxiliary mapping which fHmd s each environment

a into the list of a_ll x which enter the clom2!in of s fer the

first time :in t.he environment e ..

..

-~-153-16

The time required to calculate s{x1 , ••• ,xnJ from the
aultienviromnent representation of a should stand in the

· same proportion to i:he timtt needed· for an ordinary SETI.

calculation of ~{x1 , ••• ,xn} as the-time needed for a multi
environment calculation of s{x1} stands to the time needed
for an ordinary calculation.of a{x1}. A very crude estimate
of this latter time ratio can be obtained as follows. To

calculate a{x1} in an enviroment e, one will have to examine
all the elementa y which belong to a{x} in any environment
ancestral toe, am determine which of these y still belong
to s{x} in ee To examine a single element y, and to insert
it into a developing representation of s{x} if this is needed.,
should take roughly twice as long as the like operations

would take in a non-backtracking environment. Thus to evaluate

e{x} in a generalised backtracking environment should be

roughly 2/P as expensive aa it would be in a backtracking
environment, where P meaaures the probability that an element
x·which belongs to s{x} in an_y_ environment ancestral to an
environment ate lso belongs to s{x} in e. The quantity
P can be regarded as a measure· of the rate at which s{x}

changes as one pas~es between environmenta.

In a generalised backtracking environment, the membership
test xes will involve a hashing operation.followed by several

bit-string operations; it should therefore have roughly half
the speed of the corresponding non-backtracking test.

All in all, if we suppose that the numb.er of environments
being manipulated never comes to exceed the number of bits

in a word by more than a small factor (a reaso:1able assumption
since the space cost of maintaining a large nunber of en
vironments will often be considerable}, than a SETL-like
language supporting generalised backtracking should run no
more than in order of magnitude slower than stcmdard SETL-

•

0

..

• ,.

Ii

•

SETL-15J····1';,·

In both i st.rict • and 'generalised 1 backtracking envi.rcm.Y\1ent:t=;

global analysis Glgori thms c1.m be expected to uncover many·

optimization opportuniities. One such optimization has
already been sketched in an earlier discussion of the re
presentation of si~gte-valued maps in a generalised back
tracking envoronment. Even though really accurate estimation
of the value o~ particular optimizations will depend on the
accumu~ation of more experience with backtracking versions
of set-theoretic languages~ we shall now list a few more
opt~izations wb:J.ch.should be useful.

a) Aa already observed, each operation which a set x

must support in a backtracking environment will add substant

ially to the size of x's representation and to the cost of

every other operation involving x. Thus precise determination
of the operations which will be applied to every individual
object in a program is particularly important.

b) Suppose that some vector or set y can be shown by

global analysis to be strictly 'local' to a single emdronmen.t

e, i.e .. g to be created with.in e, and to be dead at any program
point at which e splits itself into two environments or
passes control to another environment which might split e.
Then backtracking need not be supported for y, i.e., y can be
maintained in the same form that non··backtracking SETL would

use, which avoids all backtracking overhead when y is escces::;.ed .•

c)Suppose next that y is a set or vector-valued variable
whose value is n.eve1:· used destructively, i .. e., that wh~neve.r.

y is changed its ~.,alue is reassi.gr.ed completely. Then y can

be represented using a mapping yr where y (e) is either t.he
value of yin t-.he environment. e or is n if y has the same

value in e as in e's ancestor environment; and also using a

bi t-st..ring defining the environments e in which y has ,:1 value

different from y's v·alue in ets ancestor environment. If v

is represented in this way, the time required to oerform an

operation on y in a backtracking env.i:n."ln.ment will excei::)d itc.;

nonbacktracking time requiremerit only by ;;1 single hash-acct",ss

t.i.me~

SETL-153-18

d) Next suppose that the sets is known to be a subset

of another set s r ~ 1.e, that the relationship s· c s' i::i

known to hold in every environment~ In the standard mul':!::ienv.iron

ment · representation descri.bed in the preceeding sectlon,
' sands• will be represented by a pair of maps f

6
and £

8
,,

realised by hasht.ables H, H ' , and sending element each :;::

into either a pair of bi-tstt:"ings or into n. If s c s' i~\

known to hold, it can be useful to conglomerate these two

maps in_'to one single hash table ii, whose individual entr:.es
will then in effect be quintuples <x, b1 , b2 , b1, b2 >, where

x is any element belonging to s 1 in some environment, and

where the bitatrings b1 and b 2 define x's relationship to s·

every environme~t while b1 and b2 define x's relationship

to s in every environment. 'This joint representation becom,,s

useful if, for example, we wish to perform the testy E Sr

provided that yes' is known by global analysis, and that y

is represented 'as an element of s'', iee., by a pointer to
the quintuple <x, b1 , b 2 , b1 b2~> which defines x's relation~

ship to s'. If y is represented in this way, then the test

y Es requires no hashing operation. Note also that if the

subset s'-s of s' is known to be Si"'llall in most environments,

then we can suppress the lists that might otherwise have to
be maintained to expedite iterations overs.

0

•

0

i I
t

I I

... . ,,

•

•

0

SETL-153-A-1

Ap~nd~: ReEresentation_9.,f '·strict•· bac:kt_1~;1cki·~·i! i;:rt •. !-~

of · •·generalis81'1' ·backtracking •
; -- C

In the present appendix we tie up an irritating loose
end by axplaning how the generalised backtracking primitives
descr_il\ed in the preceeding pages can be used to represent

•strict• backtracking. The strict backtracking primitives
which r.:eed to be represented are· Ok, which nondeterministically

. -
returrn: t o:r f, &nd ·fail, which terminates an enviroMtent. - -- -------

Tt) make at:i:ict backtracking availabla to a program p,

we caripile it wi t,h the following prologue:

< otberenv, val.r.et> • cocall (n , m ;
I*
jtt

/ii
/*
I*
/"

the preceeding cocat.l operati1:m forms a second copy of t:he */
data environment:. of p, and returns it as otherenv. The */
environment oth~:.renv will ap·_?ear to have just lost control*/

thru the· oooa l 1,, and to be awaiting a reply. In the environmerr::

tree '(\i!·hich consists of precisely t."Wo nodes) the running .,., /

environment will be an immediate descentant of otherenv */

{.f valret ~ n then go to start.r ::

/ 11 in t;tle origin.ally running t:•,~1"1j.ronment, this branch will not "'/

/* be1 taken. In the Emvironrnt~mt w:1.ich we shal:l now fon1: 1 it will,,*/

otherenv = copy (otl.eren·v) ;

/* th.i.s · oopy operation forms a copy e ~ of the original otha1•env <Ja/

/
9 which can run alt.ernat.ely wit.h the initially running en= */

/* viror.ment. .After this, the r;,:r.-iginal o~~her•env will : .. 1ever: be 1.;
/* used; but it remains a.~; t:,E ::::-oot node of the tr('::1;: of envircnni\:::-:L:;•

envstack
valr.et =

(while t)

= nult; . I -
!)

/* ini ti.al1se

/• for t~VIE<. in

I* loop ur: til

envircnment a.a.ck "'/
fcllowing oocaii */

e:v.-;,U.cit quit *l ,·

/* t,..;.is transfers control to e f., va'l.?'e.t will always :ha"lre 1::.h~ ,i.-/
1lt .-/* value t or !• The i, passed originally merely fore,~:,; tt;;,~ I

pt conditional jump to etazot {see above) to be taken; * /
/* a:uhseq,lently va Zr"' t will be i11terpreted. (in e ' } as the * /
/* value returrted by the funct:ton Ok * /

' . -
if ·vv.lret the:ri /* this is the code for a call t.o ok ::Lrt '.:'; e 11 /

envstack (fenvstack + l) 1<: otheremr;
othere;n...-., :n split (ot ... "1 ~ramr) 7

/* the spLU: e:n,vironmen-1: cnpy wil1 noH he x-un J• /

else /ti the !ail primitive has been called in e ~ ~: /

de.stroy(otherenv) 1 ;1r delete the fa.:lled envi.ronrnent l:./
.: f ""nV"'-·t ""CY.' · ·e~cr ·n"'l t · th"'n ,...,,. J. t ,.y ... 1.· l O • • /* · ,,,. ,<! t· ·t,,,.-,_ +- t, / ~- ~ k:l Q -, .,_~ ~~-• ~...,; "'iV..J. fT,i! ,. ~)! ./I • t_:..,4'\.J.. , -;;_,._') ,.. •

otherenv = en1.Tstack (t e.::1vstack) ; /* pop off old envir-omn-e:r.t :;-, /

envstack (t envstack)
end if valret;

end while; • print 'backtracking fails'; exit1 /• a complt~bs! backtrack:Lng ft:.:Llur.:f:' ~ ,I

~tart:: /* :mt.ry will be made here when 'b~e alternate P.nvironment e ~ i\ I

• • • .. (here follo·-w-it a body of code using the 'strict ba.c-:kt:rac)dn.g 1

primitives)
If every program begins w:U::.:t. the prologv.e shown a.bc,vc .-

then the strict. be.cktr.acki ng p:c lmi tive ok can be reqard,2:d

simply as a macro fo:r:

,-hi.le the f-ail pr::imi thre -::an be r-agardoo c1.s a macro for

0

